Как найти мощность ветви


В
ветви выделяется активная мощность
PA
= 0,557 Bт.

8.5 Расчет оптимального сопротивления ветви для получения pAmax. Расчет pAmax.

В соответствии с
рис. 7.4 и указаниями подраздела 7.3
определяем ĖЭГ
и ZЭГ
по схеме рис. 8.9

Определим значение
Ėэг;

(по второму закону
Кирхгофа)

В

В

В

Определим ZЭГ
как входное
сопротивление ZБВ,
для чего изобразим рабочую модель (рис.
8.10) с учетом того, что идеальный источник
тока имеет бесконечно большое
сопротивление, а идеальный источник
напряжения нулевое сопротивление при
«обнуленных» источниках.

Ом

Для получения
PAmax
ветвь R2C
надо заменить сопротивлением
ŻЭГ
=9–j5Ом,
(рис. 8.11).

A

Вт

(см. п. 8.4).

П р и м е ч а н и е:
т.к. ĖЭГ
и ZЭГ
уже вычислены, логично вычислить значение
тока İ2
в соответствии с теоремой об эквивалентном
генераторе (рис. 8.12) и сравнить с
результатом по МКТ и МУП.

А

8.6 Расчет входного сопротивления цепи на крайних частотах

Рассчитать входное
сопротивление цепи по отношению к
зажимам подключения источника э.д.с.
e(t)
на крайних
частотах диапазона 
= 0 и 
(рис. 8.13).

ZВХ(0)
=
R1
=
10
Ом

ZВХ(∞)
=
R1
+
R2
+ RГ
=
10
+
2
+
4
=
14 Ом.

9. Примеры контрольных вопросов

Литература с
указанием страниц, необходимая для
ответов на контрольные вопросы, приведена
в разделе 6. Смысловое деление материала
в контрольных вопросах такое же, как
при изложении содержания теоретической
части (раздел 6).

О п р е д е л е н и
е, п а р а м е т р ы, с в о й с т в а ЛЭ и
ЛЦ, о с н о в н ы е з а к о н ы и ММЦ л
и н е й н ы х ц е п е й :

1) дайте определение
линейного элемента и линейной цепи;
укажите их свойства;

2) назовите режимы
работы электрических цепей, дайте
определение, поясните условия их
существования;

3) запишите
компонентные уравнения и выражение
мгновенной мощности для линейных L-,
C-,
R-элементов;

4) запишите уравнения
баланса токов, баланса напряжений и
баланса мощностей через мгновенные
значения токов и напряжений и поясните:

а) в каком
режиме, при каком характере воздействия,
для какого типа цепей они справедливы,

б) каким образом
каждое из балансных уравнений участвует
в анализе цепей;

5) дайте понятие
математической модели цепи и укажите
ее возможные варианты;

6) запишите в общем
виде дифференциальное уравнение ЛЦ (с
сосредоточенными параметрами),
охарактеризуйте его;

7) сформулируйте
принцип наложения, дайте графическую
иллюстрацию;

8) запишите выражение
для гармонического колебания, укажите
его параметры, покажите на основе
компонентных уравнений линейных
элементов замечательное свойство
гармонических колебаний сохранять свою
форму;

9) изобразите три
гармонических колебания с амплитудой
10 В, частотой 1 кГц и начальными фазами
0о,
60о,
-60о;

10) укажите, к какому
значению стремится косинусоидального
колебания с параметрами U
= 20 B,
частота 10 кГц, φ0=00
увеличении
периода колебания (Т);

11) дайте определение
идеальных и реальных источников
(генераторов) тока и напряжения,
независимых и зависимых источников
сигнала;

12) запишите выражения
всех токов и напряжений на элементах
при действии п о с т о я н н ы х э.д.с.
(e(t)
=
E),
если параметры схем и значения Е
заданы (рис. 9.1);

13) запишите ММЦ по
МТВ для схем рис. 9.1 при действии источников
e(t):

а) произвольной
формы,

б) гармонического
характера одинаковой частоты.

.

М е т о д к о м п л
е к с н ы х а м п л и т у д :

14) изложите общие
принципы символических методов, алгоритм
работы, преимущества символических
методов;

15) сформулируйте,
какие изменения и почему претерпевает
ММЦ в виде дифференциального уравнения
при использовании метода комплексных
амплитуд;

16) изложите суть
перехода от гармонической функции
времени к комплексному числу, т.е. цепочку
«гармоническое колебание – его
представление через проекцию вращающегося
вектора – представление в виде точки
на комплексной плоскости», поясните
взаимную неподвижность векторов,
отображающих любые токи и напряжения
в цепи, на которую действует источник
гармонического колебания;

17)
A,
запишите İ,
İm,
,
m
и правильно их назовите, укажите, как
связаны I
и Im;

18) поясните, что
такое оператор вращения, когда и почему
его можно опустить; запишите его по
данным предыдущего пункта;

19) запишите i(t),
u(t),
İm,
Ům,
если

а) I
= 50 А, частота
104
Гц, начальная фаза 75о,

б) Um
= 70 B,
частота 105
рад/c,
начальная фаза /2,

в)
А,
частота 500 Гц;

20) сформулируйте,
что такое комплексное сопротивление
участка цепи, закон Ома в комплексной
форме, покажите общность вида компонентных
уравнений для R-,
L-,
C-элементов
в комплексной форме;

21) индуктивность
L=10
мГн находится под гармоническим
напряжением с параметрами: амплитуда
10 В, частота 1 кГц, начальная фаза 0о;
вычислите сопротивление индуктивности,
ток через индуктивность и фазовый сдвиг
между током и напряжением двумя способами;

а) методом
комплексных амплитуд,

б) на основе
компонентных соотношений для uL,
iL;

результаты
сравните и поясните;

22) через емкость
С
= 0,1 мкФ протекает косинусоидальный ток
с параметрами: амплитуда 10 мА, частота
104
рад/с, начальная фаза 0о;
вычислите сопротивление емкости, падение
напряжения и фазовый сдвиг между током
и напряжением двумя способами:

а) методом
комплексных амплитуд,

б) на основе
компонентных уравнений для uC,
iC;

результаты сравните
и поясните;

23) запишите законы
Кирхгофа в комплексной форме и укажите,
при каких условиях справедлива такая
запись;

24) три источника
гармонических колебаний одинаковой
частоты, действуя по отдельности, создают
на линейном сопротивлении R
следующие напряжения:

