Как найти мощность теплового двигателя

Мощность по своей сути является скоростью выполнения работы. Чем больше мощность совершаемой работы, тем больше работы выполняется за единицу времени.

Среднее значение мощности — это работа, выполненная за единицу времени.

Величина мощности прямо пропорциональна величине совершённой работы (A) и обратно пропорциональна времени (t), за которое работа была совершена.

Мощность (N) определяют по формуле:

Единицей измерения мощности в системе (СИ) является (Ватт) (русское обозначение — (Вт), международное — (W)).

Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.с.), 1 л.с. = 736 Вт.

Пример:

Мощность двигателя автомобиля равна примерно (90 л.с. = 66240 Вт).

Мощность автомобиля или другого транспортного средства можно рассчитать, если известна сила тяги автомобиля (F) и скорость его движения (v).

N=F⋅v

Эту формулу получают, преобразуя основную формулу определения мощности.

Ни одно устройство не способно использовать (100) % от начально подведённой к нему энергии на совершение полезной работы. Поэтому важной характеристикой любого устройства является не только мощность, но и коэффициент полезного действия, который показывает, насколько эффективно используется энергия, подведённая к устройству.  

Пример:

Для того чтобы автомобиль двигался, должны вращаться колёса. А для того чтобы вращались колёса, двигатель должен приводить в движение кривошипно-шатунный механизм (механизм, который возвратно-поступательное движение поршня двигателя преобразует во вращательное движение колёс). При этом приводятся во вращение шестерни и большая часть энергии выделяется в виде тепла в окружающее пространство, в результате чего происходит потеря подводимой энергии. Коэффициент полезного действия двигателя автомобиля находится в пределах (40 — 45) %. Таким образом, получается, что только около (40) % от всего бензина, которым заправляют автомобиль, идёт на совершение необходимой нам полезной работы — перемещение автомобиля.

Если мы заправим в бак автомобиля (20) литров бензина, тогда только (8) литров будут расходоваться на перемещение автомобиля, а (12) литров сгорят без совершения полезной работы.

Коэффициент полезного действия обозначается буквой греческого алфавита («эта») 

η

, он является отношением полезной мощности (N) к полной или общей мощности

Nполная

.

Для его определения используют формулу:

η=NNполная

. Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет.

Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу:

η=NNполная⋅100%

.

Так как мощность является работой, проделанной за единицу времени, тогда коэффициент полезного действия можно выразить как отношение полезной проделанной работы (A) к общей или полной проделанной работе

Aполная

. В этом случае формула для определения коэффициента полезного действия будет выглядеть так:

Коэффициент полезного действия всегда меньше (1), или (100) % (

η

 < 1, или

η

 < (100) %).

Тепловые машины

  • Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

  • Тепловые двигатели

  • Холодильные машины

  • Тепловая машина Карно

  • Тепловые двигатели и охрана окружающей среды

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

к оглавлению ▴

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты Q_1. Именно за счёт этого тепла двигатель совершает полезную работу A.

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае A=Q_1.

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу A_1. В процессе сжатия над газом совершается положительная работа A_2 (а сам газ совершает отрицательную работу -A_2). В итоге полезная работа газа за цикл: A=A_1-A_2.

Разумеется, должно быть A>0, или A_2 < A_1 (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на pV-диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции V_11a2V_2. Аналогично, работа газа при сжатии равна площади криволинейной трапеции V_11b2V_2 со знаком минус. В результате работа A газа за цикл оказывается положительной и равной площади цикла 1a2b1.

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты Q_2.

Суммарное количество теплоты, полученное газом за цикл, оказывается равным Q_1-Q_2. Согласно первому закону термодинамики:

Q_1 - Q_2 = A + Delta U,

где Delta U — изменение внутренней энергии газа за цикл. Оно равно нулю: Delta U = 0, так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

A = Q_1 - Q_2. (1)

Как видите, A < Q_1: не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы A к количеству теплоты Q_1, поступившему от нагревателя:

С учётом соотношения (1) имеем также

eta = frac{displaystyle A}{displaystyle Q_1 vphantom{1^a}}. (2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно 25 %, а КПД двигателей внутреннего сгорания около 40 %.

к оглавлению ▴

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты Q_2, в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту Q_1 более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы {A}, совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину {A}:

Q_1 = Q_2 + {A}

Таким образом, на pV-диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа {A}, совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

alpha  = frac{displaystyle Q_2}{displaystyle {A}

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

beta  = frac{displaystyle Q_1}{displaystyle {A}

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

к оглавлению ▴

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя T_1 и температуры холодильника T_2?

Пусть, например, максимальная температура рабочего тела двигателя равна 1000 K, а минимальная — 300 K. Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма 1rightarrow 2. На участке 1rightarrow 2 газ приводится в тепловой контакт с нагревателем температуры T_1 и расширяется изотермически. От нагревателя поступает количество теплоты Q_1 и целиком превращается в работу на этом участке: A_{12} = Q_1.

