Как найти моменты в двухопорной балке

Пример решения задачи на построение эпюр внутренних поперечных сил Qy и изгибающих моментов Mx для стальной балки на двух шарнирных опорах, нагруженной сосредоточенной силой F, моментом m и равномерно распределенной нагрузкой q.

Задача

Двухопорная балка с системой внешних нагрузок

Для заданной двухопорной балки, нагруженной силой F, моментом M и равномерно распределенной нагрузкой q построить эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

Другие примеры решений >
Помощь с решением задач >

Решение задачи

Опорные реакции для данной расчетной схемы были определены здесь.

Балка имеет 3 силовых участка. Обозначим их римскими цифрами, например, справа налево.

Обозначение силовых участков балки

Для расчета внутренних силовых факторов по участкам балки воспользуемся методом сечений.

Расчет значений

Начнем с первого силового участка (CD).

Проведем поперечное сечение в пределах участка, в любом месте между точками C и D.

Данное сечение делит балку на две части (левую и правую). Для определения внутренних факторов можно выбрать любую из них, но лучше выбирать менее нагруженную часть балки. Очевидно это будет ее правая часть.

Сечение балки по первому участку

Расстояние от правой границы участка до рассматриваемого сечения обозначим переменной z1, которая может принимать значения от 0 до 1,5 метров (т.е. 0 ≤ z≤ 1,5м).

Подробно, все расчеты значений и построение эпюр Q и M для балки показаны в нашем видеоуроке:

Другие видео

Мысленно отбросим на время всю левую часть балки.

Рассматриваем правую часть балки

Поперечная сила Q в данном сечении первого участка будет равна сумме всех внешних сил приложенных к рассматриваемой части балки с учетом их знака, т.е.

Расчет поперечной силы на первом силовом участке

Здесь сила F записана положительной, т.к. стремится повернуть правую часть балки по ходу часовой стрелки относительно рассматриваемого сечения.

В данном выражении отсутствует переменная z1, что говорит о том, что внутренняя поперечная сила будет одинакова для всех сечений этого участка.

Изгибающий момент M в рассматриваемом сечении определяется как сумма изгибающих моментов от всех внешних нагрузок выбранной части балки.

С учетом правила знаков при изгибе получаем

Выражение для изгибающих моментов на первом участке

Здесь сила F записана отрицательной, т.к. стремиться сжать нижние слои балки.

В полученном выражении переменная z1 является плечом момента силы F для данного сечения балки.

Как видно из полученного выражения изгибающий момент по длине участка меняется линейно (т.к. z1 в первой степени), поэтому для построения эпюры на данном участке нам достаточно двух точек.

Этими точками будут значения изгибающего момента на границах I участка, т.е. при z1=0 и при z1=1,5м

Значения момента на границах первого участка

На первом участке внутренние усилия определены.

Переходим на второй силовой участок (BC).

Так же начинаем с того, что проводим сечение в любом месте участка и выбираем рассматриваемую часть балки. Здесь также удобнее рассмотреть правую часть балки.

Расстояние до рассматриваемого сечения от правой границы участка обозначим переменной z2. При этом 0 ≤ z≤ 1м.

Сечение по второму участку балки

Запишем выражения и рассчитаем граничные значения внутренней поперечной силы Q

Расчет поперечных сил на втором участке балки

И изгибающего момента M

Выражение для расчета изгибающего момента на втором участке

Здесь опорная реакция RC положительна, потому что сжимает верхний слой, а сила F и распределенная нагрузка q отрицательны, т.к. сжимают нижний слой балки.
Как записывается момент распределенной нагрузки показано здесь.

В выражении для MxII переменная во второй степени, поэтому эпюра моментов на втором участке будет иметь вид параболы.

Как известно, для построения параболы необходимо знать положение минимум трех ее точек. Но как будет показано дальше, в некоторых случаях при построении эпюр, параболы можно вычерчивать всего лишь по двум точкам. Рассчитаем их значения:

Значения изгибающего момента на границах второго участка балки

Осталось найти внутренние усилия на III силовом участке (AB).

Рассекаем балку между точками A и B. Выбираем менее нагруженную левую часть. 0 ≤ z3 ≤ 2м – интервал возможных положений сечения относительно левой границы участка.

Записываем выражения для Q и M и вычисляем значения в крайних точках

Сечение балки по третьему участку

Расчет значений Q и M на третьем силовом участке двухопорной балки

Здесь видно что выражение для QyIII — линейное, а на эпюре Mx на данном участке будет парабола.

По полученным данным строим эпюры.

Построение эпюр

Для построения эпюр рассчитанные значения откладываем от базовой линии на соответствующих участках.

Начинаем с эпюры поперечных сил Q.

На первом участке выражение для Q не зависело от z1 поэтому его значение будет постоянным (QyI=const) по длине участка, т.е. линия эпюры будет параллельна базовой.

На втором участке были получены два значения Q: -58,3 кН при z2=0 и -18,3кН при z2=1м. Переменная z2 откладывалась от правой границы участка, поэтому z2=0 в точке C, соответственно в т. B переменная z2=1м.

