Как найти момент резания

Производительность и себестоимость
обработки изделий на металлорежущих
станках, качество обработанной поверхности
зависят, прежде всего, от принятых
режимов резания. Поэтому важен выбор
их оптимальных значений при проектировании
технологического процесса механической
обработки.

7.1 Расчет режимов резания при точении.

1)При наружном
продольном точении:

t=,

где
Д0-диаметр
поверхности до обработки, мм;

Д1–диаметр
поверхности после обработки, мм.
Подставляя известные значения:

Д0=178;

Д1=170;

t=мм,

Так
как глубина резания t
не превышает 5 мм, то обработаем данную
деталь за один проход.

2)Найдем
значение подачи S,мм/об
по формуле:

S=,

где
r
– радиус округления вершины резца, мм;

Rz
– высота неровностей, мм;

r=1мм;

Rz=2010-3мм;

S=

мм/об;

Из паспортных
данных станка выбираем наименьшую
существующую подачу

Sф
=0,4
мм /об

3)Расчетная
скорость резания при точении Vр,
м/мин, вычисляется по эмпирической
формуле:


где Сv=350
– коэффициент,
зависящий от материала инструмента,
заготовки и условий обработки;

Т=60 ч –
расчетная стойкость инструмента;

Xv=0,15,
Yv=0,35
– показатели степени влияния t
и S
на Vр;

Sф=0,4
мм/об –фактическая подача Кv
– направленный коэффициент на измененные
условия, которые вычисляются по формуле:

Кv=КMvКnvКUvКvКФv
=4,1∙0,65∙1,0∙0,8∙1,0=1,1

Где
Кмv=4,1-коэффициент,
учитывающий влияние обрабатываемого
материала;

Кnv=0,8-качество
(состояние) заготовки;

КUv=0,65-материал
режущей части инструмента;

Кv
=1,0-главный
угол в плане;

Кф.=1,0-форма
передней грани инструмента;

Значения
коэффициентов и показателей степени
формулы найдем в литературе [1.].

м/мин.

4)По расчетной
скорости резания подсчитаем частоту
вращения шпинделя, об/мин.

,

где
D0
– диаметр обрабатываемой поверхности,
мм.

Vp
– скорость резания, м/мин;

Из
паспортных данных выбираем наименьшую
ближайшую величину частоты вращения
которая будет являться фактической nф
=1600 об/мин.

Откорректируем
скорость резанья, то есть подсчитаем
его фактическое значение

Найденные режимы
резанья могут быть приняты только в том
случае, если

развиваемый при
этом крутящий момент на шпинделе, будет
больше момента, создаваемого силами
резанья.

5)Определим
тангенциальную силу Pz,
создающую крутящий момент Mрез
по формуле:

Pz=CpztxpzSфypz
Vфnpzkp

где
Cpz=2940
–коэффициент, зависящий от материала
и условий обработки;

Xpz=1,,
Ypz=0,75,
npz=-0,15
–показатели степени влияния режимов
резания на силу Pz;

Поправочный
коэффициент на измененные условия,
подсчитываемый как произведение ряда
поправочных коэффициентов, вычисляется
по формуле:

Kp=KMPKpKpKupKp

Числовые значения коэффициентов и
показателей степеней приведены в
литературе [1] стр.13

Таким образом получаем :

Kp=0,7911,10,931=0,81;

По формуле вычисляем тангенциальную
силу:

Крутящий
момент Мрез,
потребный на резание подсчитывается
по формуле[1]

где
Pz
–тангенциальная
сила, Н;

D0
–обрабатываемый диаметр, мм;

Нм,

Крутящий момент
на шпинделе подсчитывается по формуле[1]:

где
–мощность
приводного электродвигателя, кВт;

Соседние файлы в папке st78,v-1

  • #

    11.08.201741 б18detal.dwl

  • #

    11.08.2017197 б18detal.dwl2

  • #
  • #
  • #
  • #
  • #

Расчет режимов резания осуществляется при механизированной и ручной обработке металла. По результатам вычислений подбирается оснастка, определяется оптимальный способ проведения работ и размер производственных расходов.