Адиабата 2rightarrow 3. В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке 2rightarrow 3.

При расширении газ совершает положительную работу A_{23}, и за счёт этого уменьшается его внутренняя энергия: Delta U_{23} = -A_{23}.

Изотерма 3rightarrow 4. Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры T_2. Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты Q_2 и совершает отрицательную работу A_{34} = -Q_2.

Адиабата 4rightarrow 1. Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу A_{41}, а изменение внутренней энергии положительно: Delta U_{41} = -A_{41}. Газ нагревается до исходной температуры T_1.

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

eta  = frac{displaystyle T_1 - T_2}{displaystyle T_1 vphantom{1^a}}. (3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя T_1 и температурой холодильника T_2.

Так, в приведённом выше примере (T_1 = 1000 K, T_2 = 300 K) имеем:

eta_{max}  = frac{displaystyle 1000 - 300}{displaystyle 1000 vphantom{1^a}}=0,7(=70 %).

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

к оглавлению ▴

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тепловые машины» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

КПД теплового двигателя рассчитывается по формуле $eta = frac{A_п}{Q_1}$ или $eta = frac{Q_1 — Q_2}{Q_1} cdot 100 %$, где
$A_п$ — полезная работа,
$Q_1$ — количество теплоты, полученное от нагревателя,
$Q_2$ — количество теплоты, отданное холодильнику.

Когда говорят о коэффициенте полезного действия теплового двигателя, часто используют понятие мощности или полезной мощности: $N = frac{A_п}{t}$. Эту величину в жизни использовать удобнее, чем говорить о полезной работе. 

На данном уроке мы разберем решение задач, используя формулы, приведенные выше.

Для решения задач, в условиях которых, говорится о сжигании топлива ($Q = qm$), вам понадобятся табличные значения удельной теплоты сгорания топлива.

Задача №1

Какая работа совершена внешними силами при обработке железной заготовки массой $300 space г$, если она нагрелась на $200 degree C$?

Дано:
$m = 300 space г$
$Delta t = 200 degree C$
$c = 460 frac{Дж}{кг cdot degree C}$

СИ:
$m = 0.3 space кг$

$A — ?$

Показать решение и ответ

Скрыть

Решение:

Для того чтобы нагреть железную деталь, необходимо сообщить ей некоторое количество теплоты:
$Q = cm(t_2 — t_1) = cm Delta t$.

Рассчитаем эту энергию:
$Q = 460 frac{Дж}{кг cdot degree C} cdot  0.3 space кг cdot 200 degree C = 27 space 600 space Дж = 27.6 space кДж$.

Сообщенная энергия будет эквивалентна работе внешних сил:
$A = Q = 27.6 space кДж$.

Ответ: $A = 27.6 space кДж$.

Задача №2

Приняв, что вся тепловая энергия угля обращается в полезную работу, рассчитайте какого количества каменного угля в час достаточно для машины мощностью $733 space Вт$?

Дано:
$t = 1 space ч$
$N = 733 space Вт$
$q = 2.7 cdot 10^7 frac{Дж}{кг}$

СИ:
$t = 3600 space с$

$m — ?$

Показать решение и ответ

Скрыть

Решение:

Мощность по определению:
$N = frac{A_п}{t}$.

Выразим отсюда полезную работу, совершаемую машиной, и рассчитаем ее:
$A_п = Nt$,
$A_п = 733 space Вт cdot 3600 space с = 2 space 638 space 800 space Дж approx 0.26 cdot 10^7 space Дж$.

По условиям задачи количество теплоты, которое выделяется при сжигании каменного угля, равно полезной работе:
$A_п = Q = qm$.

Выразим отсюда массу угля и рассчитаем ее:
$m = frac{A_п}{q}$,
$m = frac{0.26 cdot 10^7 space Дж}{2.7 cdot 10^7 frac{Дж}{кг}} approx 0.1 space кг approx 100 space г$.

Ответ: $m approx 100 space г$.

Задача №3

Нагреватель за некоторое время отдает тепловому двигателю количество теплоты, равное $120 space кДж$. Тепловой двигатель совершает при этом полезную работу $30 space кДж$. Определите КПД теплового двигателя.

Дано:
$Q_1 = 120 space кДж$
$A_п = 30 space кДж$

СИ:
$Q_1 = 120 cdot 10^3 space Дж$
$A_п = 30 cdot 10^3  space Дж$

$eta — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Рассчитаем:
$eta = frac{30 cdot 10^3  space Дж}{120 cdot 10^3  space Дж} = 0.25$,
или в процентах $eta = 25 %$.

Ответ: $eta = 25 %$.

Задача №4

Нагреватель  отдает тепловому двигателю за $30 space мин$ количество теплоты, равное $460 space МДж$, а тепловой двигатель отдает количество теплоты, равное $280 space МДж$. Определите полезную мощность двигателя.