Построенная эпюра поперечных сил Q

Аналогично откладываются значения Q на третьем участке и значения M на эпюре изгибающих моментов.

Точки на II и III участках эпюры Q и на I участке эпюры M соединяются отрезками, так как распределение внутренних сил и моментов там линейное (переменная z в первой степени).

Соединение линейных участков эпюр Q и M

А при соединении точек эпюры M параболами, надо смотреть на эпюру Q.

Дело в том, что эпюра поперечных сил это первая производная эпюры изгибающих моментов. Поэтому в сечениях балки, где Q=0 на эпюре M будет экстремум.

Как видно эпюра Q пересекает нулевую линию только на третьем силовом участке балки. Поэтому, ввиду того что нас интересуют только пиковые значения изгибающих моментов, на втором участке две крайние точки достаточно соединить параболой, не имеющей экстремума, выпуклость которой направлена навстречу распределенной нагрузке.

Для более точного построения линии параболы на данном участке можно найти значения момента для промежуточных положений сечения, например при z2=0,5м.

Парабола без экстремума на втором участке эпюры M

На третьем участке, в сечении, где Q пересекает базовую линию необходимо рассчитать точку экстремума.

Как рассчитывать экстремум эпюры моментов

Для этого выражение для QyIII приравнивается к нулю и рассчитывается значение z3, при котором изгибающий момент на участке принимает экстремальное значение. Его подставляют в выражение для MxIII

Определение экстремума эпюры моментов на третьем участке балки

Это значение откладывается на эпюре M под точкой пересечения эпюры Q с базовой линией

Точка экстремума на третьем участке эпюры изгибающих моментов

после чего три точки соединяются плавной линией.

Построенные эпюры поперечных сил и изгибающих моментов для двухопорной балки

Эпюры внутренних поперечных сил и изгибающих моментов построены.

Проверка эпюр поперечных сил >
и изгибающих моментов >
Расчеты для подбора сечений балки >
Другие примеры решения задач >

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Содержание:

  1. Пример решения задачи
  2. Составляем уравнения изменения поперечных сил и изгибающих моментов для каждого участка балки.
  3. Двутавровое поперечное сечение.
  4. Поперечное сечение из двух швеллеров.

Исходные данные: Двухопорная балка

Заданная расчетная схема:

Двухопорная балка

Пример решения задачи

1. Определяем опорные реакции (рис.2.1). Двухопорная балка

Рассматриваемая двухопорная балка является статически определимой. Это означает, что для определения неизвестных опорных реакций Двухопорная балка и Двухопорная балка в наложенным внешних связях (двухсвязный шарнир Двухопорная балка и односвязный шарнир Двухопорная балка достаточно только уравнений равновесия (независимыми уравнениями для плоской системы являются Двухопорная балка

Наиболее рациональной является следующая схема определения опорных реакций в двухопорных балках. Из уравнения Двухопорная балка определяется горизонтальная реакция Двухопорная балка Как правило, в балках она равна нулю (при отсутствии продольной внешней нагрузки, которая не является характерной нагрузкой при изгибе).

Поскольку в этих уравнениях реакции Двухопорная балка будут единственными неизвестными, при таком подходе каждая из этих реакций может быть получена в виде дроби, в знаменателе которой будет расстояние между опорами, а в числителе — сумма моментов всей внешней активной нагрузки относительно противоположной опоры, взятых со знаками, противоположными знаку выбранного

направления искомой реакции. Уравнения Двухопорная балка являются зависимыми, то есть являются по сути одним и тем же уравнением. Поэтому всегда необходимо проверять правильность определения опорных реакций, используя для этого оставшееся независимое уравнение равновесия Двухопорная балка

Возможно вам будут полезны данные страницы:

Таким образом, рациональный алгоритм определения опорных реакций в двухопорных балках имеет следующий вид:

Двухопорная балка

1.1. Определяем опорную реакцию Двухопорная балка

Двухопорная балка

1.2. Определяем опорную реакцию Двухопорная балка

Двухопорная балка

1.3. Проверяем правильность определения опорных реакций:

Двухопорная балка

Знак «-» у полученных опорных реакций показывает, что они направлены в сторону, противоположную выбранной (не вверх, а вниз).

Составляем уравнения изменения поперечных сил и изгибающих моментов для каждого участка балки.

Поперечная сила и изгибающий момент являются внутренними усилиями (внутренними силовыми факторами) и, как и при других видах напряженного состояния, определяются при помощи метода сечений. Суть метода заключается в том, что балка мысленно рассекается в заданном сечении на две части, отбрасывается одна из частей (как правило, большая), для восстановления равновесия действие отброшенной части на оставшуюся заменяется (компенсируется) внутренними усилиями, которые определяются из уравнений равновесия оставшейся (рассматриваемой) части балки.

  • Однако, в таком общем виде внутренние усилия при изгибе обычно не определяются. Как правило, для составления уравнений достаточно математических определений поперечной силы и изгибающего момента и правила знаков для учета внешней нагрузки.