В,

В,

В,

определите падение
напряжения от одновременного действия
сразу трех источников, изобразите схему
подключения источников к сопротивлению
R;

25) с узлом схемы
связаны три тока (рис. 9.2), используя МКА,
вичислите ток i3(t),
если

,

;

26) дайте определение
средней мощности РСР,
получите выражение РСР,
укажите значение РСР
для индуктивности, емкости и сопротивления,
поясните, почему средняя мощность
называется активной;

27) запишите все
возможные выражения для комплексной
мощности в двухполюснике Z=R+jX,
если гармонический ток
вызывает на нем падение напряжения;

28) запишите баланс
мощностей в комплексной форме;

29) изобразите
треугольники сопротивлений, проводимостей,
мощностей, обозначьте активные и
реактивные составляющие, запишите
типовые соотношения между модулем,
аргументом, активной и реактивной
составляющими в любом из перечисленных
треугольников;

30) вычислите
значения

каждого элемента схемы рисунка 9.3, если
сопротивления указаны в омах,

A,


A,


B.

Э к в и в а л е н т
н ы е п р е о б р а з о в а н и я :

31) сформулируйте
условие эквивалентности двух участков
цепи;

32) докажите, что
полное сопротивление цепи, состоящей
из n
последовательно соединенных сопротивлений
Zi,
определяется
как

;

33) докажите, что
полная проводимость двухполюсника из
n
параллельно соединенных ветвей с
проводимостями Yi
определяется
как

;

34) найдите полную
емкость двухполюсника, состоящего из
последовательно соединенных четырех
разных емкостей, четырех одинаковых
емкостей, двух разных емкостей, двух
одинаковых емкостей;

35) сформулируйте
правило для определения сопротивления
двухполюсника, содержащего четыре
параллельные ветви с разными сопротивлениями
Z,
выделите частный случай параллельного
соединения двух равных сопротивления,
выделите частный случай параллельного
соединения k
одинаковых сопротивлений;

36) найдите полную
емкость двухполюсника, состоящего из
параллельно соединенных трех одинаковых
емкостей, трех разных емкостей;

37) аналогичный
вопрос для индуктивности;

38) назовите условия,
лежащие в основе пересчета звезды в
треугольник сопротивлений и наоборот,
сделайте необходимые обозначения на
моделях;

39) поясните, почему
нельзя эквивалентно пересчитать источник
тока в источник напряжения;

40) пересчитайте
генератор напряжения в генератор тока
так, чтобы число узлов не увеличилось
(рис. 9.4);

41) вычислите входное
(эквивалентное) сопротивление для
следующих двухполюсников:

42) на моделях
рис. 9.6 сопротивления отдельных участков
указаны в омах, вычислите входное
сопротивление двухполюсников;

43) поясните
смысловое значение чисел, указанных
для индуктивностей и емкостей на рис.
9.5 и рис. 9.6;

44) вычислите входные
сопротивления двухполюсников рис. 9.5,
9.6 и рис. 9.10 на крайних частотах диапазона

= 0 и ;

45) участок цепи на
частоте 103
рад/с имеет сопротивление Z=2ej60º
Ом, изобразите
последовательную модель замещения для
этого участка, постройте в относительном
масштабе треугольник сопротивлений,
определите эквивалентные параметры
этого участка;

46) по данным
предыдущего вопроса рассчитайте
параллельную модель замещения участка,
постройте с соблюдением относительного
масштаба треугольник проводимостей,
рассчитайте эквивалентные параметры
для параллельной схемы замещения;

47) постройте
векторную диаграмму токов и напряжений
для параллельной модели участка цепи
с сопротивлением Z
= 0,25ej45º
Ом, если входной ток этого участка
мА;

48) обозначив
встречное включение « 
», согласное « 
» изобразите последовательное соединение
двух связанных индуктивностей L1
и L2,
запишите выражение для расчета LЭКВ;

49) тот же вопрос
для параллельного соединения.

М е т о д ы р а с ч
е т а э л е к т р и ч е с к и х ц е п е й :

50) запишите типовую
ММЦ по методу контурных токов с
необходимыми пояснениями обозначений
и знаков

а) в виде
системы линейных уравнений,

б) в
матричной форме;

51) тот же вопрос
по методу узловых потенциалов;

52) сформулируйте
закон, лежащий в основе каждого уравнения,
составленного

а) по
методу контурных токов,

б) по
методу узловых потенциалов;

53) дайте определение
независимого контура, покажите на
конкретном примере, как практически в
сложной схеме определить число независимых
контуров;

54) поясните, почему
в методе узловых потенциалов можно
сказать «узловой потенциал» и «узловое
напряжение», ведь потенциал и напряжение
— это разные понятия;

55) для контура,
указанного преподавателем на схеме
рис. 2.1, составьте уравнение по второму
закону Кирхгофа, а затем преобразуйте
его к типовой форме, поясните получившееся
правило знаков и условия, когда оно
выполняется;

56) для узла,
указанного преподавателем на схеме
рис. 2.1, составьте уравнение по первому
закону Кирхгофа и преобразуйте его к
типовой форме, поясните получившееся
правило знаков и условия, когда оно
выполняется;

57) поясните, почему
в схеме с n
узлами составляется только (n-1)
уравнение по первому закону Кирхгофа;

58) на рис. 9.7
приведена топология (структура) фрагмента
цепи с указанием направления токов,
выразите токи ветвей через контурные,
определите, с какими знаками взаимные
сопротивления войдут в систему уравнений
по МКТ и почему;

59) выразите токи
ветвей (рис. 9.8) через узловые потенциалы;

60) являются ли
вспомогательные расчетные величины
«контурные токи» и «узловые потенциалы»
физически существующими, можно ли их
измерить; каков смысл использования их
для расчета?

61) если рассчитывается
ток одной ветви, выгоднее опорным выбрать
узел, соединенный с этой ветвью, поясните,
почему; как следует выбирать опорный
узел в общем случае, когда рассчитываются
все токи?