Дано:
$t = 30 space мин$
$Q_1 = 460 space МДж$
$Q_2 = 280 space МДж$

СИ:
$t = 1800 space с$
$Q_1 = 460 cdot 10^6 space Дж$
$Q_2 = 280 cdot 10^6 space Дж$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = =frac{A_п}{Q_1} = frac{Q_1 — Q_2}{Q_1}$, где
$A_п$ — полезная работа,
$Q_1$ — количество теплоты, полученное от нагревателя,
$Q_2$ — количество теплоты, отданное холодильнику.

Из этой формулы, мы можем сделать вывод, что $Q_1 — Q_2 = A_п$ — количество теплоты, которое пошло на совершение работы.

Величина работы также присутствует в определении мощности:
$N = frac{A_п}{t}$.

Когда мощность определяется полезной работой, мы называем ее полезной мощностью.

Подставим в формулу мощности определение работы из формулы для КПД и рассчитаем ее:
$N = frac{Q_1 — Q_2}{t}$,
$N = frac{460 cdot 10^6 space Дж — 280 cdot 10^6 space Дж}{1800 space с} = frac{180 cdot 10^6 space Дж}{1800 space с} = 0.1 cdot 10^6 space Вт = 100 space кВт$.

Ответ: $N = 100 space кВт$.

Задача №5

Паровой молот мощностью $367 space кВт$ получает от нагревателя в час количество теплоты, равное $6720 space МДж$. Какое количество теплоты в час получает холодильник?

Дано:
$N = 367 space кВт$
$t = 1 space ч$
$Q_1 = 6720 space МДж$

СИ:
$N = 367 cdot 10^3 space Вт$
$t = 3600 space с$
$Q_1 = 6720 cdot 10^6 space Дж$

$Q_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Полезная работа, совершенная тепловым двигателем, определяется разностью количества теплоты, отданному холодильнику, и количества теплоты, полученного от нагревателя:
$A_п = Q_1 — Q_2$.

Тогда, количество теплоты, которое получает холодильник будет равно:
$Q_2 = Q_1 — A_п$.

Совершенную работу мы можем определить через мощность:
$N = frac{A_п}{t}$,
$A_п = Nt$.

Подставим в формулу для количества теплоты, получаемого холодильником:
$Q_2 = Q_1 — Nt$.

Рассчитаем эту энергию:
$Q_2 = 6720 cdot 10^6 space Дж — 367 cdot 10^3 space Вт cdot 3600 space с = 6720 cdot 10^6 space Дж — 1321.2 cdot 10^6 space Дж = 5398.8 cdot 10^6 space Дж approx 5400 space МДж$.

Ответ: $Q_2 approx 5400 space МДж$.

Задача №6

Мопед, едущий со скоростью $20 frac{км}{ч}$, за $100 space км$ пути расходует $1 space кг$ бензина. КПД его двигателя равен $22 %$. Какова полезная мощность двигателя?

Дано:
$upsilon = 20 frac{км}{ч}$
$s = 100 space км$
$m = 1 space кг$
$eta = 22 % = 0.22$
$q = 4.6 cdot 10^7 frac{Дж}{кг}$

СИ:
$upsilon approx 5.6 frac{м}{с}$
$s = 100 cdot 10^3 space м$

$N — ?$

Показать решение и ответ

Скрыть

Решение:

Мощность по определению:
$N = frac{A_п}{t}$.

Полезную работу мы можем выразить из формулы для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Количество теплоты $Q_1$, выделившееся при сгорании бензина, мы можем найти по формуле:
$Q = qm$.

Подставим в формулу для расчета КПД:
$eta = frac{A_п}{qm}$.

Выразим отсюда полезную работу:
$A_п = eta cdot qm$.

Время, которое необходимо нам для расчета мощности, мы можем найти через перемещение и скорость:
$t = frac{s}{upsilon}$.

Подставим найденные формулы для величин $A_п$ и $t$ в формулу для расчета мощности:
$N = frac{eta cdot qm}{frac{s}{upsilon}} = frac{eta cdot qm cdot upsilon}{s}$.

Рассчитаем эту мощность:
$N = frac{0.22 cdot 4.6 cdot 10^7 frac{Дж}{кг} cdot 1 space кг cdot 5.6 frac{м}{с}}{100 cdot 10^3 space м} approx frac{5.67 cdot 10^7 space Дж cdot с}{0.01 cdot 10^7} approx 567 space Вт$.

Ответ: $N approx 567 space Вт$.

Задача №7

Определите КПД двигателя внутреннего сгорания мощностью $36.6 space кВт$, который сжигает в течение одного часа $10 space кг$ нефти.

Дано:
$N = 36.6 space кВт$
$t = 1 space ч$
$m = 10 space кг$
$q = 4.4 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 36.6 cdot 10^3 space Вт$
$t = 3600 space с$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1} cdot 100 %$.