Математические определений внутренних усилий при изгибе:

Поперечная сила Двухопорная балка в заданном поперечном сечении балки равна сумме проекций всей внешней нагрузки, действующей с одной стороны от сечения (или в рассматриваемой части балки), на вертикальную ось Двухопорная балка

Изгибающий момент Двухопорная балка в заданном поперечном сечении равен сумме моментов относительно оси Двухопорная балка от всей внешней нагрузки, действующей с одной стороны от сечения (или в рассматриваемой части балки).

Правило знаков необходимо использовать для учета направлений действия внешней нагрузки в математических определениях внутренних усилий. На рис.2.2 показано правило знаков для поперечных сил и изгибающих моментов при изгибе балок. На схемах указаны направления действия внешней нагрузки, вызывающей положительные значения внутренних усилий в указанном поперечном сечении рассматриваемой левой (правило знаков слева) или правой (правило знаков справа) части балки.

Систематизируя правило знаков слева и справа, можно сформулировать следующие общие определения правила знаков при изгибе:

  • Правило знаков для поперечной силы — если внешняя нагрузка стремится повернуть рассматриваемую часть балки по ходу часовой стрелки, то она вызывает в заданном поперечном сечении положительную поперечную силу.
  • Правило знаков для изгибающего момента — если внешняя нагрузка стремится поднять рассматриваемую часть балки вверх, то она вызывает в заданном поперечном сечении положительный изгибающийся момент.

Составление уравнений изменения внутренних усилий при изгибе для каждого участка сопровождается такими обязательными комментариями:

Конечной целью определения внутренних усилий является построение эпюр. Для этого необходимо знать значение внутренних усилий в характерных точках участков. Такими точками являются поперечные сечения в начале и конце участка, а также сечения с возможными экстремальными значениями внутренних усилий. Экстремальные (отличные от соседних) значения могут возникать в случае, если уравнение изменения внутренних усилий имеет форму полинома второго и выше порядка.

Двухопорная балка

Для заданной балки уравнения изменения внутренних усилий и их значения в характерных точках для трех участков имеют вид (рис.2.3):

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для первого участка имеет форму полинома второй степени и, следовательно, изгибающий момент в пределах первого участка может иметь экстремум. Координату экстремума можно определить, приравняв первую производную функции Двухопорная балка к нулю. Для этого удобно использовать первую теорему Журавского (2.1). Определяем координату экстремума

Двухопорная балка

Определяем значение экстремального изгибающего момента

Двухопорная балка

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для второго участка также имеет форму полинома второй степени. Однако, поперечная сила в пределах участка не меняет свой знак, и, следовательно, ввиду линейности функции Двухопорная балка в пределах участка не может быть равной нулю. Поэтому экстремального значения изгибающего момента на втором участке не будет.

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для третьего участка имеет форму полинома второй степени, а поперечная сила Двухопорная балка пределах участка меняет свой знак. Следовательно, нужно определять положение экстремума

Двухопорная балка

Определяем значение экстремального изгибающего момента

Двухопорная балка

3. Строим эпюры поперечных сил Двухопорная балка и изгибающих моментов Двухопорная балка

Эпюрой в сопротивлении материалов называется график, отражающий характер изменения какого-либо параметра вдоль оси одноосного элемента. Эпюры строятся для каждого участка в отдельности. В пределах участка все расчетные параметры изменяются по определенному закону в виде неразрывной функции. Для построения эпюры на каждом участке необходимо знать характер изменения заданного параметра в пределах участка (его математическое выражение) и значения в нескольких характерных точках (как правило, в начале и конце участка и, если необходимо, в точках экстремальных значений параметра).

Согласно полученных ранее уравнений, графиком эпюры поперечных сил на всех участках будет прямая наклонная линия, а графиком эпюры изгибающих моментов — квадратная парабола.

При построении эпюр необходимо соблюдать следующие правила:

а) название эпюры обычно приводится справа или сверху от нее, при этом, если все значения на эпюре поперечных сил приведены в Двухопорная балка а на эпюре изгибающих моментов — в Двухопорная балка то размерность не указывается;

б) построение эпюры не требует точного соблюдения масштаба, однако примерная видимая пропорциональность между значениями параметров должна соблюдаться;

в) знаки параметров указываются или в «теле эпюры», или слева от нее;

г) «тело эпюры» заштриховывается поперечной (перпендикулярной по отношению к продольной оси одноосного элемента) штриховкой, при этом величина каждого штриха характеризует значение расчетного параметра в соответствующем сечении.

Под «телом эпюры» понимаются плоские фигуры, ограниченные продольной осью одноосного элемента и графиком уравнений изменения расчетных параметров.

Эпюра поперечных сил Двухопорная балка для заданной двухопорной балки приведена на рис.2.3г, изгибающих моментов Двухопорная балка — на рис.2.3г).