Расчет режимов резания

В материале:

  • Способы проведения расчетов
  • Параметры, учитываемые при проведении расчетов
  • Обработка резцами
  • Сверление
  • Зенкерование
  • Работа с развертками
  • Фрезерование
  • Шлифование
  • Заключение

Ключевые задачи процедуры:

  • повышение скорости и качества операций;
  • снижение материалоемкости производства;
  • уменьшение нагрузки на персонал;
  • снижение процента брака;
  • внедрение ресурсосберегающих технологий;
  • повышение рентабельности.

Подбор режимов резания происходит для каждой технологической операции. Работы проводятся комплексно, предполагают использование справочников режимов резания, отраслевых нормативов и прочей документации.

Способы проведения расчетов

Режимы резания металлов рассчитываются одним из двух способов.

  • Аналитический. Вычисления производятся эмпирически. Специалисты выполняют тестовые операции на основе формул теории резания. В результате подбираются оптимальные режимы обработки для конкретного материала или заготовки.
  • Статистический. Способ обработки подбирается по справочнику режимов резания. Такой подход не предполагает проведения экспериментов, ориентирован на работу с общими отраслевыми нормативами.

Применяемый инструмент должен иметь рациональную конструкцию, обеспечивать максимальное использование всех возможностей оборудования.

Параметры, учитываемые при проведении расчетов

При расчете режимов резания инструментов используются следующие показатели.

  • Глубина реза. Расстояние, на которое погружается инструмент в процессе обработки заготовки.
  • Подача. Степень перемещения инструмента в рамках одного рабочего такта.
  • Скорость режима резания. Отношение скорости перемещения режущей кромки ко времени, затрачиваемому на обработку детали.
  • Расчетные размеры. Параметры заготовки. К ним относится диаметр, длина и ширина обрабатываемой поверхности.

В ходе подбора режимов резания металлов учитываются припуски на обработку, затрачиваемое время и количество проходов.

Обработка резцами

При назначении режимов резцового резания определяется порядок обработки материала, учитывается специфика воздействия инструмента на заготовку.

Обработка металла резцом (принципиальная схема) Рис. 1 Обработка металла резцом (принципиальная схема)

На рисунке 1 представлены показатели, влияющие на токарный режим резания:

  • t – глубина реза;
  • s – подача;
  • f – площадь номинально срезанного слоя;
  • Н – высота остаточного сечения;
  • ϕ − главный угол;
  • ϕ1− вспомогательный угол.

Подбор режимов подачи осуществляется по специальным таблицам.

Расчет подачи для незакаленных сталей и чугунов Таблица 1. Расчет подачи для незакаленных сталей и чугунов

Расчет подачи для закаленных сталей Таблица 2. Расчет подачи для закаленных сталей

Ознакомиться с ассортиментом токарных резцов, используемых при расчете режима резания металлов, поможет представленная ссылка.

Работа резца по металлу Рис. 2 Работа резца по металлу

Сверление

Режимы работы со сверлами определяются с учетом конфигурации инструмента, параметров заготовок и специфики применяемого оборудования. Как правило, используются формулы и табличные значения. Они позволяют подобрать режим резания для сверл с высокой точностью.

Для расчета подачи сверла применяется формула s = C х D0,6, в которой:

  • s – подача;
  • D – диаметр применяемого сверла;
  • С – нормативный коэффициент.

Значения коэффициента представлены в таблице.

Значения коэффициента С для сверл Таблица 3. Значения коэффициента С для сверл

Сила, подача и момент резания рассчитываются по типовым формулам с применением соответствующих коэффициентов.

Коэффициенты, позволяющие рассчитать режимы резания для сверл Таблица 4. Коэффициенты, позволяющие рассчитать режимы резания для сверл

Корректное использование таблиц и формул расчета резания позволит подобрать оптимальный режим. Он обеспечит высокую эффективность инструмента и минимальные затраты на последующую обработку детали.

Для ознакомления со сверлами, участвующими в различных режимах резания стали, посетите раздел сверла по металлу.

