Как найти мощность рентгеновского излучения

The general formula for energy of a single photon of an electromagnetic wave such as an X-ray is given by ​Planck’s equation​:

E=hnu

in which energy ​E​ in Joules is equal to the the product of Planck’s constant ​h​ (6.626 × 10 −34 Js) and the frequency ​ν​ (pronounced «nu») in units of s​-1​. For a given frequency of an electromagnetic wave, you can calculate the associated X-ray energy for a single photon using this equation. It applies to all forms of electromagnetic radiation including visible light, gamma rays, and X-rays.

Light behaves like a wave in the sense that you can measure properties of amplitude, wavelength and frequency of it as though it were a one-dimensional wave.

••• Syed Hussain Ather

Planck’s equation depends on wavelike properties of light. If you imagine light as a wave as shown in the diagram above, you can imagine it having an amplitude, frequency, and wavelength just as an ocean wave or a sound wave might. The amplitude measures the height of one crest as shown and generally corresponds to the brightness or intensity of the wave, and the wavelength measures the horizontal distance that a full cycle of the wave covers. The frequency is the number of full wavelengths that pass by a given point every second.

X-rays as Waves

The electromagnetic spectrum describes waves of light ranging from radio waves to gamma waves.

••• Syed Hussain Ather

As part of the electromagnetic spectrum, you can determine either the frequency or wavelength of an X-ray when you know one or the other. Similar to Planck’s equation, this frequency ​ν​ of an electromagnetic wave relates to the speed of light ​c​, 3 x 10-8 m/s, with the equation

c=lambda nu

in which λ is the wavelength of the wave. The speed of light remains constant in all situations and examples, so this equation demonstrates how frequency and wavelength of an electromagnetic wave are inversely proportional to one another.

In the above diagram, the various wavelengths of different types of waves are shown. X-rays lie between ultraviolet (UV) and gamma rays in the spectrum so X-ray properties of wavelength and frequency fall between them.

Shorter wavelengths indicate greater energy and frequency that can pose risks to human health. Sunscreens that block against UV rays and protective coats and shields of lead that block X-rays from entering skin demonstrate this power. Gamma rays from outer space are fortunately absorbed by the Earth’s atmosphere, preventing them from harming people.

Finally, frequency can be related to period ​T​ in seconds with the equation

T=frac{1}{f}

These x-ray properties can also apply to other forms of electromagnetic radiation. X-ray radiation in particular shows these wavelike properties, but also particle-like ones.

X-rays as Particles

In addition to wavelike behaviors, X-rays behave like a stream of particles as though a single wave of an X-ray consisted of one particle after another colliding with objects and, upon collision, absorb, reflect, or pass through.

Because Planck’s equation uses energy in the form of single photons, scientists say electromagnetic waves of light are «quantized» into these «packets» of energy. They are made of specific amounts of photon that carry discrete amounts of energy called quanta. As atoms absorb or emit photons, they, respectively, increase in energy or lose it. This energy can take the form of electromagnetic radiation.

In 1923 American physicist William Duane explained how X-rays would diffract in crystals through these particle-like behaviors. Duane used the quantized momentum transfer from the geometric structure of the diffracting crystal to explain how different X-ray waves would behave when passing through the material.

X-rays, like other forms of electromagnetic radiation exhibit this wave-particle duality that lets scientists describe their behavior as though they were both particles and waves simultaneously. They flow like waves with a wavelength and frequency while emitting amounts of particles as though they were beams of particles.

Using X-ray Energy

Named after German physicist Maxwell Planck, Planck’s equation dictates that light behaves in this wavelike manner, light also shows particle-like properties. This wave-particle duality of light means that, though the energy of light depends upon its frequency, it still comes in discrete amounts of energy dictated by photons.

When the photons of X-rays come into contact with different materials, some of them are absorbed by the material while others pass through. The X-rays that pass through let doctors create internal images of the human body.

X-rays in Practical Applications

Medicine, industry and various areas of research through physics and chemistry use X-rays in different ways. Medical imaging researchers use X-rays in creating diagnoses to treat conditions within the human body. Radiotherapy has applications in cancer treatment.

Industrial engineers use X-rays to ensure metals and other materials have the appropriate properties necessary for purposes such as identifying cracks in buildings or creating structures that can withstand large amounts of pressure.