Полезную работу, совершенную двигателем мы можем определить через его мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты $Q_1$, полученное от нагревателя, — это энергия, которая выделится при сгорании топлива:
$Q_1 = qm$.

Подставим эти выражения в формулу КПД и рассчитаем его:
$eta = frac{Nt}{qm} cdot 100%$,
$eta = frac{36.6 cdot 10^3 space Вт cdot 3600 space с}{4.4 cdot 10^7 frac{Дж}{кг} cdot 10 space кг} cdot 100 % = frac{13.176 cdot 10^7 space Дж}{44 cdot 10^7 space Дж} cdot 100 % approx 30 %$.

Ответ: $eta approx 30 %$.

Паровая машина мощностью $220 space кВт$ имеет КПД $15 %$. Сколько каменного угля сгорает в ее топке за $8 space ч$?

Дано:
$N = 220 space кВт$
$t = 8 space ч$
$eta = 15 % = 0.15$
$q = 2.7 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 220 cdot 10^3 space Вт$
$t = 28.8 cdot 10^3 space с$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД:
$eta = frac{A_п}{Q_1}$.

Полезную работу $A_п$ мы можем выразить через мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты, полученное от нагревателя — это энергия, выделившаяся при сгорании каменного угля:
$Q_1 = qm$.

Подставим эти выражения в формулу для КПД:
$eta = frac{Nt}{qm}$.

Выразим отсюда массу каменного угля:
$m = frac{Nt}{q eta}$.

Рассчитаем ее:
$m = frac{220 cdot 10^3 space Вт cdot 28.8 cdot 10^3 space с}{2.7 cdot 10^7 frac{Дж}{кг} cdot 0.15} = frac{633.6 cdot 10^7 space Дж}{0.405 cdot 10^7 frac{Дж}{кг}} approx 1564 space кг$.

Ответ: $m approx 1564 space кг$.

Задача №9

Современные паровые механизмы расходуют $12.57 space МДж$ в час на $735 space Вт$. Вычислите КПД таких механизмов.

Дано:
$Q_1 = 12.57 space МДж$
$t = 1 space ч$
$N = 735 space Вт$

СИ:
$Q_1 = 12.57 cdot 10^6 space Дж$
$t = 3600 space с$

$eta- ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1} cdot 100 %$.

Полезную работу, совершенную двигателем мы можем определить через его мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты $Q_1$, полученное от нагревателя, нам дано в условиях задачи.

Подставим выражение для полезной работы в формула для КПД и рассчитаем его:
$eta = frac{Nt}{Q_1} cdot 100 %$,
$eta = frac{735 space Вт cdot 3600 space с}{12.57 cdot 10^6 space Дж} cdot 100 % approx 21 %$.

Ответ: $eta approx 21 %$.

Задача №10

Мощность дизельного двигателя $367 space кВт$, КПД $30 %$. На сколько суток непрерывной работы хватит запаса нефти $60 space т$ такому двигателю?

Дано:
$N = 367 space кВт$
$m = 60 space т$
$eta = 30 % = 0.3$
$q = 4.4 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 367 cdot 10^3 space Вт$
$m = 60 cdot 10^3 space кг$

$t — ?$

Показать решение и ответ

Скрыть

Решение:

Формула для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Полезную работу $A_п$ мы можем выразить через мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты, полученное от нагревателя — это энергия, выделившаяся при сгорании нефти:
$Q_1 = qm$.

Подставим эти выражения в формулу для КПД:
$eta = frac{Nt}{qm}$.

Выразим отсюда время, за которое была совершена полезная работа:
$t = frac{qm eta}{N}$.

Рассчитаем его:
$t = frac{4.4 cdot 10^7 frac{Дж}{кг} cdot 60 cdot 10^3 space кг cdot 0.3}{367 cdot 10^3 space Вт} = frac{79.2 cdot 10^7 space Дж}{367 space Вт} approx 2.16 cdot 10^6 space с$.

Переведем в сутки. В одном дне $60 cdot 60 cdot 24 space с = 86 space 400 space с$. Тогда,
$t = frac{2.16 cdot 10^6}{86 space 400} = 25 space сут$.

Ответ: $t = 25 space сут$.

Введение

Зная некоторые характеристики тела, можно вычислить его внутреннюю энергию. Так, внутренняя энергия 1 м3 воздуха при нормальном атмосферном давлении и температуре  составляет около 160 кДж (см. рис. 1).

Рис. 1. Внутренняя энергия воздуха

Если бы было возможно использовать эту энергию, то ее бы хватило на поднятие плиты массой 1,6 тонны на высоту 10 метров (см. рис. 2).

Рис. 2. Расход энергии на поднятие груза

Есть объекты, в которых сосредоточена большая энергия, но использовать ее тяжело по разным причинам. Например, ураган или молния.