Работа сверла по металлу Рис. 3 Работа сверла по металлу

Зенкерование

Геометрия режущей части зенкеров не нормирована. Производители применяют различные технологические решения, с целью повысить эффективность и продлить срок службы продукции. 

При определении режима резания стали зенкером специалисты учитывают следующие параметры:

  • задний и передний угол зенкера;
  • угол наклона винтовой канавки;
  • угол при навершии;
  • угол при наклоне режущей кромки.

Как и в случае с прочим режущим инструментом, расчетные процедуры выполняются по базовым формулам и рекомендациям нормативов по режимам резания.

Работа зенкера по металлу Рис. 4 Работа зенкера по металлу

Ознакомиться с инструментами, для которых рассчитываются технологические режимы резания, поможет раздел «Зенкеры и зенковки». В нем представлен широкий спектр продуктов, присутствуют решения для различных вариантов обработки.

Работа с развертками

Развертки используются для предварительной и окончательной обработки заготовок. Они позволяют создать отверстия требуемого качества и формы. Инструмент востребован на производстве и в быту.

Расчет параметров режимов резания осуществляется с учетом следующих показателей разверток:

  • угол наклона канавок;
  • задний угол;
  • передний угол;
  • угол конуса заборной части.

При работе с пластинами из твердого сплава подача определяется по таблице.

Подача разверток с пластинками из твердого сплава Таблица 5. Подача разверток с пластинками из твердого сплава

Определить стойкость изделий также помогают нормативные значения.

Стойкость разверток в минутах Таблица 6. Стойкость разверток в минутах

Полный перечень разверток, используемых при организации технологических операций, представлен в соответствующем разделе. Специалистам доступен инструмент для ручного и механизированного труда. В ассортименте решения, работающие с чугуном, цветными металлами, конструкционными и легированными сталями.

Работа развертки Рис. 5 Работа развертки

Фрезерование

При расчете общемашинных режимов резания посредством фрез учитываются геометрические параметры режущей части инструмента:

  • задний и передний угол;
  • угол наклона винтовой канавки зубцов;
  • главный и вспомогательный угол в плане угловой кромки;
  • дополнительный угол в плане, в случае двойной заточки кромок;
  • угол наклона режущей кромки.

Получить дополнительные сведения о характеристиках фрезерного инструмента можно посредством справочников и производственных документов. Последние предоставляется заводом-изготовителем по запросу покупателя.

Рассчитать подачу фрез при работе со сталями, стальным литьем и чугунами поможет следующая таблица.

Расчет подачи фрез при работе с различными материалами Таблица 7. Расчет подачи фрез при работе с различными материалами

Показатели стойкости фрез также представлены справочными значениями.

Стойкость фрез в минутах Таблица 8. Стойкость фрез в минутах

В случае скоростного фрезерования на механизированном оборудовании применяются дополнительные значения и коэффициенты.

Средние значения скорости резания при работе с чугунами, углеродистыми и легированными сталями Таблица 9. Средние значения скорости резания при работе с чугунами, углеродистыми и легированными сталями

При определении параметров режима резания учитывается расчетная мощность, сила и момент резания, а также основное технологическое время.

Получить дополнительную информацию касательно работы с фрезерным инструментом поможет статья «Фрезерование концевыми фрезами». Для знакомства с перечнем фрез по металлу перейдите в соответствующий раздел каталога.

Работа фрезы по металлу Рис. 6 Работа фрезы по металлу

Шлифование

Посредством шлифовального инструмента осуществляется первичная, вторичная и финишная обработка заготовок. При наличии соответствующей оснастки мастеру доступен широкий спектр работ:

  • шлифование центральной части заготовки;
  • внутреннее и наружное шлифование бесцентрового типа;
  • внутреннее шлифование с использованием патрона;
  • плоское шлифование периферией или торцом инструмента;
  • фасонное шлифование.

Возможна заточка режущего инструмента различной конфигурации.

При проведении расчетов учитывается скорость вращения шлифовальных кругов. Некорректное применение данного параметра приведет к снятию избыточного объема материала, преждевременному износу инструмента и увеличению продолжительности операций.