Research on X-rays at synchrotron facilities lets companies manufacture scientific instruments used in spectroscopy and imaging. These synchrotrons use large magnets to bend light and force the photons to take wavelike trajectories When X-rays are accelerated in circular motions at these facilities, their radiation becomes linearly polarized to produce large amounts of power. The machine then redirects the X-rays towards other accelerators and facilities for research.

X-rays in Medicine

The applications of X-rays in medicine created entirely new, innovative methods of treatment. X-rays became integral to the process of identifying symptoms within the body through their non-invasive nature that would let them diagnose without the need to physically enter the body. X-rays also had the advantage of guiding physicians as they inserted, removed, or modified medical devices within patients.

There are three main types of X-rays imaging used in medicine. The first, radiography, images the skeletal system with only small amounts of radiation. The second, fluoroscopy, lets professionals view the internal state of a patient in real-time. Medical researchers have used this to feed patients barium to observe the workings of their digestive tract and diagnose esophageal diseases and disorders.

Finally, computed tomography lets patients lie down underneath a ring-shaped scanner to create a three-dimensional image of the patient’s internal organs and structures. The three-dimensional images are aggregated together from many cross-sectional images taken of the patient’s body.

X-ray History: Inception

German mechanical engineer Wilhelm Conrad Roentgen discovered X-rays while he was working with cathode-ray tubes, a device that fired electrons to produce images. The tube used a glass envelope that protected the electrodes in a vacuum inside the tube. By sending electrical currents through the tube, Roentgen observed how different electromagnetic waves were emitted from the device.

When Roentgen used a thick black paper to protect the tube, he found that the tube emitted a green fluorescent light, an X-ray, that could pass through the paper and energize other materials. He found that, when charged electrons of a certain amount of energy would collide with material, X-rays were produced.

Naming them «X-rays,» Roentgen hoped to capture their mysterious, unknown nature. Roentgen discovered it could pass through human tissue, but not through bone nor metal. In late 1895, the engineer created an image of his wife’s hand using the X-rays as well as an image of weights in a box, a notable feat in X-ray history.

X-ray History: Spread

Soon, scientists and engineers became allured by the X-ray’s mysterious nature began exploring the possibilities for X-ray use. The roentgen (​R​) would become a now-defunct unit of measuring radiation exposure that would be defined as the amount of exposure necessary to make a single positive and negative unit of electrostatic charge for dry air.

Producing images of the internal skeletal and organ structures of humans and other creatures, surgeons and medical researchers created innovative techniques of understanding the human body or figuring out where bullets were located in wounded soldiers.

By 1896, scientists were already applying the techniques to figure out which types of matter X-rays could pass through. Unfortunately, the tubes that produce X-rays would break down under the large amounts of voltage needed for industrial purposes until the 1913 Coolidge tubes of American physicist-engineer William D. Coolidge used a tungsten filament for more accurate visualization in the newly born field of radiology. Coolidge’s work would ground X-ray tubes firmly in physics research.

Industrial work took off with the production of lightbulbs, fluorescent lamps and vacuum tubes. Manufacturing plants produced radiographs, X-ray images, of steel tubes to verify their internal structures and composition. By the 1930s General Electric Company had produced one million X-ray generators for industrial radiography. The American Society of Mechanical Engineers began using of X-rays for fusing welded pressure vessels together.

X-ray Negative Health Effects

Given how much energy X-rays pack with their short wavelengths and high frequencies, as society embraced X-rays in various fields and disciplines, the exposure to X-rays would cause individuals to experience eye irritation, organ failure and skin burns, sometimes even resulting in the loss of limbs and lives. These wavelengths of the electromagnetic spectrum could break chemical bonds that would cause mutations in DNA or changes in molecular structure or cellular function in living tissues.

More recent research on X-rays has shown that these mutations and chemical aberrations can cause cancer, and scientists estimate 0.4 % of cancers in the United States are caused by CT scans. As X-rays rose in popularity, researchers began recommending levels of X-ray dosage that were deemed safe.

As society embraced the power of X-rays, physicians, scientists and other professionals began expressing their concerns about the negative health effects of X-rays. As researchers observed how X-rays would pass through the body without paying close attention to how the waves specifically targeted areas of the body, they had little reason to believe X-rays could be dangerous.

