Как найти мощность в термодинамике

О тепловой энергии простым языком!

Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 117 комментариев

Передача тепловой энергии от огня чайникуЧеловечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…

…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов.  Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

Зависимость температуры от количества подведенной теплоты

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q=m*c*(Т2Т1)

Здесь и далее:

mмасса вещества в кг

судельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q=m*λ

λудельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q=m*r

rудельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q=m*q

qудельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q=t*I*U=t*R*I^2=(t/R)*U^2

tвремя в с

Iдействующее значение тока в А

Uдействующее значение напряжения в В

Rсопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N=Q/t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге». 

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем  для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления  льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7=20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23=3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8=60,0

7. Начальную температуру всех веществ T1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку H10: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Программа расчета тепловой энергии и тепловой мощности в Excel

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561

для плавления льда в ячейке F12: =F7*F6/1000= 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508

для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000= 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900

В ячейках D14, E14, F14, G14, H14,  и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60)=21,083

для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686

для плавления льда в ячейке F16: =F12/(F8*60)= 2,686

для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686

для нагрева воздуха в ячейке H16: =H12/(H8*60)= 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, H18,  и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост и понятен.

Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Тепловая мощность обычно обозначается в расчетах букой Q. Физический смысл тепловой мощности  это  количества тепла переданного в единицу времени (в системе СИ  Дж/с=Вт).

Общие сведения.

Классическая формула определения мощности:

N=A/t

Для тепловых процессов выглядит, как:

Q=Qt/t

где Qt— количество теплоты (энергии) переданной, t — время передачи теплоты (энергии).

Широко используется в теплотехнических расчетах.

Единицы измерения.

Перевод единиц измерения тепловой мощности.

Калькулятор тепловой мощности. Перевод единиц измерения тепловой мощности (Вт, кВт, МВт, кал/час, ккал/час, Мкал/час, Гкал/час и т.д.)

Введите тепловую мощность (QQ)

Результат перевода единиц измерения тепловой мощности (QQ)

Результаты работы калькулятора тепловой мощности при переводе в другие единицы измерения тепловой мощности:

Примеры результатов работы калькулятора тепловой мощности:

Поделится ссылкой на расчет:

Единицы измерения.

  • Вт— единица измерения в СИ. Обозначение в России: Вт; международное: W. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации;
  • кВт— Обозначение в России: кВт; международное: kW. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации;
  • МВт— Обозначение в России: МВТ; международное: MW. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации;
  • калория/час— внесистемные единицы измерения. Обозначение в России: кал/час.
  • ккалория/час— внесистемные единицы измерения. Обозначение в России: ккал/час.    Данная единица измерения широко встречается справочной литературе;
  • Мкалория/час— внесистемные единицы измерения. Обозначение в России: Мкал/час.    Данная единица измерения широко встречается справочной литературе;
  • Гкалория/час— внесистемные единицы измерения. Обозначение в России: Гкал/час.   Данная единица измерения широко встречается справочной литературе.

Перевод единиц измерения тепловой мощности (в табличном виде).

Переводимые единицы Перевод энергии в тепловой мощности:
Вт кВт МВт кал/час ккал/час Мкал/час Гкал/час
Вт 1 10-3 10-6 859,845227 0,859845 0,85984*103 0,85984*106
кВт 103 1 103 0,859845227 0,85984*103 0,85984*106 0,85984*109
МВт 106 103 1 0,85984*103 0,85984*106 0,85984*109 0,85984*1012
кал/час 0,001163 0,001163*103 0,00116*10-6 1 10-3 10-6 10-9
ккал/час 1,163 0,001163 0,001163*103 103 1 10-3 10-6
Мкал/час 1163 1,163 0,001163 106 103 1 10-3
Гкал/час 1163000 1163 1,163 109 106 103 1

Калькулятор тепловой мощности.

Калькулятор тепловой мощности (классическая формула).

РАСЧЕТ

Результат расчета тепловой мощности процесса (QN)

Формула расчета тепловой мощности процесса:

Скачать результат расчета тепловой мощности процесса:


Поделится ссылкой на расчет тепловой мощности:

Калькулятор тепловой мощности необходимой для нагрева вещества (материала). Общий вид.