62) изложите порядок
действий при расчете методом контурных
токов при использовании типовой системы;

63) то же при расчете
методом узловых напряжений;

64) изобразите схему
цепи по заданной типовой ММЦ

(R1+R2)İ11
R2İ22
= Ė
1

R2İ11
+ (R2+jL1
+
)İ22
jLİ33
= Ė
2

jL1İ22
+
(R3
+ jL1
+
jL3)İ33
= Ė
2
– Ė
3

65) изобразите схему
цепи по заданной типовой ММЦ

66) изложите алгоритм
получения ММЦ по МУП (МКТ), если в схеме
имеется зависимый источник; поясните
как получить матрицу проводимостей
(сопротивлений), включающую параметры
зависимого источника;

67) в схему между
узлами 3 и 4 (рис. 9.9) включен зависимый
источник тока jк,
управляемый током iЭ

(jK=αiЭ)
или напряжением uЭ
(jK=Suэ)

а) выразите
ток зависимого источника jK
через соответствующие узловые потенциалы,

б) в какие уравнения
системы по МУП и с какими знаками войдет
зависимый источник
jK,

в) каким образом
войдет крутизна зависимого источника
S
в собственные и взаимные проводимости
узлов?

68) зависимый
источник
включен между первым и опорным (нулевым)
узлом, «подтекая» к опорному узлу;
поясните, каким образом (в какие ячейки
и с какими знаками) крутизнаS
войдет в матрицу проводимостей при
расчете по МУП;

69) матрица
проводимостей, поставленная по МУП,
включает крутизну зависимого источника
S
следующим образом: Y22S,
Y32+S,
дайте два правильных варианта ответа
как и между какими узлами на схеме
включен зависимый источник тока и
«протекает» управляющий ток;

70) сформулируйте
теорему об эквивалентном генераторе;
изложите возможные способы определения
ĖЭГ
и
ZЭГ.

71) пусть для схемы
рис. 9.10 с заданными параметрами L,
С,
R
ток через индуктивность на некоторой
частоте f0
источника
гармонического колебания Ė
известен (измерен или рассчитан по
теореме об эквивалентном генераторе);
изложите порядок расчета всех остальных
токов на этой же частоте, введя необходимые
обозначения.

ads

Расчет электрической цепи, рассмотренный в предыдущей статье, можно распространить на цепи, содержащие произвольное число приемников, соединенных параллельно.

1

На рис. 14.14, а параллельно соединены те же элементы цепи, которые были рассмотрены при последовательном соединении (см. рис. 14.7, а). Предположим, что для этой цепи известны напряжение u = Umsinωt. и параметры элементов цепи R, L, С. Требуется найти токи в цепи и мощность.

Векторная диаграмма для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

2

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

3

Для действующих токов нужно написать векторное уравнение

4

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l1a активного тока ветви(по фазе совпадает c напряжением), а из конца его проведен вектор I1p реактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I1 тока первой ветви. Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная, поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные, поэтому в составе этих токов нет активных составляющих.

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково — параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: Iа = I1a + I2a + I3a.

Реактивные составляющие векторов токов перпендикулярны вектору напряжения, причем индуктивные токи направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая общего тока в цепи определяется их алгебраической суммой, в которой индуктивные токи считаются положительными, а емкостные — отрицательными: Ip = — I1p + I2p — I4p + I5p.

Векторы активного, реактивного и полного тока всей цепи образуют прямоугольный треугольник, из которого следует

5Подставив величины токов в ветвях, выраженные через напряжение и соответствующие проводимости, получим

6

где ∑Gnобщая активная проводимостьравная арифметической сумме активных проводимостей всех ветвей; ∑Bn — общая реактивная
проводимость, равная алгебраической сумме реактивных проводимостей всех ветвей (в этой сумме индуктивные проводимости считаются положительными, а емкостные — отрицательными); Y — полная проводимость цепи;7

Таким образом получена знакомая уже формула (14.12), связывающая напряжение, ток и проводимость цепи [ср. (14.12) и (14.8)].

Следует обратить внимание на возможные ошибки при определении полной проводимости цепи по известным проводимостям отдельных ветвей: нельзя складывать арифметически проводимости ветвей, если токи в них не совпадают по фазе.

Полную проводимость цепи в общем случае определяют как гипотенузу прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активная и реактивная проводимости всей цепи:

8От треугольника токов можно перейти также к треугольнику мощностей и для определения мощности получить известные уже формулы

9Активную мощность цепи можно представить как арифметическую сумму активных мощностей ветвей.

Реактивная мощность цепи равна алгебраической сумме мощностей ветвей. В этом случае индуктивная мощность берется положительной, а емкостная — отрицательной:10

Расчет цепи без определения проводимостей ветвей

Расчет электрической цепи при параллельном соединении ветвей можно выполнить без предварительного определения активных и реактивных проводимостей, т. е. представляя элементы цепи в схеме замещения их активными и реактивными сопротивлениями (рис. 14.15, а).

Определяют токи в ветвях по формуле (14.4);

11

где Z1, Z2 и т. д. — полные сопротивления ветвей.

Полное сопротивление ветви, в которую входят несколько элементов, соединенных последовательно, определяют по формуле (14.5).

12Для построения векторной диаграммы токов (рис. 14.15, б) можно определить активную и реактивную составляющие тока каждой ветви по формулам

13

и т. д. для всех ветвей.

В этом случае отпадает необходимость определения углов ф1 фи построения их на чертеже.

Ток в неразветвленной части цепи

14

Общий ток и мощность цепи определяются далее в том же порядке, какой был показан ранее (см. формулы (14.10), (14.15), (14.16)].

Задача

15 18 19 20 21

Выполнение домашнего задания № 1 (первая часть)

Тема «Расчёт сложной цепи постоянного тока »

Методические указания

Цель работы: освоение методов анализа линейных электрических цепей постоянного тока.

  1. Задание:

1) Начертить схему согласно варианту.

2) Определить количество ветвей, узлов и контуров.

3) Составить уравнения по первому и второму законам Кирхгофа.

Рекомендуемые материалы

4) Определить токи всех ветвей методом узловых потенциалов и методом контурных токов.

5) Составить и рассчитать баланс мощностей.

6) Определить ток в ветви (номер ветви в таблице соответствует номеру резистора в схеме) методом эквивалентного генератора.

7) Определить показания приборов.

8) Построить потенциальную диаграмму.

9) Сделать выводы.

2. Указания по оформлению расчетно-графической работы

1) Начертить схему в соответствии с номером варианта (схема Приложение 1, таблица Приложение 2). Номер варианта соответствует номеру в учебном журнале.