Скорость вращение шлифовального инструмента в процессе обработки заготовки Таблица 10. Скорость вращение шлифовального инструмента в процессе обработки заготовки

Продолжительность эксплуатации кругов при выполнении различных процедур также имеет нормированное значение.

Стойкость шлифовальных кругов Таблица 11. Стойкость шлифовальных кругов

Режимы резания зависят от параметров шлифования и специфики применяемого оборудования.

Подбор режимов резания при работе с абразивным инструментом Таблица 12. Подбор режимов резания при работе с абразивным инструментом

В случае работы с резьбовыми соединениями применяются особые режимы резания.

Режимы резания при работах по шлифованию резьбы Таблица 13. Режимы резания при работах по шлифованию резьбы

При шлифовании выделяется большое количество тепла. Для его рассеивания применяются охлаждающие жидкости. Допускается использование водных растворов 5 типов:

  • 1% кальцинированной соды и 0,15 нитрита натрия;
  • 2-3% кальцинированной соды;
  • 2% мыльного порошка;
  • 5-7% раствор эмульсола;
  • 3,5% раствор эмульсола с добавлением олеиновой кислоты.

Качественное охлаждение исключит температурную деформацию заготовки, предотвратит преждевременный износ инструмента и нарушение технологии обработки.

Работа абразивного круга Рис. 7 Работа абразивного круга

Для получения подробной информации касательно абразивного инструмента посетите соответствующий раздел каталога. В нем представлены круги, шлифовальные шкурки на тканевой и бумажной основе, сетки и приспособления для шлифования.

Заключение

Расчет режимов резания – обязательное условие для большинства технологических операций. Однако, для корректного выполнения работ недостаточно вычислений. Важно использовать качественный инструмент, способный выполнить необходимые действия. Последний можно приобрести у нас. Магазин «РИНКОМ» реализует широкий спектр продукции для работы с деревом и металлом. Мы гарантируем высокое качество товара, приемлемые цены и строгое соблюдение сроков поставки.

Режимы резания: описание и основные параметры. Правила расчета и корректировки скорости, подачи, глубины и силы резания. Необходимые формулы. Зависимость от характеристик оборудования и инструмента.

Режимы резания в механообработке — это совокупность рабочих параметров, определяющих, с какой скоростью, силой и на какую глубину происходит погружение резца в деталь в процессе удаления с ее поверхности слоя металла.

Их базовые значения определяются расчетным путем на основании геометрии режущей кромки инструмента и обрабатываемого изделия, а также скорости их сближения. На реальные процессы обработки металла оказывает влияние множество факторов, связанных с особенностями применяемого инструмента, станочного оборудования и обрабатываемого материала.

Поэтому для расчета технологических режимов резания применяются эмпирические формулы. А базовые значения входят в их состав вместе с такими справочными величинами, как группы поправочных коэффициентов, величина стойкости, параметры условий обработки и пр.

Режимы резания влияют не только на заданную точность и класс обработки изделия. От них зависит сила, с которой кромка инструмента воздействует на металл, что напрямую влияет на потребляемую мощность, уровень выделения тепла и скорость износа инструмента.

Поэтому расчет их параметров является одной из основных задач технологических служб предприятий. Несмотря на множество разновидностей металлорежущего оборудования и инструмента, в основе всей механообработки лежат единые закономерности.

Поэтому методики вычисления режимов резания унифицированы и систематизированы в три основные группы: для токарных работ, для сверления и для фрезерования. Все остальные виды расчетов являются производными.

Режимы резания

Оглавление

  • 1 Параметры при расчете режима резания
    • 1.1 Скорость
    • 1.2 Подача
    • 1.3 Глубина
    • 1.4 Сила
  • 2 Как правильно рассчитать режим резания при сверлении

Параметры при расчете режима резания


Основной расчет режимов механообработки ведется на основании трех параметров: скорости резания (V), подачи (S) и глубины резания (t). Для получения практических значений этих параметров, которые можно будет использовать в производстве, на первом этапе определяют их расчетные величины.