Если положительные значения изгибающих моментов на эпюре Двухопорная балка откладываются вверх, такая эпюра называется «эпюрой по сжатым волокнам». В такой эпюре «тело» эпюры располагается с той стороны балки (вверху или внизу), волокна которой сжаты. Такая эпюра характерна для машиностроителей. Если положительные значения откладываются вниз — эпюра называется «по растянутым волокнам». Она характерна для строителей. а) скачки (резкие изменения значений параметра в одном и том же поперечном сечении) на эпюре поперечных сил должны соответствовать по координате, величине и знаку внешним сосредоточенным силам;

б) скачки на эпюре изгибающих моментов должны соответствовать по координате, величине и знаку внешним сосредоточенным моментам;

в) в соответствии с первой теоремой Журавского (2.1) в поперечных сечениях, в которых поперечная сила Двухопорная балка равна нулю, изгибающий момент Двухопорная балка принимает экстремальные значения;

г) в соответствии со второй теоремой Журавского (2.2) при Двухопорная балка графиком эпюры поперечных сил при движении слева направо будет восходящая прямая линия, справа налево — нисходящая.

д) в соответствии с (2.3) при Двухопорная балка в поперечных сечениях, в которых поперечная сила Двухопорная балка равна нулю, экстремумами на эпюре изгибающих моментов будут минимумы, а при Двухопорная балка — максимумы.

Для построенных эпюр (рис.2.3) все указанные признаки выполняются.

Подбираем поперечное сечение балки из условия прочности в форме двутавра, прямоугольника Двухопорная балка круга и из двух швеллеров

Для заданной балки максимальный изгибающий момент в опасном сечении равен Двухопорная балка (рис.2.3г)).

Согласно (2.6) минимально допустимый осевой момент сопротивления поперечного сечения балки определяется зависимостью

Двухопорная балка

Двутавровое поперечное сечение.

Двутавр является стандартным прокатным профилем, все геометрические характеристики которого приводятся в справочных таблицах. Согласно (2.8) минимальное значение момента сопротивления будет равно:

Двухопорная балка

Из справочных таблиц (ГОСТ 8239-86) выбираем двутавр с ближайшим большим значением момента сопротивления. Это двутавр № 36, для которого Двухопорная балка

Поперечное сечение в форме прямоугольника.

Прямоугольник является сечением простой геометрической формы, для которого все геометрические характеристики определяются по известным аналитическим зависимостям. Осевой момент сопротивления прямоугольного сечения с соотношением высоты и основания Двухопорная балка равен

Двухопорная балка

Тогда, согласно (2.6), минимальная ширина Двухопорная балка прямоугольного сечения балки будет определяется зависимостью Двухопорная балка При Двухопорная балка Двухопорная балка

Для заданной балки Двухопорная балка

Площадь прямоугольника с основанием Двухопорная балка равна:

Двухопорная балка

Поперечное сечение в форме круга. Для заданной балки Круг также является сечением простой геометрической формы. Осевой момент сопротивления круга диаметром Двухопорная балка равен: Двухопорная балка

Тогда, согласно (2.6) минимальный диаметр Двухопорная балка круглого поперечного сечения будет определяется зависимостью

Двухопорная балка

Для заданной балки Двухопорная балка Площадь круга диаметром Двухопорная балка 18,7 см равна:

Двухопорная балка

Поперечное сечение из двух швеллеров.

Швеллер является стандартным прокатным профилем. Поскольку выбираемое сечение состоит из двух швеллеров, согласно (б) минимальное значение момента сопротивления одного швеллера будет равно

Двухопорная балка

Из справочных таблиц (ГОСТ 8239-86) выбираем швеллер №30, для которого Двухопорная балка

Площадь поперечного сечения из двух швеллеров будет равна

Двухопорная балка

Все выбранные поперечные сечения являются равнопрочными так как способны воспринимать без разрушения одинаковую внешнюю нагрузку.

6. Сравним выбранные поперечные сечения по металлоемкости.

Поскольку балка является одноосным элементом, ее металлоемкость зависит от площади поперечного сечения. Сведем в таблицу площади выбранных поперечных сечений различной формы и сравним их с площадью двутавра Двухопорная балка Двухопорная балка

Сравнение площадей выбранных поперечных сечений показывает, что наиболее экономичным является двутавровое сечение. Площадь, Двухопорная балка следовательно, погонный вес и металлоемкость прямоугольного сечения в 3,103, круглого — в 4,431, а сечения из двух швеллеров — в 1,308 раза больше площади равнопрочного двутаврового сечения. Поэтому наиболее рациональной формой поперечного сечения при изгибе является двутавровое поперечное сечение.

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия:
Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример решения балки:

Задача. Расчет рамы.  Для рамы построить эпюры продольных сил  N, поперечных сил Q и изгибающих моментов М.

2019-02-11_21-15-52

  1. Определим опорные реакции

2019-02-11_21-15-10

2019-02-11_21-20-49

Нанесем значения опорных реакций на расчетную схему.

2019-02-11_21-13-50

2. Строим эпюру продольных сил N методом сечений. Имеем три характерных участка и три сечения на них.

2019-02-11_21-24-39

Правило знаков продольных сил – продольная сила считается положительной, если сила растягивает стержень, и отрицательной, если сила сжимает стержень. Положительные значения откладываем влево от стойки и вверх от ригеля.