X-ray Safety

Despite the negative implications of X-ray technologies on human health, their effects can be controlled and maintained to prevent unnecessary harm or risk. While cancer naturally affects 1 in 5 Americans, a CT scan generally raises the risk of cancer by .05 percent, and some researchers argue that low X-ray exposure may not even contribute to an individual’s risk of cancer.

The human body even has built-in ways of repairing damage caused by low dosages of X-rays, according to a study in the American Journal of Clinical Oncology, suggesting that X-ray scans do not pose any significant risk at all.

Children are at greater risk of brain cancer and leukemia when exposed to X-rays. For this reason, when a child may require an X-ray scan, physicians and other professionals discuss the risks with guardians of the child’s family to provide consent.

X-rays on DNA 

Exposure to high amounts of X-rays can result in vomiting, bleeding, fainting, loss of hair and loss of skin. They can cause mutations in DNA because they have just enough energy to break bonds between DNA molecules.

It’s still difficult to determine if mutations in DNA as due to X-ray radiation or random mutations of DNA itself. Scientists can study the nature of mutations including their probability, etiology and frequency to determine whether the double-strand breaks in DNA were the result of X-ray radiation or the random mutations of DNA itself.

Обычный
рентгеновский спектр состоит из
непрерывного спектра, вызванного
тормозным излучением, и характеристических
линий (острые пики Кa
и Кb),
которые возникают вследствие взаимодействий
ускоренных электронов с электронами
внутренней К-оболочки

При
обычном способе получения рентгеновского
излучения, например, с помощью рентгеновских
трубок, получают широкий диапазон длин
волн, который называют рентгеновским
спектром, который состоит из тормозной
и характеристической составляющих.

Тормозное
излучение имеет широкий непрерывный
спектр, появление которого вызвано
торможением электронов на материале
анода. Мощность тормозного рентгеновского
излучения P
зависит от порядкового атомного номера
материала анода Z,
силы тока I,
протекающего через трубку, квадрата
приложенного напряжения U,
и выражается формулой

P
=
k×I×Z×U2
,

где
k
= 1,5×106.

Коэффициент
полезного действия трубки

  • =
    P/I×U

составляет
примерно 2% для трубки с анодом из
вольфрама при напряжении 200 кВ.

Другой
особенностью рентгеновского спектра
является наличие отчетливо выраженных
пиков характеристического излучения,
которое возникает вследствие взаимодействий
ускоренных электронов с электронами
внутренней К-оболочки.

Как
известно, атомы состоят из ядер, окруженных
электронами, энергии которых имеет
дискретные значения. Энергетические
уровни электронов сгруппированы по
электронным оболочкам, которые
обозначаются символами K,
L, M

и т.д.

Когда
налетающий электрон сталкивается с
одним из электронов, находящимся,
например, на K-оболочке,
он выбивает его. Опустевшее место
занимает электрон с другой L
или M-оболочки,
которой соответствует большая энергия.
В этом случае возникает Кa
излучение, а во втором Кb
излучение характеристического спектра.

Поскольку
электроны оболочек имеют дискретные
значения энергии, возникающие рентгеновские
фотоны тоже обладают дискретным спектром.
Этому соответствуют острые пики для
определенных длин волн, конкретные
значения которых зависят от атомного
номера элементов входящих в состав
материала мишени.

20. Закон Мозли

Соотношение
между длиной волны характеристического
излучения и атомным номером называется
законом Мозли. В общем виде оно имеет
следующий вид:

l
= 1/
R(Zs1)2(n1-2
no-2)

где
R

– постоянная Ридберга; n
– целое число, которое характеризует
положение электрона на электронной
оболочке (квантовое число); s1
– постоянная экранирования, Z
– атомный номер элемента анода.


Длина
волны характеристического рентгеновского
излучения, испускаемого химическими
элементами, зависит от атомного номера
элемента. Кривая соответствует закону
Мозли: чем больше атомный номер элемента,
тем меньше длина волны характеристической
линии.

По
длине волны характеристического
излучения можно определять атомный
номер любого химического элемента с
применением энергодисперсионного
анализа.

21. Получение рентгеновского излучения (рентгеновские трубки)

Для
получения рентгеновского излучения в
современных дифрактометрах используются
рентгеновские трубки. В них имеются
источник электронов (катод), большое
ускоряющее напряжение и анод, способный
выдержать электронную бомбардировку
и давать рентгеновское излучение нужной
интенсивности.