Есть и более близкий каждому пример: солнце светит и нагревает дом, а мы включаем кондиционер (тратим дополнительную энергию), чтобы дом охладить. Можно было бы использовать солнечную энергию для этой цели. Однако извлекать такую энергию пока не научились.

Или энергия ядерного топлива: во-первых, ее нужно как-то извлечь. А во-вторых, выделенную энергию нужно контролировать. В этом и состоит разница между атомной бомбой и атомной электростанцией.

Так и со внутренней энергией воздуха. Нельзя забрать ее всю у воздуха и преобразовать в механическую энергию груза. Самопроизвольное превращение энергии происходит в одном направлении. Нельзя нагреть руки от льда, хотя какая-то внутренняя энергия у льда тоже есть. Молоток ударяет по наковальне и нагревается, но это не значит, что это событие можно обратить: нагретый молоток вдруг приобретет механическую энергию и подпрыгнет.

Однако есть способ перевести часть внутренней энергии в необходимую механическую.

Имеются практические задачи: что-то поднять, сдвинуть, перетащить, причем сделать это все нужно в определенном направлении. Цель – превратить хаотическое движение частиц (внутреннюю энергию) воздуха в энергию груза, его направленное движение.

Модель теплового двигателя

Итак, возьмем цилиндрический сосуд и закроем его плотно «крышкой», которая может свободно двигаться вдоль цилиндра, не выпуская газ. Такая «крышка» называется поршень. В сосуде под поршнем находится газ. Нагреем газ – он будет расширяться и поднимать поршень (см. рис. 3).

Рис. 3. Превращение тепловой энергии в механическую

Хаотическое движение молекул газа перейдет в направленное движение поршня. Часть тепловой энергии перешла в механическую. Остальная энергия пойдет на нагревание газа, то есть на увеличение его внутренней энергии. Положим на поршень груз – сможем его поднять (см. рис. 4).

Рис. 4. Поднятие груза с помощью превращения тепловой энергии в механическую

Присоединим к поршню вал – вал будет вращаться. Это можно применить для передвижения автомобиля, паровоза, теплохода и т. д.


Почему поршень будет двигаться?

Представьте, что шар двигается по столу, три стороны которого закреплены жестко, а одна – подвижно.

Каким бы хаотическим ни было движение, каждый раз при ударе по незакрепленной стенке он будет немного ее сдвигать (считаем, что трения нет). Теперь представьте, что таких шаров много – чем сильнее и чаще они бьют по незакрепленной стенке, тем сильнее она будет сдвигаться.


В описанном примере газ лишь один раз отдаст энергию, поршень один раз сдвинется и все. Как сделать это действие повторяющимся?

Существует несколько способов.

1. Заменить остывший газ новой порцией горячего газа. По такому принципу работают двигатели внутреннего сгорания (см. рис. 5).

Рис. 5. Простая модель теплового двигателя


Принцип работы двигателя внутреннего сгорания

Рассмотрим строение простейшего двигателя внутреннего сгорания. Двигатель состоит из цилиндра, в котором перемещается поршень. Важная задача – преобразовать поступательное движение поршня во вращательное – в конечном счете нам нужно вращение колес. Для этого существует коленчатый вал, который соединяют с поршнем еще одной деталью – шатуном. Цилиндр также содержит два клапана, которые автоматически открываются и закрываются в нужные моменты.

Сначала через впускной клапан в цилиндр попадает горючая смесь. С помощью свечи зажигания смесь воспламеняется и сгорает – получается газ при высокой температуре.

Отсюда и название механизма: «двигатель внутреннего сгорания» – сгорание происходит внутри цилиндра.

Нагретый газ расширяется, толкая поршень и приводя в движение коленчатый вал. Газ отдает свою энергию, охлаждается и выводится из цилиндра через выпускной клапан. Тем временем поршень продолжает по инерции свое движение и возвращается в исходное положение (см. рис. 6).

Рис. 6. Принцип действия двигателя внутреннего сгорания

Далее в цилиндр поступает новая порция горючей смеси и процесс повторяется.


2. Полученный после расширения газ можно охладить и сжать до начального состояния, чтобы можно было снова нагреть газ с помощью поступления тепла извне. Обычно это тепло, выделившееся при сгорании топлива. Устройства, основанные на таком принципе, называются двигателями внешнего сгорания. Они получили такое название, так как горение происходит отдельно, а уже затем выделившееся тепло передается газу, что приводит к его расширению.

Энергия не возникает из ниоткуда, а происходит ее преобразование. Необходим источник энергии, топливо. Энергия химических связей переходит в тепловую, а тепловая энергия преобразуется в механическую. Это преобразование энергии не может обойтись без потерь. На первом этапе топливо при сгорании нагревает не только рабочий газ, но и окружающие детали, оставляет горячие продукты сгорания и т. д. На втором этапе не вся тепловая энергия переходит в механическую: чтобы расшириться, газ должен нагреться. Возникает вопрос эффективности двигателя: сколько получается механической энергии при данных затратах топлива.