2) Домашнее задание выполняется на листах формата А4 с одной стороны листа, желательно использовать компьютерные программы.

3) Выполнить чертеж  схемы и её элементов в соответствии с ГОСТом.

4) Образец оформления титульного листа представлен в Приложении 3.

5) Каждый пункт задания должен иметь заголовок. Формулы, расчёты, диаграммы должны сопровождаться необходимыми пояснениями и выводами. Полученные значения сопротивлений, токов, напряжений и мощностей должны заканчиваться единицами измерения в соответствии с системой СИ.

6) Графики (диаграммы) должны выполняться на мм бумаге  с обязательной градуировкой по осям и указанием масштабов по току и напряжению.

7) Если студент сделал ошибки при выполнении домашнего задания, то исправление проводится на отдельных листах с заголовком «Работа над ошибками».

8) Срок выполнения домашнего задания 5 неделя семестра.

3. Теоретическое введение

3.1 Топологические компоненты электрических схем

а) ветвь — участок электрической цепи с одним и тем же током

ветвь активная

ветвь пассивная

Количество ветвей — р

б) узел q  место соединения трех и более ветвей, узлы  бывают потенциальные или геометрические рис. 1

            Рис. 1

Четыре узла геометрических (abcd) и три потенциальных (abc) так как потенциалы узлов с и d равны: φс = φd

в) Контур — замкнутый путь, проходящий через несколько ветвей и узлов   разветвленной  электрической цепи – abcd , рис. 1. Независимый контур имеющий хотя бы одну новую ветвь.

3.2. Баланс мощностей

Составляем уравнения для определения мощности приемника:

                                               ΣРпр = Σ I²·R

Составляем уравнения для определения мощности источника:

                                               ΣPистE·I

Баланс сходится при условии равенства уравнений мощностей источника и приемника, т.е.:                                                ΣРпр = ΣPист

Баланс считается сошедшимся, если погрешность не сходимости составляет не более 2%.

3.3. Эквивалентные преобразования пассивных участков электрической цепи

Соединения бывают: последовательное, параллельное и смешанное, звезда, треугольник, мостовое.

1. Последовательное соединение, когда ток в каждом элементе один и тот же.

U1                   U2                   U3

R           R2       R3

I

                                               U

Rэкв = R1+R2+R3

I = E/R экв

U = U1+U2+U3 =

=R1·I + R2·I + R3·I = R экв ·I

Свойства последовательного соединения:

а) Ток цепи  и напряжения зависит от сопротивления любого из элементов;

б) Напряжение на каждом из последовательно соединенных элементов меньше входного;

Ui < U

в) Последовательное соединение является делителем напряжения.

2. Параллельное соединение

Соединение, при котором все участки цепи присоединяются к одной паре узлов, находящихся под воздействием одного и того же напряжения.

Iвх = I1+I2+I3

I1 = U/R1 = UG1

I2 = U/R2 = UG2

I3 =U/R3 = UG3

Iвх =ΣGi

Свойства параллельного соединения:

1) Эквивалентное сопротивление всегда меньше наименьшего из сопротивлений ветвей;

2) Ток в каждой ветви всегда меньше тока источника. Параллельная цепь является делителем тока;

3) Каждая ветвь находится под одним и тем же напряжением источника.

3. Смешанное соединение

Это сочетание последовательных и параллельных соединений.

Метод эквивалентных преобразований

Решение любой задачи с одним источником питания с помощью законов Ома, Кирхгофа и умением сворачивания схемы.

3.4 Методы расчета электрических цепей с несколькими источниками питания

3.4.1 Метод с помощью законов Кирхгофа.

Самый точный метод, но с его помощью можно определять параметры схемы с небольшим количеством контуров (1-3).

            Алгоритм:

1. Определить количество узлов q, ветвей p и независимых контуров;

2. Задаться направлениями токов и обходов контуров произвольно;

3. Установить число независимых уравнений по 1-ому закону Кирхгофа (q — 1) и составить их, где q-количество узлов;

4.  Определить число уравнений по 2-ому закону Кирхгофа  (pq + 1) и составить их;

5. Решая совместно уравнения, определяем недостающие параметры цепи;

6. По полученным данным производится проверка расчетов, подставляя значения в уравнения по 1-ому и 2-ому законам Кирхгофа или составив и рассчитав баланс мощностей.

Пример:

Рис 1.

Согласно предложенному алгоритму, определим количество узлов и ветвей схемы рис. 1

q = 3, p = 5, следовательно, уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3.

Запишем эти уравнения согласно правилам:

                        для узла «а»                          I1 — I2 — I4 = 0

                        для узла «b»                       I4 — I5 — I3 = 0

                        для контура 1                                   R1·I1+R2·I2 = E1 — E2

                        для контура 2                                   R4·I4+R5·I5 — R2·I2 = E2

                        для контура 3                                   R3·I3 — R5·I5  =E3

Правило: если ЭДС и ток имеют одинаковое направление с направлением обхода  контура, то они берутся с «+», если нет, то с «-».

                        Составим уравнения баланса мощностей:

Pпр= R1·I1² + R2·I2² + R3·I3² + R4·I4² + R5·I5²

Pист= E1·I1 + E3·I3 — E2·I2

3.4.2 Метод контурных токов

Используя этот метод, сокращается число уравнений, а именно исключаются уравнения по 1-ому закону Кирхгофа. Вводится понятие контурный ток (таких токов в природе не бывает – это виртуальное понятие), составляются уравнения по второму закону Кирхгофа.

Рассмотрим наш пример рис. 2

Рис.2

Контурные токи обозначены Iм, Iн, Iл, заданы их направления, как показано на рис. 2

Алгоритм решения:

1. Запишем действительные токи через контурные:  по внешним ветвям   I1 = Iм,

     I3 = Iл, I4 = Iн  и по смежным ветвям I2 = IмIн, I5 = IнIл

2. Составим уравнения по второму закону Кирхгофа, так, как  контура три, следовательно будет и три уравнения:

для первого контура      Iм·(R1 + R2) — Iн·R2 = E1E2, знак «–» перед Iн ставится потому, что этот ток направлен против Iм

для второго контура      — Iм·R2 + (R2 + R4 + R5) ·IнIл·R5 = E2

для третьего контура    — Iн·R5 + (R3 + R5) ·Iл = E3

3. Решая полученную систему уравнений, находим контурные токи

4. Зная контурные токи, определяем действительные токи схемы (см. пункт 1.)