2019-02-11_21-26-20

Строим эпюру продольных сил.

2019-02-11_21-27-39

3. Строим эпюру поперечных сил Q методом сечений. Правило знаков – если сила относительно сечения направлена по часовой стрелке, то поперечная сила считается положительной и наоборот. Положительные значения откладываются влево от стоек и вверх от ригеля.

2019-02-11_21-29-28

Строим эпюру поперечных сил

2019-02-11_21-30-30

4. Строим эпюру изгибающих моментов М методом характерных точек. Расставляем точки: А – опора, В,С, — узлы рамы, D – свободный конец, К – середина равномерно распределенной нагрузки (точки экстремума при построении эп.Q не обнаружено). Эпюру М строим на сжатых волокнах (для машиностроительных специальностей), знак не ставим.

2019-02-11_21-32-40

Строим эпюру моментов.

2019-02-11_21-33-26

5. Вырезаем узлы С и В и проверяем их равновесие.

2019-02-11_21-34-33

Узлы находятся в равновесии, значит эпюры построены верно.

Для балки с жесткой заделкой построить эпюры Q и М. 

2019-11-22_17-36-56

Расставляем сечения от свободного конца балки — в этом случае можно построить эпюры, не определяя опорных реакций. Рассматривать в каждом случае будем правую часть — справа от сечения. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 2 участка, 2 сечения.

2019-11-22_17-34-36

Сечение 2-2 проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z2 вправо от сечения до начала участка. Определяем поперечные силы в сечениях. Правило знаков см. — здесь.

2016-09-13-21-38-09-skrinshot-ekrana

Строим эпюру Q.

2019-11-22_17-33-52

Построим эпюру М методом характерных точек. Расставляем точки на балке — это точки начала и конца балки (D,A), сосредоточенного момента (B), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K) — это дополнительная точка для построения параболической кривой.

2019-11-22_17-32-59

Определяем изгибающие моменты в точках. Правило знаков см. — здесь.

2016-09-13-21-48-19-skrinshot-ekrana

Момент в т. В будем определять следующим образом. Сначала определим:

2016-09-13-21-49-16-skrinshot-ekrana

Теперь:

2016-09-13-21-50-11-skrinshot-ekrana

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

2016-09-13-21-51-16-skrinshot-ekrana

Строим эпюру M. Участок АВпараболическая кривая (правило «зонтика»), участок ВDпрямая наклонная линия.

2019-11-22_17-31-51

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Для заданной схемы консольной балки   требуется построить эпюры поперечной силы  Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м2016-04-03 20-55-51 Скриншот экрана

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции.

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры RA  и опорный момент МA из уравнений равновесия.2016-11-19-19-46-34-skrinshot-ekrana

2. Строим эпюру поперечных сил.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0, в заделеке — величине реакции RA.2016-04-03 21-25-58 Скриншот экрана3. Для построения эпюры изгибающих моментов M составим выражения для их определения на участках. Эпюру моментов построим на растянутых волокнах, т.е. вниз. 2016-04-03 21-52-36 Скриншот экрана

4.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Максимальный изгибающий момент с эпюры М=14 кН·м. Определим осевой момент сопротивления сечения

2016-04-03 21-47-30 Скриншот экрана

Таким образом, подбираем сечение с диаметром 25 см.

Требуется построить эпюры Q и  и подобрать стальную балку двутаврового поперечного сечения при расчетном сопротивлении R=160 МПа.

2014-12-20 19-24-52 Скриншот экрана

1.Определение реакций:

Сумма моментов относительно опор:

Опора А2014-12-20 19-26-02 Скриншот экрана

Опора В:   

2014-12-20 19-26-58 Скриншот экрана

Сумма проекций всех сил на ось У (проверка):

2014-12-20 19-29-32 Скриншот экрана

2.Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

1) Первый участок:

2014-12-20 19-30-48 Скриншот экрана

2) Второй участок: 

2014-12-20 19-31-46 Скриншот экрана

3) Третий участок: 

2014-12-20 19-32-39 Скриншот экрана

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подобрать стальную балку двутаврового поперечного сечения при R=160 МПа:

С эпюры берем максимальный момент:

2014-12-20 19-34-00 Скриншот экрана

По сортаменту подбираем двутавр № 20 с     2014-12-20 19-34-58 Скриншот экрана

Двутавр можно взять чуть меньше, при условии, что перенапряжение составляет меньше 5%:

2014-12-20 19-36-35 Скриншот экрана

Для заданной балки требуется построить эпюры Q и M, найти Mmax и сделать проектировочный расчет — подобрать деревянную балку круглого поперечного сечения. Расчетное сопротивление материала  Ru=10 МПа. 

2014-12-20 14-42-44 Скриншот экрана

1.Определение реакций:

Сумма проекций всех сил на ось z2014-12-20 14-43-50 Скриншот экрана

Сумма проекций всех сил на ось y2014-12-20 14-44-37 Скриншот экрана

Сумма моментов относительно точки А2014-12-20 14-45-29 Скриншот экрана

После нахождения опорных реакций следует выполнить проверку, использовав уравнение равновесия (сумма моментов относительно любой выбранной точки должна быть равна нулю).

2. Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

— поперечная сила, считается положительной, если стремится повернуть рассматриваемую часть балки по часовой стрелке.

M— изгибающий момент, считается положительным, если растягивает нижние волокна.

1)Первый участок: 

2014-12-20 14-53-09 Скриншот экрана

2) Второй участок:

2014-12-20 14-54-23 Скриншот экрана

3) Третий участок:

2014-12-20 14-55-25 Скриншот экрана

Следует отметить ,что на втором и третьем участке для построения плавной кривой потребуются дополнительные точки, в которых следует посчитать значение изгибающего момента.

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подберем деревянную балку круглого поперечного сечения при Ru=10 МПа

С эпюры берем максимальный момент и рассчитываем требуемый осевой момент сопротивления, после чего вычисляем необходимый диаметр балки.2014-12-20 14-59-58 Скриншот экрана

Задача 1. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-14-15 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть левую часть, то в уравнении   2014-11-01 11-15-56 Скриншот экрана    будут присутствовать две неизвестные RА и МА. Значит, следует рассмотреть правую часть (из него найдем RВ).

2014-11-01 11-18-15 Скриншот экрана

Теперь 2014-11-01 11-19-12 Скриншот экрана  из него найдем МА

2014-11-01 11-20-12 Скриншот экрана

Следующее уравнение 2014-11-01 11-21-12 Скриншот экрана из него найдем RА

2014-11-01 11-22-14 Скриншот экрана

2. Строим эпюру Q.

Участок первый — АС, смотрим левую часть

Участок второй — СВ, смотрим правую часть

2014-11-01 11-23-25 Скриншот экрана

3. Строим эпюру М

2014-11-01 11-24-28 Скриншот экрана

Определим  момент в точке, где Q=0 (момент имеет экстремум), это момент в точке К, т.е.  МК , для этого определим положение точки К.

2014-11-01 11-28-16 Скриншот экрана Это уравнение первого участка, на котором находится точка К

в точке К 2014-11-01 11-30-23 Скриншот экрана

Строим эпюры. Задача решена.

Задача 2. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-32-06 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира – момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть правую часть, то в уравнении     2014-11-01 11-34-26 Скриншот экрана  будут присутствовать две неизвестные  и . Значит, следует рассмотреть левую часть.

2014-11-01 11-37-14 Скриншот экрана

Знак «-» говорит о том, что реакция RВ направлена в обратную сторону.

Проверка:2014-11-01 11-39-22 Скриншот экрана

2. Построение эпюры Q.

Участок первый — ЕА, смотрим левую часть

Участок второй — АС, смотрим левую часть

Участок третий — СВ, смотрим левую часть

Участок четвертый — ВД, смотрим правую часть

2014-11-01 11-48-25 Скриншот экрана

3. Построение эпюры М

2014-11-01 11-50-42 Скриншот экрана

Т.к. точки экстремума на эп.Q не наблюдается, определяем изгибающий момент в середине участка ВД

2014-11-01 11-51-58 Скриншот экрана

Строим эпюры, задача решена.

Задача 1. Построить эпюры внутренних усилий для рамы ( рис.а).  

Дано: F=30кН, q=40 кН/м, М=50кНм, а=1,8м, h=2м.

2014-10-16 22-31-57 Скриншот экрана

Решение.

Для рассматриваемой рамы опорные реакции можно не определять, поскольку будем рассматривать участки, идя от свободных концов рамы к заделке.

Вычислим значения внутренних усилий N, Q и М в характерных сечениях рамы. Правило знаков для поперечных сил Q и изгибающих моментов М такие же,как в балках. Эпюры моментов  построим на сжатых волокнах. Для  продольной N, силы правило знаков: растягивающая сила – положительна, сжимающаяотрицательна.

Участок ВС:     2014-10-16 22-37-07 Скриншот экрана(сжаты нижние волокна).

2014-10-16 22-39-16 Скриншот экрана (сжаты нижние волокна).

Участок DC:  2014-10-16 22-40-57 Скриншот экрана(сжаты верхние волокна). 

Участок СК: 2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

На рисунке  — эпюры нормальных (продольных) сил — (б), , поперечных сил — (в) и изгибающих моментов — (г). 

Проверка равновесия узла С:

2014-10-16 22-53-45 Скриншот экрана

Задача 2  Построить эпюры внутренних усилий для рамы  (рис. а).

Дано: F=30кН, q=40 кН/м, М=50кНм, а=3м, h=2м.

2014-10-16 22-55-29 Скриншот экрана

Определим опорные  реакции  рамы:

2014-10-16 22-57-05 Скриншот экрана

Из этих уравнений найдем:

2014-10-16 22-57-54 Скриншот экрана

Поскольку значения реакции RK имеет знак минус, на рис. а изменяется направление данного вектора на противоположное, при этом записывается RK=83,33кН.

Определим значения внутренних усилий N, Q и М в характерных сечениях рамы:

Участок ВС:2014-10-16 23-00-06 Скриншот экрана

(сжаты правые волокна).