Почему у газа должна быть высокая температура?

Мы рассмотрели способ преобразования энергии хаотического движения молекул в энергию направленного движения груза. Можно ли этот способ применить не для нагретого газа, а для газа при обычной, «комнатной» температуре?

Температура тела связана с кинетической энергией его частиц. Температура газа тем выше, чем быстрее движутся частицы, при этом они чаще сталкиваются со стенками сосуда и с поршнем. Эти столкновения определяют давление, которое оказывает газ на поршень. Чем больше температура газа, тем большее давление он оказывает на поршень (при неизменном объеме газа).

Поршень движется за счет того, что давление внутри сосуда больше, чем снаружи. Поскольку снаружи при обычных условиях всегда есть атмосферное давление, то давление газа внутри сосуда должно быть больше атмосферного. Это можно обеспечить только высокой температурой газа. Если же его температура будет порядка десятка градусов Цельсия, то давления будет недостаточно, чтобы вытолкнуть поршень.

Для работы двигателя при таких небольших температурах газа нужно будет искусственно уменьшать внешнее давление на поршень, а это делать нецелесообразно.


Рассмотренный принцип не единственный. Заставить нагретый газ перемещать какое-то тело можно и без движущегося поршня. Например, можно нагреть пар и дать ему при расширении выходить струйкой через узкую трубу. В струе пара, которая образуется в трубе, будет направленное движение частиц (см. рис. 7).

Рис. 7. Направленное движение частиц пара

Затем эта струя сталкивается с плоским твердым телом – «лопаткой», которая присоединена к турбине. При столкновении направленное движение пара в струе переходит в направленное движение турбины с лопаткой (см. рис. 8).

Рис. 8. Принцип работы паровой турбины

Описанное устройство называется паровой турбиной.

Вне зависимости от способа есть один основной принцип: газ расширяется и выполняет механическую работу. Устройства, в которых тепловая энергия газа преобразуется в механическую энергию движения, называются тепловыми двигателями.


Может ли в тепловом двигателе быть использован не газ, а жидкость или твердое тело?

В тепловых двигателях используют газ, поскольку его объем может сильно изменяться, что сопровождается направленным движением. Жидкости и твердые тела тоже при нагревании немного расширяются. Но это изменение объема столь незначительно, что в тепловых двигателях его использовать нельзя.

Тем не менее это незначительное изменение объема все же можно использовать для преобразования в механическую энергию движения. Самый простой пример – это градусник. Тело нагревает ртуть, она расширяется и поднимается до уровня, который проградуирован температурой тела. Произведенная ртутью работа очень мала, поэтому в качестве двигателя такую модель не используют.

Другой пример – биметаллическая пластина.

Это пластина, состоящая из двух спаянных кусков различных металлов. При нагревании один металл расширяется сильнее, чем другой. Из-за этого пластина изгибается.

Тепловая энергия, полученная пластиной, переходит в механическую энергию движения пластины. Пластиной работа будет очень незначительной, поэтому в качестве двигателей их не используют. Функция биметаллической пластины информационная, а не энергетическая. Деформированное состояние пластины означает, что достигнута такая-то температура. Это используют в утюгах: при достижении заданной температуры деформированная пластина размыкает электрическую цепь и нагревание утюга прекращается. Кроме электрических цепей, иногда такие элементы используются в часах и термометрах.


Основные части теплового двигателя (на примере двигателя внешнего сгорания):

  • нагретый газ, который расширяется и выполняет работу – рабочее тело;
  • чтобы этот газ нагреть, ему нужно передать некоторое количество теплоты. Тело, которое передает эту теплоту, называют нагревателем. В двигателе внешнего сгорания нагревателем выступает сгоревшее топливо, оно передает тепло рабочему телу. В двигателе внутреннего сгорания рабочий газ образуется в результате сгорания, но в целом результат тот же: топливо сгорело – получили нагретый газ, который дальше расширяется;
  • холодильник – приводит рабочее тело в исходное состояние. Чтобы понизить свою температуру, рабочее тело должно отдать некоторое количество теплоты. Поэтому нужно использовать тело, которому газ отдает тепло. В случае двигателя внутреннего сгорания сам газ покидает цилиндр в виде выхлопа – и вместе с нагретым газом система теряет теплоту.

О холодильнике

В тепловом двигателе рабочее тело после нагревания и выполнения работы нужно привести в исходное состояние, а для этого – охладить. Тело, которому рабочее тело отдает тепло, назвали холодильником.

Как работает холодильник? Когда тело остывает, оно не получает холод, а отдает теплоту. И в холодильнике так же: теплота «забирается» изнутри холодильника. Она отдается наружу холодильника, окружающей среде – вы знаете о горячей детали сзади.