 3.4.3 Метод узловых потенциалов

Предлагаемый метод самый эффективный из предложенных методов.

            Ток в любой ветви схемы можно найти по обобщённому закону Ома. Для этого необходимо определить потенциалы узлов схемы.

Если схема содержит n-узлов, то уравнений будет (n-1):

  1. Заземлим любой узел схемы φ = 0;
  2. Необходимо определить (n-1) потенциалов;
  3. Составляются уравнения согласно первому закону Кирхгофа по типу:      

φ1·G11 + φ2·G12 +…+ φ(n-1)·G1,(n-1) =  I11

φ1·G21 + φ2·G22 +…+ φ(n-1)·G2,(n-1)  = I22

…………………………………………………

…………………………………………………

φ1·G(n-1),1 + φ2 ·G(n-1),2 +…+  φ(n-1)·G(n-1),(n-1) = I (n-1), (n-1)

где I11I (n-1), (n-1) узловые токи в ветвях с ЭДС подключенных к данному узлу, Gkk собственная проводимость (сумма проводимостей ветвей в узле k), Gkm – взаимная проводимость (сумма проводимостей ветвей соединяющие узлы   k и m), взятая со знаком «–».

  1. Токи в схеме определяются по обобщенному закону Ома.

Пример:

Заземлим узел с, т.е. φс = 0

φа ( +  + )  —  φb  = E1 + E2

φb (++) — φa = — E3

определив потенциалы φа и φb, найдем токи схемы. Составление формул для расчета токов осуществляется в соответствии с правилами знаков ЭДС и напряжений, при расчете по обобщенному закону Ома (см. лекция 1).

      

        

Правильность расчета токов проверяется с помощью законов Кирхгофа и баланса мощностей.

3.4.4  Метод двух узлов

Метод двух узлов это частный случай метода узловых потенциалов. Применяется в случае, когда схема содержит только два узла (параллельное соединение).

Алгоритм:

  1. Задаются положительные направления токов и напряжение между двумя узлами  произвольно;
  2. Уравнение для определения межузлового напряжения 

,

где   G – проводимость ветви, J – источники тока;

  1. Правило: E и J берутся со знаком «+», если Е и J направлены к узлу с большим потенциалом;
  2. Токи схемы определяются по обобщенному закону Ома

Пример:

Составление формул для расчета токов осуществляется в соответствии с правилами знаков ЭДС и напряжений, при расчете по обобщенному закону Ома (см. лекция 1).

                                  

3.4.5 Метод активного двухполюсника

Данный метод применяется, когда необходимо рассчитать параметры одной ветви в сложной схеме. Метод основан на теореме об активном двухполюснике:  «Любой активный двухполюсник может быть заменен эквивалентным двухполюсником с параметрами Еэкв и Rэкв или Jэкв  и Gэкв , режим работы схемы при этом не изменится».

Алгоритм:

1. Разомкнуть ветвь, в которой необходимо определить параметры.

2. Определить напряжение на разомкнутых зажимах ветви, т.е. при режиме холостого хода Еэкв = Uхх любимым методом.

3. Заменить активный двухполюсник, т.е. схему без исследуемой ветви, пассивным (исключить все источники питания, оставив их внутренние сопротивления, не забывая, что у идеальной ЭДС Rвн = 0, а у идеального источника тока   Rвн = ∞). Определить эквивалентное сопротивление полученной схемы Rэкв.

4. Найти ток в ветви по формуле I = Eэкв/(R+Rэкв) для пассивной ветви и

I = E ± Eэкв/(R+Rэкв) для активной ветви.

3.5 Построение потенциальной диаграммы

Распределение потенциалов в электрической цепи можно представить с помощью потенциальной диаграммы.

Потенциальная диаграмма представляет собой зависимость φ(R) в виде графика, на котором по вертикальной оси  отложены значения потенциалов последовательного ряда точек выбранного контура,  а по горизонтальной – сумма значений сопротивлений последовательно проходимых участков цепи этого контура. Построение потенциальной диаграммы начинается из произвольно выбранной точки контура, потенциал которой принят за нулевой  φ1 = 0. Последовательно обходим выбранный контур. Если построение диаграммы начали в точке 1, то и закончиться она должна в этой же точке 1. Скачки потенциала на графике соответствуют включенным в цепь источникам напряжения.

1.1.  Определение показаний приборов

Вольтметр измеряет напряжение (разность потенциалов) между двумя точками в электрической цепи. Для определения показания вольтметра необходимо составить уравнение по второму закону Кирхгофа по контуру, в который входит измеряемое напряжение.

Ваттметр показывает мощность участка электрической цепи, которая определяется по закону Джоуля – Ленца.

4. Пример:

Дано: R1 = R5 =10 Ом, R4 = R6 = 5 Ом, R3 = 25 Ом, R2 = 20 Ом, Е1 =100 В, Е2 =80 В, Е3 =50 В

Определить токи в ветвях разными методами, составить и рассчитать баланс мощностей.

Решение:

Определяем количество узлов, ветвей и независимых контуров: q = 3,  p = 5, контуров 3. Составляем уравнения по законам Кирхгофа: уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3 для узлов а и b.  Для контуров выбираем обходы по часовой стрелке:

1) Метод контурных токов

Так как три контура, то будет три контурных тока I11, I22, I33. Направления этих токов выбираем по часовой стрелке рис 3. Запишем настоящие токи через контурные:

 I1 = I11I33,   I2 = — I22,   I3 = — I33,   I4 = I11,   I5 = I11 I22

Запишем уравнения по второму закону Кирхгофа для контурных уравнений в соответствии с правилами.

Правило: если ЭДС и ток имеют одинаковое направление с направлением обхода  контура, то они берутся с «+», если нет, то с «–».

Решим систему уравнений математическим методом Гаусса или Крамера.

Решив систему, получаем значения контурных токов:

I11 = 2,48 А, I22 = — 1,84 А, I33 = — 0,72 А

Определим настоящие токи: I1 = 3,2 А, I2 = 1,84 А, I3 = 0,72 А, I4 = 2,48 А, I5 = 4,32 А

Проверим правильность расчёта токов, подставив их в уравнения по законам Кирхгофа.

Составим уравнения для расчёта баланса мощностей:

Из расчёта видно, что баланс мощностей сошёлся. Погрешность меньше 1%.