Участок CD: 2014-10-16 23-04-10 Скриншот экрана

(сжаты правые волокна);

2014-10-16 23-05-33 Скриншот экрана

(сжаты правые волокна).

Участок DE: 2014-10-16 23-13-33 Скриншот экрана

(сжаты нижние волокна);

2014-10-16 23-14-38 Скриншот экрана

(сжаты нижние волокна).

Участок КС

2014-10-16 23-15-55 Скриншот экрана

(сжаты левые волокна).

Построим эпюры  нормальных (продольных) сил (б), поперечных сил (в) и изгибающих моментов (г).

Рассмотрим равновесие узлов D и Е

2014-10-16 23-18-55 Скриншот экрана

Из рассмотрения узлов Dи Е видно, что они находятся в равновесии.

Задача 3.  Для  рамы с шарниром построить эпюры внутренних усилий.

Дано: F=30кН, q=40 кН/м, М=50кНм, а=2м, h=2м. 

2016-11-22-21-33-03-skrinshot-ekrana

Решение. Определим опорные реакции. Следует отметить ,что в обеих шарнирно-неподвижных опорах по две реакции. В связи с этим следует использовать свойство шарнира С — момент в нем как от левых ,так и от правых сил равен нулю. Рассмотрим левую часть.

Уравнения равновесия для рассматриваемой рамы можно записать в виде:

2016-11-22-21-30-06-skrinshot-ekrana

Из решения данных уравнений следует:

2014-10-16 23-30-06 Скриншот экрана

На схеме рамы  направление действия силы НВ изменяется на противоположное (НB=15кН).

Определим усилия в характерных сечениях рамы.

Участок BZ: 2014-10-16 23-31-59 Скриншот экрана

(сжаты левые волокна).

Участок ZC: 

2014-10-16 23-33-34 Скриншот экрана

(сжаты левые волокна); 

2014-10-16 23-34-35 Скриншот экрана

Участок КD:  2014-10-16 23-51-27 Скриншот экрана

(сжаты левые волокна);

2014-10-16 23-52-12 Скриншот экрана

 (сжаты левые волокна).

Участок DС: 

2014-10-16 23-55-19 Скриншот экрана

 (сжаты нижние волокна); 

2014-10-17 00-00-55 Скриншот экрана

Определение экстремального значения изгибающего момента на участке  CD :

2014-10-17 00-02-59 Скриншот экрана

(сжаты верхние волокна). 

Строим эпюры внутренних усилий. Проверяем равновесие узлов рамы.2014-10-17 00-04-45 Скриншот экрана

Узлы  C и D находятся в равновесии.

Построение  эпюр М и в балке с жесткой заделкой  с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 14-43-57 Скриншот экрана

1. Построение эпюры поперечных сил. Для консольной балки (рис. а) характерные точки: А – точка приложения опорной реакции VA; С – точка приложения сосредоточенной силы; D, B– начало и конец распределенной нагрузки. Для консоли поперечная сила определяется аналогично двухопорной балке. Итак, при ходе слева:

2014-09-14 14-46-40 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях пройдите балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменятся. Результат должен получиться тот же. Строим эпюру поперечной силы (рис,б).

2. Построение эпюры моментов 

Для консольной балки эпюра изгибающих моментов строится аналогично предыдущему построению.Характерные точки для этой балки (см. рис. а) следующие: А – опора; С — точка при­ложения сосредоточенного момента и силы F; и В — начало и конец действия рав­номерно распределенной на­грузки. Поскольку эпюра Qx на участке действия распределенной нагрузки нулевую линию не пересекает, для построения эпюры моментов на данном участке (параболическая кривая) следует выбрать произвольно дополнительную точку для построения кривой, к примеру в середине участка.

Ход слева:

2014-09-14 14-50-48 Скриншот экрана

Ходом справа находим MB = 0.

По найденным значениям строим эпюру изгибающих моментов (см. рис. в).

Построение  эпюр М и Q в балке на двух опорах с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 13-52-55 Скриншот экрана

1. Построение эпюры Qу.  Из теоретического курса известно, что на участке балки с равномерно распределенной нагрузкой эпюра Qу ограничивается наклонной прямой, а на участке, на котором нет распределенной нагрузки, — прямой, параллельной оси, поэтому для построения эпюры поперечных сил достаточно определить значения Qу в начале и конце каждого участка. В сечении, соответствующем точке приложения сосредоточенной силы, поперечная сила должна быть вычислена чуть левее этой точки (на бесконечно близком расстоянии от нее) и чуть правее ее; поперечные силы в таких местах обозначаются соответственно  2014-09-14 13-55-55 Скриншот экрана.