Нарушается закономерность: теплота передается от менее нагретых тел к более нагретым. Самопроизвольно теплота в таком направлении передаваться не может, поэтому выполняется работа.

Самые распространенные холодильники – компрессионные (компрессия – сжатие газа). Основные их части – это испаритель и конденсатор, соединенные вентилем, компрессор, и внутри этого всего циркулирует охлаждающее рабочее тело (хладагент). Если не вдаваться в подробности, поглощение теплоты происходит при испарении хладагента в испарителе, а теплоотдача – при его конденсации в конденсаторе. Компрессор создает разность давлений, и благодаря узкому вентилю она поддерживается. Температура кипения и конденсации веществ зависит от давления, и получается, что при высоком давлении в конденсаторе хладагент конденсируется при высокой температуре, а в испарителе он испаряется при низкой температуре (см. рис. 9).

Рис. 9. Принцип работы компрессионного холодильника

Итак, чтобы это все работало и создавалась разность температур, нужен компрессор, совершается работа по сжатию рабочего тела. С точки зрения сохранения энергии все верно: при работе холодильника на конденсаторе выделяется теплота, равная теплоте, поглощенной внутри холодильника, плюс работе, выполненной компрессором.

Есть холодильники и другого типа, но в любом случае перенос теплоты от менее нагретого тела к более нагретому возможен только при выполнении дополнительной работы. Например, в термоэлектрических холодильниках ток протекает через контакт двух разных проводников, при этом один из них нагревается, а второй охлаждается. Перенос теплоты осуществляется электронами, но, чтобы они двигались, нужно подключить источник питания, и будет совершена работа по переносу электронов.


Используя эту модель, можно описать принцип работы любого теплового двигателя.

1. Рабочее тело получает от нагревателя некоторое количество теплоты . Эта теплота передается рабочему телу – .

2. Рабочее тело выполняет работу А.

3. Рабочее тело отдает холодильнику количество теплоты , возвращаясь в начальное состояние.

Далее повторяются пункты 1–3. Такие повторяющиеся действия называют циклом. То есть пункты 1–3 описывают цикл работы теплового двигателя.

Если считать систему «нагреватель – рабочее тело – холодильник» замкнутой, в ней выполняется закон сохранения энергии: теплота, полученная от нагревателя  идет на выполнение работы , а оставшаяся энергия передается холодильнику . Это можно записать как:


Внутренняя энергия рабочего тела

Проследим за изменением внутренней энергии рабочего тела в течение цикла. Пусть в начале цикла рабочее тело имеет внутреннюю энергию U. Оно получает от нагревателя тепло , внутренняя энергия увеличивается (). При выполнении работы внутренняя энергия уменьшается (). Затем рабочее тело отдает холодильнику теплоту , внутренняя энергия еще уменьшается (). При этом рабочее тело возвращается в исходное состояние с внутренней энергией U. То есть:

Значит:


КПД

Тепловой двигатель – это устройство для преобразования тепловой энергии в механическую энергию движения (см. рис. 10).

Рис. 10. Паровая машина

Важно не просто получить механическую энергию, желательно еще получить ее с наименьшими затратами топлива. Если один автомобиль перевозит груз, израсходовав 5 л бензина, а второй перевозит этот же груз с такой же скоростью, но расходует 20 л бензина, то второй автомобиль явно менее эффективен. А если один везет тонну груза со скоростью 120 км/ч с расходом бензина 9 л/100 км, а второй везет полторы тонны груза со скоростью 100 км/ч с расходом 11 л/100 км?

К эффективности всего автомобиля относится и эффективность двигателя, и полнота сгорания топлива, и сопротивление воздуха в зависимости от формы кузова.

Вернемся к модели теплового двигателя с рабочим телом, нагревателем и холодильником.

И здесь главное, что не вся энергия, которая сообщается рабочему телу, преобразуется в механическую. Часть энергии тело отдает холодильнику и уже не используется. Эта часть и определяет эффективность двигателя.

Для оценки эффективности работы любого устройства по преобразованию энергии вводят понятие КПД – коэффициент полезного действия, обычно его обозначают буквой η («эта»).


Понятие КПД

Понятие КПД можно применить для любого устройства, в котором преобразуется энергия. Для газовой плиты также можно найти КПД. Потраченная энергия – это количество теплоты, полученное при сгорании газа (). Какую полезную работу совершает плита? Мы что-то греем на ней, например воду. Тогда полезной будет энергия, потраченная на нагревание воды (). КПД равно отношению полезной энергии к затраченной:


Какая энергия тратится на работу теплового двигателя? Рабочее тело нагревают, то есть затраченная энергия – это . А что полезного мы получаем? Задача теплового двигателя – получить механическую энергию. То есть полезным будет выполненная рабочим телом работа A.