В
современной рентгеновской трубке в
качестве источника электронов используется
вольфрамовый катод, нагреваемый до
высокой температуры. Для ускорения
электронов накладывается большая
разность потенциалов между анодом и
катодом. Поскольку электроны должны
достичь анода без столкновений с атомами,
необходим очень высокий вакуум, для
чего нужно хорошо откачать трубку. Этим
также снижаются вероятность ионизации
оставшихся атомов газа и обусловленные
ею побочные токи.


Схема
рентгеновской трубки: 1 – металлический
анодный стакан; 2 – окна из бериллия для
выхода рентгеновского излучения; 3 –
термоэмиссионный катод; 4 – стеклянная
трубка, изолирующая анодную часть трубки
от катодной; 5 – выводы катода, к которым
подводится напряжение накала, а также
высокое (относительно анода) напряжение;
6 – электростатическая система фокусировки
электронов; 7 – анод (антикатод); 8 –
патрубки для ввода и вывода проточной
воды, охлаждающей анодный стакан.

В
рентгеноструктурном анализе используются
трубки с анодами из Cr, Fe, Co, Ni, Cu, Mo, Ag.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Рентгенология — раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи — это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц — квантов или фотонов.

RoentgenРис. 1 — передвижной рентгеновский аппарат:

A — рентгеновская трубка;
Б — питающее устройство;
В — регулируемый штатив.


RoentgenРис. 2 — пульт управления рентгеновским аппаратом (механический — слева и электронный — справа):

A — панель для регулирования экспозиции и жёсткости;
Б — кнопка подачи высокого напряжения.


RoentgenРис. 3 — блок-схема типичного рентгенаппарата

1 — сеть;
2 — автотрансформатор;
3 — повышающий трансформатор;
4 — рентгеновская трубка;
5 — анод;
6 — катод;
7 — понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% — в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10-7–10-8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка — небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, — это и есть место образования рентгеновских лучей.

Roentgen

Рис. 4 — устройство рентгеновской трубки:

А — катод;
Б — анод;
В — вольфрамовая нить накала;
Г — фокусирующая чашечка катода;
Д — поток ускоренных электронов;
Е — вольфрамовая мишень;
Ж — стеклянная колба;
З — окно из бериллия;
И — образованные рентгеновские лучи;
К — алюминиевый фильтр.


К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5—15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс — на анод, и отрицательный — на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду — за счёт такой разности потенциалов достигается высокая скорость движения — 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.

RoentgenРис. 5 — принцип образования тормозного рентгеновского излучения.
RoentgenРис. 6 — принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
    • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
    • Кристаллы вольфрамата кальция — фиолетово-голубым.
  4. Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  5. Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  6. Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших — может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.

Шкала электромагнитных колебаний

радиоволны инфракрасное излучение видимый свет ультрафиолетовое излучение рентгеновское излучение γ-излучение (гамма) космическое излучение
30 км–0,15 см 0,15 см–700 нм 700–400 нм 400–1,5 нм 1,5–3×10-3 нм 3×10-3–1×10-3 нм 1×10-3–5×10-5 нм

Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ • ν = c, где c — скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h • ν, где h — постоянная Планка, универсальная постоянная, равная 6,626 • 10-34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале 1,5–3×10-3 нм. Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

Характеристики рентгеновского излучения

Интенсивность — количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт — с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

  1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
  2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки — кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно — см. рис. 5; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).

Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция — это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим — в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

Жёсткость — качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке — в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке — киловольтажем).

RoentgenРис. 7 — Зависимость длины волны от энергии волны:

λ — длина волны;
E — энергия волны

  • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью — «жёстким».


RoentgenРис. 8 — Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:

  • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

Классификация рентгеновских трубок

  1. По назначению
    1. Диагностические
    2. Терапевтические
    3. Для структурного анализа
    4. Для просвечивания
  2. По конструкции
    1. По фокусности
      • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
      • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
      • Стационарный (неподвижный)
      • Вращающийся

Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода — чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно — участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.

RoentgenРис. 9 — рентгеновская трубка со стационарным анодом.
RoentgenРис. 10 — рентгеновская трубка с вращающимся анодом.
RoentgenРис. 11 — устройство рентгеновской трубки с вращающимся анодом.
RoentgenРис. 12 — схема образования реального и эффективного фокусного пятна.