РАСЧЕТ

Результат расчета тепловой мощности процесса (Qv1)

Формула расчета тепловой мощности процесса:

Скачать результат расчета тепловой мощности процесса:


Поделится ссылкой на расчет тепловой мощности:

В калькулятор по умолчанию введены данные для расчета тепловой мощности котла (водонагревателя) необходимой для нагрева 1 кг воды в течении 1-го часа с 5 ºС до 60 ºС.

Поделиться ссылкой:

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Универсальная газовая постоянная

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Масса

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Уравнение МКТ

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Формулы термодинамики

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Уравнение МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Первое начало термодинамики

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изотермический процесс

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изохорный процесс

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Изобарный процесс

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Адиабатный процесс

Внутренняя энергия одноатомного и двухатомного идеального газа

Внутренняя энергия

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Теплоемкость газа

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Молярная теплоемкость

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

КПД

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

[2, Valero-Capilla, 2005, 3, FEAD and Industry, 2005, 97, Kreith, 1997, 154, Columbia_Encyclopedia, , 227, TWG]

Будучи одним из базовых понятий физики, энергия с трудом поддается формальному определению. Наиболее корректное определение энергии может быть дано в математических терминах, в виде формул, связывающих энергию с другими физическими величинами. В повседневном словоупотреблении под энергией понимается способность к выполнению определенной работы (или к тому, чтобы произвести какие-либо изменения). Термодинамика представляет собой раздел физики, посвященный изучению энергии и законов ее преобразования, важнейшие из которых известны как законы термодинамики. Некоторое знакомство с принципами термодинамики необходимо для понимания проблем, связанных с использованием энергии в производстве, и вопросов энергоэффективности. Целью настоящего раздела является простое введение в значимые с этой точки зрения концепции термодинамики с минимальным использованием математики. Как следствие, изложение в настоящем разделе не претендует на научную строгость; более корректное введение приведено в приложении 7.1 [269, Valero, 2007]. Более подробное изложение термодинамики содержится в стандартных учебниках (см., например, ссылки, приведенные в приложении 7.1.4.1).

1.2.1. Энергия, теплота, мощность и работа

Энергия является характеристикой той или иной «системы», а изменение энергии представляет собой меру изменения состояния системы. В системе СИ единицей измерения энергии является джоуль. Энергия может принимать различные формы, связанные с действием тех или иных физических сил и работой, совершаемой ими. Как правило, формы энергии получают название от соответствующих сил или физических явлений. Особенно значимыми для промышленного производства являются следующие шесть основных форм энергии:

(i)Химическая энергия связана с действием сил, удерживающих атомы или ионы в составе молекул, и может рассматриваться как энергия химических связей. Для промышленности особенно значима химическая энергия углеродосодержащего топлива, которая высвобождается в процессе химических реакций (как правило, реакций окисления, которые протекают в форме горения и сопровождаются выделением диоксида углерода). Выделяющаяся при этом энергия обычно преобразуется в такие формы, более удобные для практического применения, как механическая энергия (например, в двигателе внутреннего сгорания) или тепловая энергия (например, при сжигании топлива с целью непосредственного подведения теплоты к технологическому процессу).

(ii)Механическая энергия связана с движением (например, движением поршня при расширении продуктов сгорания в ДВС) и может непосредственно использоваться для приведения в действие машин и механизмов, например, автомобилей или станков. Механическая энергия, в частности, широко используется для приведения в действие генераторов, преобразующих ее в электрическую энергию. Разновидностями механической энергии являются, в частности, энергия волн и энергия приливов.

(iii)Тепловая энергия связана с хаотическим движением (микроскопических) частиц материи. Она может рассматриваться как внутренняя энергия тела (точнее, одна из составляющих внутренней энергии). В качестве синонима «тепловой энергии» часто употребляется понятие «теплота». Следует, однако, заметить, что в строгом смысле количество теплоты как физическая величина представляет собой меру передачи тепловой энергии от одной системы (тела) к другой. Тепловая энергия может выделяться в ходе химических реакций (например, горения), ядерных реакций, вследствие электрического сопротивления или рассеяния (диссипации) механической энергии, например, в результате трения.