2) Метод узловых потенциалов

            Решаем туже задачу методом узловых потенциалов

Составим уравнения:

Ток в любой ветви схемы можно найти по обобщённому закону Ома. Для этого необходимо определить потенциалы узлов схемы. Заземлим любой узел схемы φс = 0.

Решая систему уравнений, определяем потенциалы узлов φa и φb

φa= 68 B       φb = 43,2 B

По обобщенному закону Ома определяем токи в ветвях. Правило: ЭДС и напряжение берутся со знаком «+», если их направления совпадают с направлением тока, и со знаком «–», если нет.

3)Построение потенциальной диаграммы внешнего контура

Определим значение потенциалов узлов и точек схемы.

Правило: обходим контур против часовой стрелки, если ЭДС совпадает с обходом тока, то ЭДС бреется с «+» (φе). Если ток по обходу, то падение напряжения на резисторе, т.е «-» (φb).

Потенциальная диаграмма:

  1. Список рекомендуемой литературы
  1. Бессонов Л.А. Теоретические основы электротехники. В 2-х томах. М.: Высшая школа, 1978.
  2. Электротехника и электроника. Учебник для вузов. / Под редакцией В.Г.Герасимова. — М.: Энергоатомиздат, 1997.
  3. Сборник задач по электротехнике и основам электроники. / Под редакцией В.Г. Герасимова. Учебное пособие для вузов.- М.: Высшая школа, 1987.
  4. Борисов Ю.М., Липатов Д.Н., Зорин Ю.Н. Электротехника. Учебник для вузов – М.: Энергоатомиздат, 1985. 
  5. Липатов Д.Н. Вопросы и задачи по электротехнике  для  программированного обучения. Учебное пособие для студентов вузов. – М.:  Энергоатомиздат, 1984.
  6. Волынский Б.А., Зейн Е.Н., Шатерников В.Е. Электротехника, -М.: Энергоатомиздат, 1987.
  1. Контрольные вопросы
  1. Свойства последовательной цепи
  2. Свойства параллельной цепи
  3. Правила составления баланса мощностей
  4. Правила составления уравнений по первому закону Кирхгофа
  5. Как определяется мощность источника питания?
  6. Независимый контур. Напишите уравнение по 2-ому закону Кирхгофа любого контура Вашей схемы.
  7. Правила составления уравнений по 2-ому закону Кирхгофа
  8. Как определяется мощность приемника?
  9. Как определить количество уравнений по 1-ому закону Кирхгофа?
  10. Алгоритм метода эквивалентного генератора
  11. Как включается вольтметр в цепь?
  12. Как включается амперметр в цепь?
  13. Как определить количество уравнений по 2-ому закону Кирхгофа?
  14. С помощью какого закона определяем ток в ветви, в методе эквивалентного генератора?
  15. В чём смысл метода эквивалентных преобразований?

Приложение 1

Схема 1 и данные для группы СМ3 – 41

E1=50 В,  E2 = 100 В,  E3 = 80 В, 

R1= 40 Ом,   R2 = 30 Ом,  R3 = 20 Ом,

R4 = 30 Ом,  R5 = 20 Ом, R6 = 30 Ом, 

Е = 60 В

Схема 1 и данные для группы СМ3 – 42

E1=100 В,  E2 = Е4= 50 В,  E3 = 80 В,

 R1= 80 Ом,   R2 = 50 Ом, 

R3 = 40 Ом, R4 = 30 Ом,

R5= R7= 20 Ом, R6 =30 Ом,

Е =40 В

Приложение 2.

Для группы СМ3 – 41

Вариант

ветвь

Заменить

1

1

R3→E

2

2

R1→0

3

4

R1→E

4

3

R1→(-E)

5

2

R2→0

6

6

R2→E

7

5

R2→(-E)

8

1

R3→0

9

3

R4→E

10

2

R4→(-E)

11

6

R6→E

12

1

R5→E

13

5

R6 и R5→(-E)

14

4

R6 и R5→0

15

3

R5→0

16

1

R5→(-E)

17

2

R6 и R5→(E)

18

3

R6→0

19

4

R1→R2

20

3

E2→R4

21

2

R2→E

22

1

R4→E

23

5

R1→0

24

1

E1→R4

25

3

E2→R5

26

2

E3→R1

27

5

E2→R2

28

4

R3→E

29

3

R1→R4

30

6

E2→R6

Для группы СМ3 – 42

Вариант

ветвь

Заменить

1

1

R3→E

2

5

E1→0

3

4

R1→E

4

3

R1→(-E)

5

2

E2→0

6

6

R4→E

7

5

R2→(-E)

8

4

E3→0

9

3

R4→E

10

2

R7→(-E)

11

1

E4→0

12

3

R5→E

13

5

R6 и R5→(-E)

14

4

R6 и R7→0

15

6

R7→0

16

1

R3 и  E3→0

17

2

R6 и R4→0

18

3

R6 и R2→0

19

4

R3 и R4→0

20

5

E2→R4

21

6

R2→E

22

1

R4 и R7→E

23

2

R1→0

24

5

E1→R4

25

3

E2→R5

26

2

E3→R1

27

5

E2→R2

28

4

R3→E

29

3

R1→R4

30

2

E2→R6

Выполнение домашнего задания № 1 вторая часть

по курсу «Электротехника и электроника»

тема «Расчёт линейных цепей синусоидального тока»

Методические указания

Цель работы: освоение анализа электрических цепей однофазного синусоидального тока с использованием символического метода.

  1. Задание

1) Изучить теоретическое введение и методические указания по выполнению домашнего задания.

2) Начертить схему с элементами согласно варианту.

3) Определить количество узлов, ветвей и независимых контуров.

4) Определить количество уравнений по первому и второму законов Кирхгофа.

5) Составить уравнения по первому и второму законов Кирхгофа.

6) Рассчитать эквивалентное сопротивление схемы и определить характер цепи.

7) Определить токи в ветвях методом эквивалентных преобразований.

Записать токи в алгебраической, показательной и во временной форме.

8) Составить и рассчитать баланс мощностей. Определить коэффициент мощности цепи.

9) Рассчитать напряжения на элементах и построить векторную диаграмму токов и напряжений всей цепи.

10) Определить показания приборов.

11) Начертить схему замещения исходя из характера цепи. Ввести в схему замещения дополнительный элемент, обеспечивающий в цепи   резонанс напряжений. Рассчитать напряжения и ток, построить векторную диаграмму.