После чего по ним с помощью эмпирических формул, справочных таблиц и данных из паспортов оборудования выполняют подбор технологических режимов резания, которые будут наилучшим образом соответствовать виду обрабатываемого материала, возможностям станка, а также типу и характеристикам инструмента.

От правильного расчета и выбора данных параметров зависит не только качество обработки, но и такие показатели, как производительность, себестоимость продукции и эксплуатационные расходы. Кроме того, сила воздействия на инструмент в процессе обработки влияет не только на скорость его износа, но и на состояние оснастки и приспособлений.

Следствием работы на слишком больших скоростях и подачах является недопустимая вибрация и повышенная нагрузка на узлы и механизмы оборудования. А это может привести не только к потере точности, но и к выходу станка из строя.

Как правило, режимы резания проверяют и корректируют при пробной обработке детали. Поэтому их выбор зависит не только от правильности расчетов, но и от опыта технолога и станочника.

Скорость

Временно́й цикл обработки детали состоит из трех базовых компонентов: подготовительно-заключительного, вспомогательного и основного времени. Последнее включает в себя все операции резания металла на заданных режимах. В силу особенностей механообработки основное время — это самая затратная составляющая цикла обработки детали.

При этом его величина, а следовательно, и себестоимость изделия напрямую зависят от скорости резания. Поэтому правильный подбор данного параметра важен не только с технологической, но и с экономической точки зрения.

В общем виде формула расчетной скорости резания выглядит так:

Формула расчетной скорости резания

В указанной формуле значение параметра D зависит от вида обработки. Для токарной обработки это диаметр детали, для прочих видов — диаметр режущего инструмента (сверла, фрезы). Параметр n — это скорость вращения шпинделя в оборотах за минуту.

Таким образом происходит определение теоретической величины скорости резания, которая является исходной для последующих вычислений. В частности, она используется для расчета теоретической глубины резания, которая обозначается t. По причине того что реальная скорость резания зависит от множества факторов, ее вычисление осуществляется по эмпирической формуле, в которой единственной расчетной величиной является t:

Формула вычисления скорости резания

Здесь Cv — это безразмерная константа, зависящая от различных аспектов обработки; T — нормативное время стойкости инструмента; t — глубина резания; Sо — подача; Кv — сводный коэффициент, являющийся произведением восьми поправочных коэффициентов.

Подача

Подача (обозначается S) — это путь, который проходит режущая кромка за условную единицу. В зависимости от вида механообработки подача может иметь разную размерность. Длина пройденного пути всегда измеряется в миллиметрах, но соотноситься она может либо с одним оборотом (в токарной обработке), либо с одной минутой (при сверлении и фрезеровании).

Таким образом, при сверлении — это величина перемещения кончика сверла в глубь поверхности за одну минуту (мм/мин.), а при токарных операциях — продольное или поперечное перемещение резца за один оборот детали (мм/об.).

В силу специфики отдельных чистовых операций для них используется такой параметр, как «подача на зуб», которая измеряется в мм/зуб. Ее применяют при работе с инструментом, имеющим несколько лезвий, а ее значение показывает, какой путь кромка (зуб) одного лезвия прошла за один оборот шпинделя.

Величину этого параметра также можно вычислить, разделив подачу инструмента за один оборот на количество режущих лезвий.

Поскольку подача напрямую зависит от паспортных параметров конкретного оборудования, ее значение, как правило, не рассчитывают, а выбирают из таблиц в соответствующих технологических справочниках.

Производительность металлорежущего оборудования напрямую зависит от величины подачи. Кроме того, она является базовым параметром для расчета основного времени обработки. Теоретически при мехобработке необходимо задавать предельно возможное значение подачи.

Но в этом случае вступают в силу ограничения по возможностям станочного оборудования и требования к классу чистоты.

Максимальные значения подачи применяют при обдирке и черновой обработке, а минимальные — при выполнении чистовых операций.

Глубина

Глубина резания — это толщина металла, снимаемого на единичный рабочий ход режущей кромки. Его величина зависит от конструкции режущей части инструмента и его прочностных параметров (в том числе предельной тангенциальной силы), а также мощности станка, твердости обрабатываемого материала и требований к чистоте поверхности.