Функция печати недоступна из системного меню вашего браузера. Для того чтобы распечатать эту страницу, нажмите на ссылку «Версия для печати» в заголовке статьи.

Охраняется законом РФ «Об авторском праве».
Размещение материалов на сторонних ресурсах возможно только с разрешения редакции портала.

РЕНТГЕНОВСКИЕ ЛУЧИ – электромагнитное излучение с длинами волн 10–4 – 10 А (10–5 – 1 нм).

В 1895 немецкий физик Рентген, проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

Возникновение и свойства рентгеновского излучения

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см. рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 1014–1015 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b, при этом интенсивность b-составляющей в 5 раз меньше, чем a. В свою очередь a-составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

Рис. Зависимость интенсивности рентгеновского излучения от длины волны для различных материалов анодов рентгеновских трубок

Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a-частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g-излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

Взаимодействие рентгеновских лучей с кристаллами

При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

а(aa0) = hl,

где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга 2d sinq = nl, где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.

Лев Миркин

Содержание

  • Системные и внесистемные единицы измерения
    • Области применения Рентгена и Зиверта
    • Тысячные и миллионные доли Зиверта/Рентгена
  • Допустимый объём накопленного в организме облучения
  • Основные источники накопления в организме радионуклидных соединений
    • Природные ионизирующие излучения
    • Источники накопления дозы естественного излучения в организме
    • Искусственные ионизирующие излучения
  • Размер доз облучения при рентгенодиагностике

В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?

Системные и внесистемные единицы измерения

В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.

В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.

За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.

Области применения Рентгена и Зиверта

Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.

Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.

Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.

Тысячные и миллионные доли Зиверта/Рентгена

Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.

Комментарии специалиста:

Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.

Допустимый объём накопленного в организме облучения

Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.

Для коренных жителей высокогорных районов данные показатели могут быть немного выше.

Основные источники накопления в организме радионуклидных соединений

Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.

Природные ионизирующие излучения

К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:

  1. Высота над уровнем моря. Чем ближе к воде, тем ниже уровень радиации в воздухе;
  2. Геологическая структура местности. Наличие плодородной почвы и водоемов содействуют снижению радиоактивного фона. Горные образования, напротив, служат источником повышенного излучения;
  3. Архитектура. Чем плотней застройка, тем выше окружающий её радиоактивный фон.

Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).

В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.

Источники накопления дозы естественного излучения в организме

Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:

  1. космическая радиация и солнечная активность – 0,3 – 0,9 мЗв;
  2. ландшафтно-почвенное излучение – 0,25 – 0,6 мЗв;
  3. радиационный фон окружающей архитектуры – от 0,3 мЗв;
  4. воздушные массы – 0,2 – 2 мЗв;
  5. продукты питания – от 0,02 мЗв;
  6. питьевая вода – 0,01 – 0,1 мЗв.

Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.

Искусственные ионизирующие излучения

К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.

Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.

Размер доз облучения при рентгенодиагностике

Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:

  1. 1 снимок цифровой флюорографии – оза снижена с 0,03 до 0,002 мЗв;
  2. 1 снимок плёночной флюорографии – оза снижена с 0,8 до 0,25 мЗв;
  3. 1 снимок при рентгенографии органов грудной полости – доза снижена с 0,4 до 0,15 мЗв;
  4. 1 снимок дентальной рентгенографии — доза снижена с 0,3 до 0,03 мЗв.

При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.

Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).

При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:

  1. разовая рентгенография грудной клетки сопоставима с 10-дневной дозой естественного облучения;
  2. одна флюорография грудной клетки – до 1-го месяца естественного облучения;
  3. разовая полная компьютерная томография – приблизительно 3 года естественного облучения;
  4. один рентгенографический осмотр кишечника или желудка – от 2-х до 3-х лет естественного облучения.

Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.

Мощность дозы рентгеновского излучения
Паспортизация вентиляции лабораторий
Паспортизация вентиляции рентгенкабинетов
Санитарно эпидемиологическое заключение на рентгеновский аппарат в рентген кабинете в Москве
Утилизация генерирующих источников ионизирующего излучения в Москве

Понравилась статья? Поделить с друзьями:
  • Как исправить нумерацию в 1с бухгалтерии
  • Как найти скорость пруд
  • Как исправить двухшаговый кракелюр
  • Как найти скайп для бизнеса на компьютере
  • Как найти объем аквариума в литрах формула