12) Ввести в схему замещения дополнительный элемент, обеспечивающий в цепи   резонанс токов. Рассчитать напряжение и токи, построить векторную диаграмму.

13) Собрать исходную схему в среде MULTISIM. Поставить приборы и  измерить токи, напряжение и мощность.

  1. Указания по оформлению расчетно-графической работы

9) Выписать параметры сопротивлений ветвей схемы в соответствии с номером варианта (таблица приложение1). Номер варианта соответствует номеру в учебном журнале.

10) Домашнее задание выполняется на листах формата А4 с одной стороны листа, желательно использовать компьютерные программы.

11) Выполнить чертеж  схемы и её элементов в соответствии с ГОСТом. Схема представлена в приложении 2.

12) Образец оформления титульного листа представлен в приложении 2.

13) Каждый пункт задания должен иметь заголовок. Формулы, расчёты, диаграммы должны сопровождаться необходимыми пояснениями и выводами. Полученные значения сопротивлений, токов, напряжений и мощностей должны заканчиваться единицами измерения в соответствии с системой СИ.

14) Графики (векторные диаграммы) должны выполняться на миллиметровой бумаге  с обязательной градуировкой по осям и указанием масштабов по току и напряжению.

15) При работе с программой MULTISIM необходимо в рабочем поле собрать схему, подключить в ветви амперметры. Перевести картинку с результатами в Word. Амперметры убрать из ветвей. Подключить вольтметр и ваттметр и измерить напряжение и мощность. Перевести картинку с результатами в Word. Результаты включить в отчет.

16) Если студент сделал ошибки при выполнении домашнего задания, то исправление проводится на отдельных листах с заголовком «Работа над ошибками».

17) Срок выполнения домашнего задания 10 неделя семестра.

  1. Теоретическое введение

3.1       Временная форма представления электрических величин, при синусоидальных воздействиях

Аналитическое выражение мгновенных значений тока, ЭДС и напряжения определяется тригонометрической функцией:

                                   i(t) = Im sin(ωt + ψi)

                                   u(t) = Um sin(ωt + ψu)

                                   e(t) = Em sin(ωt + ψe),

где Im, Um, Em— амплитудные значения тока, напряжения и ЭДС.

t + ψ) — аргумент синуса, который определяют фазовый угол синусоидальной функции в данный момент времени t.

             ψ — начальная фаза синусоиды, при t = 0.

i(t), u(t) временные формы тока и напряжения.

По ГОСТу ƒ = 50 Гц, следовательно, ω = 2πƒ = 314  рад/сек.

Временную функцию можно представить в виде временной диаграммы, которая полностью описывает гармоническую функцию, т.е. дает представление о начальной фазе, амплитуде и периоде (частоте).

3.2 Основные параметры электрических величин

При рассмотрении нескольких функций электрических величин одной частоты интересуются фазовыми соотношениями, называемой углом сдвига фаз.

Угол сдвига фаз φ двух функций определяют как разность их начальных фаз. Если начальные фазы одинаковые, то φ = 0 , тогда функции совпадают по фазе, если φ = ± π, то функции противоположны по фазе.

Особый интерес представляет угол сдвига фаз между напряжением и током: φ = ψuψi

На практике используют не мгновенные значения электрических величин, а действующие значения. Действующим значением называют среднеквадратичное значение переменной электрической величины за период.

Для синусоидальных величин действующие значения меньше амплитудных в √2  раз, т.е.

                           

Электроизмерительные приборы градуируются в действующих значениях.

3.3 Применение комплексных чисел

Расчет электрических цепей с использованием тригонометрических функций весьма сложен и громоздок, поэтому при расчете электрических цепей синусоидального тока используют математический аппарат комплексных чисел. Комплексные действующие значения записываются в виде: 

                          

Синусоидальные электрические величины, представленные в комплексной форме, можно изображать графически. На комплексной плоскости в системе координат с осями +1 и +j, которыми обозначены положительные действительная и мнимая полуоси, строятся комплексные векторы. Длина каждого вектора пропорциональна модулю действующих значений. Угловое положение вектора определяется аргументом комплексного числа. При этом отсчет положительного угла ведется против часовой стрелки от положительной действительной полуоси.

Пример: построение вектора напряжения на комплексной плоскости рисунок 1.

Напряжение в алгебраической форме записывается:

Длина вектора напряжения:

Комплексное сопротивление выражается через комплексные действующие значения напряжения и тока в соответствии с законом Ома:

3.4 Законы Ома и Кирхгофа в комплексной форме

Закон Ома в комплексной форме:

 

Комплексное сопротивление выражается через комплексные действующие значения напряжения и тока в соответствии с законом Ома:

• Анализ цепей синусоидального тока происходит при условии, что все элементы цепи R, L, C идеальны (таблица 1).

• Электрическое состояние цепей синусоидального тока описывается теми же законами и рассчитываются теми же методами, что и в цепях постоянного тока.

Первый закон Кирхгофа в комплексном виде: 

Второй закон Кирхгофа в комплексном виде:

Сводная таблица идеальных элементов и их свойств.

                                                                                                          Таблица 1

Элемент

Сопротивление

Угол сдвига фаз

Закон Ома

Мощность

Векторная диаграмма

R

Z = R

0

S = P

C

Z = — jXC

-90o

S = — jQ

 

L

Z = jXL

90o

S =  jQ

3.5 Баланс мощностей  в цепях синусоидального тока

Для приемников вычисляем раздельно активную мощность

                            

и реактивную мощность

                                   .

При выполнении реальных расчетов мощности источников и приемников могут несколько отличаться. Эти погрешности обусловлены погрешностями метода, округления результатов расчётов.

Точность выполненного расчета схемы оценивают с помощью относительной погрешности при вычислении баланса активных мощностей

                                    δР% =  

и реактивных мощностей

                                  δQ% =   

    При выполнении расчетов погрешности не должны превышать  2%.

3.6 Определение коэффициента мощности

Электрооборудование энергетически выгодно эксплуатировать, если он совершает максимальную работу. Работа в электрической цепи определяется активной мощностью Р.

Коэффициент мощности показывает, насколько эффективно используется генератор или электрооборудование.

λ = P/S = cosφ ≤ 1

Мощность максимальна в случае, когда Р = S, т.е. в случае резистивной цепи.