Этот параметр является определяющим при расчете количества рабочих ходов лезвия для полного удаления припуска. Глубина резания обозначается латинской буквой t и измеряется в миллиметрах.

При обточке она равна разности радиусов детали до и после рабочего хода, а при сверлении — половине диаметра режущей части инструмента.

Сила

Процесс обработки детали режущим инструментом сопровождается возникновением пары сил. С первой силой, которая обозначается R, инструмент воздействует на поверхность детали, а вторая сила возникает в результате встречного сопротивления обрабатываемого материала.

Сила R является векторной суммой трех сил: осевой, тангенциальной и радиальной. Их векторы являются проекциями вектора силы R на оси X, Y, Z. На рисунке ниже представлено изображение векторов сил, возникающих при токарном точении.

Сила токарного точения

При технологических расчетах используют не саму силу R, а ее составляющие. Из них самая значимая и большая по величине — эта тангенциальная сила Rz.

На практике она носит название сила резания, т. к. именно от нее зависит расход мощности и крутящий момент шпинделя. Силу резания вычисляют по эмпирическим формулам, данные для которых берут из справочных технологических таблиц.

Расчет для токарной обработки производится по следующей формуле:

Формула для расчета токарной обработки

Кроме константы Ср, степенных показателей подачи, глубины и скорости резания, в формулу расчета силы резания входит корректирующий коэффициент Кр. Он представляет собой произведение пяти поправочных коэффициентов, учитывающих особенности обработки различных материалов.

Для измерения сил резания в режиме реального времени применяют емкостные, индуктивные и тензометрические датчики. Последние являются самыми компактными и наиболее точными.

При их использовании на станках с ЧПУ сила резания может адаптивно увеличиваться или уменьшаться путем автоматической корректировки величины подачи и числа оборотов.

Это позволяет вести непрерывную обработку без вмешательства оператора, а также предотвращает поломку инструмента и уменьшает его износ.

Как правильно рассчитать режим резания при сверлении

При работе сверла на него воздействует та же совокупность сил, что и на токарный резец. Поэтому для расчета режимов резания при сверлении используется аналогичная методика, но со своей геометрией и соответствующими значениями параметров.

Силы Рz направлены в противоход главному движению и находятся в прямой зависимости от скорости резания (см. рис. ниже). Силы Рх, Рn и Рл воздействуют на конструктивные элементы сверла и определяют значение осевой силы (Ро), соответствующей силе привода станка.

Сила резания

Главные технологические параметры сверла — осевая сила и крутящий момент. Их определяют расчетным путем с помощью эмпирических формул:

Формулы для определения осевой силы и крутящего момента

Здесь Ср и См — это константы, значение которых зависит от вида сверления, а также свойств материалов и обрабатываемой детали; D — диаметр сверла и S — подача.

Корректирующий коэффициент Кр в данной формуле связан только с характеристиками материала детали.

Условия резания при сверлении гораздо сложнее, чем при токарной обработке, т. к. в этом случае значительно затруднен отвод стружки и тепла. Применение СОЖ дает намного меньший эффект в связи со сложностью подвода жидкости к зоне резания.

К тому же все факторы, которые оказывают влияние на процесс сверления, при подборе режимов по таблицам и формулам учесть невозможно.

Поэтому для проверки и корректировки технологических режимов, как правило, используют пробную обработку детали.

Правильный расчет режимов резания при сверлении производится по сложным формулам с использованием таблиц из технологических справочников.

А есть ли какой-нибудь упрощенный способ, основанный на количестве оборотов и виде материала сверла, который можно применять в повседневной практике? Если кто-нибудь может посоветовать такой расчет, поделитесь, пожалуйста, информацией в комментариях к данной статье.

Понравилась статья? Поделить с друзьями:
  • Как найти репост в группе
  • Как найти площадь пирамиды в точках abcd
  • Как найти длину ребер пирамиды по векторам
  • Как составить рабочий план счетов к учетной политике
  • Победа авиабилеты как найти билет