(iv)Электрическая энергия отражает способность электрических сил к совершению работы при изменении относительного положения электрических зарядов (например, при протекании электрического тока в цепи). Эта форма энергии тесно связана с магнитной энергией (магнитные силы возникают, в частности, при движении электрических зарядов); вместе они могут

9

рассматриваться как единая энергия электромагнитного поля. Световая энергия является одним из видов энергии электромагнитного поля (электромагнитного излучения).

(v)Гравитационная энергия представляет собой способность гравитационных сил к совершению работы при изменении относительного положения материальных тел. Хотя эта форма энергии может применяться в промышленности (например, при спуске материалов по желобу), ее значение для повышения энергоэффективности не очень велико и сводится к корректному учету этой формы пи некоторых вычислениях. Как правило, лифты и насосы, предназначенные для подъема твердых тел и жидкостей, приводятся в действие двигателями, использующими электрическую энергию.

(vi)Ядерная энергия связана с силами, действующими в атомном ядре, и может выделяться при делении или слиянии ядер. Электростанции, использующие атомную энергию, не подпадают под действие КПКЗ, и вопросы, связанные с ее использованием, не рассматриваются в настоящем документе. Однако электроэнергия, производимая на АЭС, образует часть европейского энергетического баланса (см. Приложение 7.16).

Потенциальная и кинетическая энергия

Многие формы энергии, перечисленные выше, могут рассматриваться как разновидности потенциальной энергии, т.е. энергии, «запасенной» тем или иным образом, например, в форме химических связей стабильного вещества или энергии ядра радиоактивного вещества. Гравитационная потенциальная энергия (к которой чаще всего применяется это понятие), «запасается» в форме относительного положения материальных тел (например, при накоплении воды в водохранилище). Кинетическая энергия представляет собой энергию движения материальных тел. Классическим примером взаимосвязи между кинетической и потенциальной энергией является маятник, потенциальная энергия которого достигает максимума в верхней точке его траектории, а кинетическая – в нижней. Как видно из этого простого примера, энергия может переходить из одной формы в другую. Большинство фундаментальных взаимодействий, имеющих место в природе, связаны с той или иной формой потенциальной энергии, хотя применение этой классификации к некоторым формам энергии (например, к световой) затруднительно.

Количество теплоты и работа

Количество теплоты (Q) может быть определено как мера энергии, переданной от одного тела к другому вследствие разницы температур между ними. В результате какого-либо процесса энергия может быть передана системе либо посредством совершения работы, либо за счет передачи теплоты. Теплопередача может происходить только в направлении уменьшения температуры. Теплота может передаваться одним из трех способов:

(i)теплопроводность представляет собой передачу энергии между структурными частицами вещества в процессе их теплового движения. Теплопроводность может иметь место в твердых, жидких и газообразных веществах;

(ii)конвекция представляет собой перенос теплоты потоками движущегося жидкого или газообразного вещества. Теплота, перенесенная за счет конвекции, может затем передаваться твердым телам, температура которых отличается от температуры теплоносителя (жидкости или газа);

(iii)тепловое излучение представляет собой электромагнитное изучение, испускаемое веществом за счет его внутренней энергии (теплового движения атомов и молекул). Перенос энергии электромагнитными волнами не требует каких-либо промежуточных сред и может происходить даже в вакууме.

Работа (W) определяется в термодинамике как количество энергии, переданной или полученной системой за счет изменения ее внешних параметров. Исторически эквивалентом механической работы, представляющей собой меру действия силы на систему, служила энергия, необходимая для подъема груза определенной массы на определенную высоту.

10

Энергия и мощность

В повседневном употреблении в английском языке понятия «энергия» (‘energy’) и «мощность» (‘power’) часто смешиваются и используются как взаимозаменяемые. Однако в науке и инженерном деле значения этих понятий различаются. Мощность представляет собой изменение энергии в единицу времени (скорость изменения энергии) или работу, совершаемую в единицу времени. В системе СИ единицей мощности (и лучистого потока) является ватт (Вт), а единицей энергии, работы и количества теплоты является джоуль (Дж). Один ватт равен джоулю в секунду.