Строим эпюру Qу методом характерных точек, ходом слева. Для большей наглядности отбрасываемую часть балки на первых порах рекомендуется закрывать листом бумаги. Характерными точками для двухопорной балки (рис. а) будут точки и D – начало и конец распределенной нагрузки, а также  A   и B – точки приложения опорных реакций, E– точка приложения сосредоточенной силы. Проведем мысленно ось y перпендикулярно оси балки через точку С и не будем менять ее положение, пока не пройдем всю балку от C до E. Рассматривая левые отсеченные по характерным точкам части балки, проецируем на ось y действующие на данном участке силы с соответствующими знаками. В результате получаем:2014-09-14 14-27-25 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях можно пройти балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Результат должен получиться тот же. Совпадение результатов может служить контролем построения эпюры Qу. Проводим нулевую линию под изображением балки и от нее в принятом масштабе откладываем найденные значения поперечных сил с учетом знаков в соответствующих точках. Получим эпюру Qу (рис. б).

Построив эпюру, обратите внимание на следующее: эпюра под распределенной нагрузкой изображается наклонной прямой, под ненагруженными участками — отрезками, параллельными нулевой линии, под сосредоточенной силой на эпюре образуется скачок, рав­ный значению силы. Если наклонная линия под распределенной на­грузкой пересекает нулевую линию, отметьте эту точку, то это точка экстремума, и она является теперь для нас характерной, согласно дифференциальной зависимости между Qу и Мx, в этой точке момент имеет экстремум и его нужно будет определить при построении эпюры изгибающих моментов. В нашей задаче это точка К. Сосредоточенный момент на эпю­ре Qу себя никак не проявляет, так как сумма проекций сил, образую­щих пару, равна нулю.

2. Построение эпюры моментов.Строим эпюру изгибающих моментов, как и поперечных сил, ме­тодом характерных точек, ходом слева. Известно, что на участке балки с равномерно распределенной нагрузкой эпюра изгибающих моментов очерчивается кривой линией (квадратичной параболой), для построения которой надо иметь не менее трех точек и, следовательно, должны быть вычислены значе­ния изгибающих моментов в начале участка, конце его и в одном проме­жуточном сечении. Такой промежуточной точкой лучше всего взять сечение, в кото­ром эпюра Qу пересекает нулевую линию, т.е. где Qу= 0. На эпюре М в этом сечении должна находиться вершина параболы. Если же эпюра Qу не пересекает нулевую линию, то для построения эпюры М следует на данном участке взять дополнительную точку, к примеру, в середине участка (начала и конца действия распределенной нагрузки), помня, что выпуклостью парабола всегда обращена вниз, если на­грузка действует сверху вниз (для строительных специальностей). Существует правило «дождя», которое очень помогает при построении параболической части эпю­ры М.  Для строителей это правило выглядит следующим образом: представьте, что распределенная нагрузка — это дождь, подставьте под него зонт в перевернутом виде, так чтобы дождь не стекал, а собирался в нем. Тогда выпуклость зонта будет обращена вниз. Точно так и бу­дет выглядеть очертание эпюры моментов под распределенной нагрузкой. Для механиков существует так называемое  правило «зонта». Распределенная нагрузка представляется дождем, а очертание эпюры должно напоминать очертания зонтика. В данном примере эпюра построена для строителей.

Если требуется более точное построение эпюры, то должны быть вычислены значения изгибающих моментов в нескольких промежуточ­ных сечениях. Условимся для каждого такого участка изгибающий момент сначала определить в произвольном сечении, выражая его через расстояние х от какой-либо точки. Затем, давая расстоянию х ряд значений, получим значения изгибающих моментов в соответствую­щих сечениях участка. Для участков, на которых нет распределенной нагрузки, изгибающие моменты определяют в двух сечениях, соот­ветствующих началу и концу участка, так как эпюра М на таких участках ограничивается прямой. Если к балке приложен внешний сосредоточенный момент, то обязательно надо вычислять изгибающий момент чуть левее места приложения сосредоточенного момента и чуть правее его.

Для двухопорной балки характерные точки следующие: C и D – начало и конец распределенной нагрузки; Аопора балки; В вторая опора балки и точка приложения сосредоточенного момента; Еправый конец балки; точка К, соответствующая сечению балки, в котором Qу = 0.

Ход слева. Правую часть до рассматриваемого сечения мысленно отбрасываем (возьмите лист бумаги и прикройте им отбрасываемую часть балки). Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки. Итак,

2014-09-14 14-32-16 Скриншот экрана

Прежде чем определить момент в сечении К, необходимо найти расстояние х=АК. Составим выражение для поперечной силы в данном сечении и приравняем его к нулю (ход слева):

2014-09-14 14-35-15 Скриншот экрана

Это расстояние можно найти также из подобия треугольников KLN и KIG на эпюре Qу (рис.б).

Определяем момент в точке К:

2014-09-14 14-37-27 Скриншот экрана

Пройдем оставшуюся часть балки ходом справа.

2014-09-14 14-38-34 Скриншот экрана

Как видим, момент в точке D при ходе слева и справа получился одинаковый – эпюра замкнулась. По найденным значениям строим эпюру. Положительные значения откладываем вниз от нулевой линии, а отрицательные – вверх (см. рис. в).

Понравилась статья? Поделить с друзьями:
  • Как найти противоударный телефон
  • Как найти хорошего нутрициолога
  • Как найти друга в дуолинго
  • Как найти панду майнкрафт
  • Как найти рацию воронину