Их отношение покажет, какую часть затраченной энергии составляет полезная:

Или, если выразить КПД в процентах:

Иногда проще посчитать не совершенную механическую работу, а теплоту, переданную холодильнику. Тогда формулу можно переписать в другом виде, если выразить  из полученного ранее соотношения:


Формула через температуры

Помимо этой формулы, можно оценить КПД теплового двигателя еще одним способом.

Можно рассмотреть модель теплового двигателя, в котором все процессы являются обратимыми. Если, например, взять нагретый сжатый газ под поршнем и отпустить поршень, газ расширится, поршень поднимется, температура и давление газа уменьшатся. Этот процесс необратим: если специально не сжать газ, он сам не вернется в исходное, сжатое и нагретое, состояние. Если же медленно нагревать газ, так, чтобы его температура оставалась постоянной и равной температуре нагревателя и при этом чтобы газ совершал работу, то этот процесс можно считать обратимым. Это модель: нельзя передавать теплоту газу от нагревателя, если их температуры равны. Все равно для теплопередачи температура нагревателя должна быть хоть немного больше.

Если рассмотреть модель теплового двигателя, в основе которого лежат условно обратимые процессы, можно получить формулу для расчета КПД через температуры холодильника и нагревателя, запишем ее без вывода:

Этой формулой пользоваться намного удобнее: проще измерить температуры холодильника и нагревателя, чем узнать, какое количество теплоты рабочее тело передало холодильнику и получило от нагревателя.


Задача

Определите, на какую высоту можно поднять тело массой 2 кг с помощью работы, выполненной тепловым двигателем за 1 цикл работы. КПД двигателя 40%, за цикл работы двигатель отдает холодильнику 500 Дж теплоты.

Физическая часть решения задачи

При поднятии тела меняется его потенциальная энергия. То есть работа двигателя пойдет на изменение потенциальной энергии тела:

Формула для потенциальной энергии тела, поднятого над поверхностью Земли:

Изменение потенциальной энергии:

В условии задан КПД теплового двигателя, запишем формулу:

В условии также задано количество теплоты, передаваемое холодильнику. ,  и  связаны законом сохранения энергии:

Математическая часть решения задачи (см. рис. 11)

Рис. 11. Решение задачи

Решив полученную систему уравнений, получаем ответ .


Математическая часть решения задачи

Из последнего выражения выразим  и подставим в третье:

Выразим :

Подставим это и второе выражение в первое уравнение:

Выразим и найдем :


Рамки применения модели теплового двигателя

Тепловой двигатель – это устройство, которое превращает тепловую энергию в механическую. Разберем работу ветрового двигателя. В нем энергия ветра переходит в энергию механического вращения.

Откуда берется ветер? Вот один из вариантов: Солнце нагрело воздух в одном месте, там давление увеличилось, воздух начал двигаться в зону меньшего давления – вот и возник ветер. Тепловая энергия нагретого воздуха создает ветер, а энергия ветрового потока переходит в механическую энергию вращения в ветровом двигателе (см. рис. 12).

Рис. 12. Принцип возникновения ветра в природе

Можно ли считать тогда ветровой двигатель тепловым двигателем? По сути, тепловая энергия перешла в механическую.

Тепловой двигатель – это изобретение, в основе которого лежит модель, которую мы ввели для удобства описания физических процессов. Возможно применить модель теплового двигателя к ветровому: найти там рабочее тело, нагреватель, холодильник. Как посчитать  нагревателя, если нагреватель – Солнце, которое в данный момент греет воздух на всей солнечной стороне планеты? Мы не сможем выделить замкнутую систему, определить, какая часть из солнечной энергии в данном случае для нас полезная, поэтому здесь нужно будет ввести другую модель.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8. / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «открытыйурок.рф» (Источник)
  2. Интернет-портал «edufuture.biz» (Источник)

Домашнее задание

  1. Может ли КПД двигателя составлять 100%? Свой ответ обоснуйте.
  2. Какое количество теплоты потребуется, чтобы расплавить 500 г льда, взятого при температуре –10 ºС, полученную воду довести до кипения и испарить 100 г воды?
  3. В организме человека насчитывается около 600 мышц. Если бы все мышцы человека напряглись, они вызвали бы усилие, равное приблизительно 25 т. Считается, что при нормальных условиях работы человек может развивать мощность 70–80 Вт, однако возможна моментальная отдача энергии в таких видах спорта, как толкание ядра или прыжки в высоту. Наблюдения показали, что при прыжках в высоту с одновременным отталкиванием обеими ногами некоторые мужчины развивают в течение 0,1 с среднюю мощность около 3700 Вт, а женщины – 2600 Вт.
  4. КПД мышц человека равен 20%. Что это значит? Какую часть энергии мышцы тратят впустую?

Понравилась статья? Поделить с друзьями:
  • Как найти мою любимую песню
  • Как найти цель для похудения
  • Как составить викторину по сказкам пушкина
  • Как найти мужчину народные приметы
  • Как экспериментально найти эдс конденсатора