Поэтому некорректно говорить, например, о мощности, потребленной или переданной за определенный период времени – за определенный период времени может быть потреблено или передано некоторое количество энергии.

С точки зрения большинства практических применений, количество энергии, соответствующее одному джоулю, является очень малым. Поэтому при обсуждении промышленного производства энергии, а также потребления энергии оборудованием, системами и установками (и, как следствие, вопросов энергоэффективности в промышленности) обычно используются кратные единицы – килоджоуль (кДж), мегаджоуль (МДж) и гигаджоуль (ГДж).

Основной единицей измерения производимой, потребляемой или передаваемой мощности является ватт. Однако, как и в случае с энергией, при обсуждении практических вопросов чаще используются кратные единицы мощности – киловатт (кВ), мегаватт (МВт) и гигаватт (ГВт)10.

Некорректными являются выражения вида «мощность устройства составляет 100 ватт в час», поскольку ватт как единица мощности уже «содержит в себе» отнесение работы или энергии к периоду времени. Поэтому ватт и другие единицы мощности не должны сопровождаться отнесением к единице времени («в секунду», «в час» и т.п.), за исключением случаев, когда речь идет о приросте или снижении мощности с течением времени (подобно тому, как ускорение движения отражает «скорость» прироста или снижения скорости). В качестве внесистемной единицы энергии используется также ватт-час. В силу описанных выше причин на практике энергетическими компаниями и потребителями энергии чаще используются кратные единицы – киловатт-час (кВт•ч), мегаватт-час (МВт•ч) и гигаватт-час (ГВт•ч)11. Один киловатт-час равен количеству энергии, используемому за один час при мощности один киловатт, и составляет 3,6 МДж. Использование внесистемной единицы, киловатт-часа, вместо мегаджоуля обусловлено, по всей видимости, историческими причинами и характерно для определенных отраслей и применений12.

Другие единицы, используемые на практике, включают мегаватт электрической мощности (МВтэ) и мегаватт тепловой мощности (МВтт). Это внесистемные единицы, применение которых не является необходимым с теоретической точки зрения (Международное бюро мер и весов, МБМВ, считает их использование некорректным). Однако они применяются на практике, в особенности на предприятиях где производятся и/или используются оба вида энергии, например, на электростанциях или химических производствах, и важно избежать смешения этих видов при расчетах или в отчетности.

10Мощность, потребляемая процессором Pentium 4, составляет около 82 Вт. Человек, занятый тяжелым физическим трудом, развивает мощность около 500 Вт. Характерная механическая мощность автомобиля составляет 40–200 кВт. Современный дизель-электрический локомотив развивает механическую мощность около 3 МВт.

11Производство энергии на крупных электростанциях и энергопотребление крупных предприятий часто выражается в гигаватт-часах (ГВт·ч). Эта единица, равная миллиону киловатт-часов, используется потому, что мегаватт-час является слишком малой единицей для этих целей.

12Один киловатт-час эквивалентен количеству энергии, производимому или потребляемому за один час при мощности один киловатт.

1кВт·ч = 1000 Вт · 3600 с = 3600000 ватт-с = 3600000 Дж = 3,6 МДж Киловатт-час (кВт·ч) является полезной единицей для выражения энергопотребления домохозяйств и

малых предприятий. Типичное домохозяйство потребляет несколько сот киловатт-часов в месяц. Мегаваттчас (МВт·ч), равный 1000 кВт·ч, используется для выражения энергопотребления промышленных предприятий и производства энергии на электростанциях.

11

Соседние файлы в папке диск УМК ЭнЭф

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти изменение объема эластичности
  • Как найти центр тяжести в технической механике
  • Как найти стелс вирус
  • Нет доступа к сети неопознанная сеть windows 7 как исправить
  • Неверно выбит чек коррекции по онлайн кассе как исправить