3.7 Резонансы в цепях синусоидального тока

3.7.1 Резонанс напряжений

Режим работы RLC цепи рисунок 2 или LCцепи, при условии равенства реактивных сопротивлений XC  = XL, когда общее напряжение цепи совпадает по фазе с её током , называется резонансом напряжения.

                      

XC = XL – условие резонанса

Признаки резонанса напряжения:

1. Напряжение на входе совпадает по фазе с током, т.е. сдвиг фаз между I и U    φ = 0, cos φ = 1

2. Ток в цепи будет наибольшим и как следствие Pmax = I2maxR мощность тоже максимальна, а реактивная мощность равна нулю.

3. Резонансная частота

4.  

Резонанс можно достигнуть, изменяя L, C или ω.

Векторные диаграммы при резонансе напряжений

LC цепь                                                                    RLC цепь

                   

3.7.2.  Резонанс токов

Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.

Условие резонанса токов: разность реактивных проводимостей параллельных ветвей равна 0

В1 – реактивная проводимость первой ветви,

В2 – реактивная проводимость второй ветви

Признаки резонанса токов:

  1. Реактивные составляющие токов ветвей равны IPC  IPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;
  2. Токи ветвей превышают общий ток цепи, который имеет минимальное значение;
  3. и совпадают по фазе

RLC – цепь                                                                                      Векторная диаграмма

LC – цепь                                                                             Векторная диаграмма

                             

  1. Методические указания

4.1  Начертить схему с элементами согласно варианту.

Схема рисунок 1 преобразуем согласно варианту ( Z1RC, Z2R, Z3RL).

Рисунок 1 Исходная схема

4.2  Рассмотрим схему рисунок 2, и запишем уравнения по законам Кирхгофа.

Схема содержит два узла, два независимых контура и три ветви.

            Рисунок 2  Схема с элементами

Запишем первый закон Кирхгофа для узла а:

Запишем второй закон Кирхгофа для первого контура:

Запишем второй закон Кирхгофа для второго контура:

4.3  Определим эквивалентное сопротивление цепи.

Свернём схему рис 2.

                                    

По эквивалентному сопротивлению определяется характер цепи и чертится схема замещения.

Рисунок 3 свернутая схема

4.4 Определяем токи в ветвях схемы рисунок 2, методом эквивалентных преобразований: зная эквивалентное сопротивление, определяем ток первой ветви .

Рассчитываем ток в комплексной форме по закону Ома в соответствии со схемой рисунок 3:                

Чтобы определить токи в остальных ветвях, нужно найти напряжение между узлами  «ab» рисунок 2:           

Определяем токи:

4.5  Запишем уравнения баланса мощностей:

где I1, I2, I3 – действующие значения токов.

Определение коэффициента мощности

Расчёт коэффициента мощности проводят, определив активную и полную мощности:     P/S = cosφ . Используем рассчитанные мощности, которые найдены при расчёте баланса.

 модуль полной мощности .

4.6  Рассчитаем напряжения на элементах, используя схему рисунок 2:

              

4.7 Построение векторной  диаграммы

Построение  векторной диаграммы ведется после полного расчета всей цепи, определения всех токов и напряжений. Построение начинаем с задания осей комплексной плоскости  [+1; +j]. Выбираются удобные для построения масштабы для токов и напряжений. Сначала строим  на комплексной плоскости вектора токов (рисунок 4), в соответствии с первым законом Кирхгофа для схемы 2. Сложения векторов осуществляется по правилу параллелограмма.

Рисунок 4 векторная диаграмма токов

Затем строим  на комплексной плоскости вектора рассчитанных напряжений проверка по таблице 1 рисунок 5.

Рисунок 5 Векторная диаграмма напряжений и токов

4.8 Определение показаний приборов

Амперметр измеряет ток, проходящий через его обмотку. Он  показывает действующее значение тока в ветви, в которую он включен. В схеме  (рис.1) амперметр показывает действующее значение (модуль) тока  . Вольтметр показывает действующее значение напряжения между двумя точками электрической цепи, к которым он подключен. В рассматриваемом примере (рис.1) вольтметр подключен к точкам  а  и  b.

Вычисляем напряжение    в комплексной форме:

Ваттметр измеряет активную мощность, которая расходуется на участке цепи, заключенном между точками, к которым подключена обмотка напряжения ваттметра, в нашем примере (рис.1) между точками   а  и  b.

Активную мощность, измеряемую ваттметром, можно вычислить по формуле

                   ,

где   — угол между векторами    и  .

В этом выражении    действующее значение напряжения, на которое подключена обмотка напряжения ваттметра, и    действующее значение тока, проходящего через токовую обмотку ваттметра.

Или рассчитываем полную комплексную мощность

 ваттметр покажет активную мощность Р.

4.9 Расчёт резонансных цепей

4.9.1 Добавить в схему замещения элемент для получения резонанса напряжений. Например, схема замещения представляет RL цепь. Тогда необходимо добавить последовательно включённый конденсатор С – элемент. Получается  последовательная RLC цепь.

Рассчитать ток и все напряжения цепи в комплексной форме, при выполнении условия резонанса,  построить векторную диаграмму, см.теоретическое введение пункт 3.7.1

4.9.2 Добавить в схему замещения элемент для получения резонанса токов. Например, схема замещения представляет RL цепь. Тогда необходимо добавить параллельно включённый конденсатор С – элемент.

 

Рассчитать проводимости ветвей, токи и напряжения, при выполнении условия резонанса. Построить векторную диаграмму, см.теоретическое введение пункт 3.7.2

5. Собрать схему в среде MULTISIM. Поставить приборы и  измерить токи, напряжение и мощность.

Сборка схемы в среде Multisim 10.1. На рисунке 6  рабочее окно в среде Multisim. Панель приборов располагается справа.  

Рисунок 6 рабочее окно в среде Multisim

Разместить на рабочем поле необходимые для схемы элементы. Для этого на верхней панели инструментов слева нажмём кнопку «Place Basic » (см. Рисунок 7 ). Выбор резистор: появится окно «Select a Component », где из списка «Family » выбрать «Resistor ». Под строкой «Component » появятся  номинальные значения сопротивлений, выбираем нужное нажатием левой кнопки мыши или же непосредственным введением в графу «Component » необходимого значения. В Multisim используются стандартные приставки системы СИ (см. Таблицу 1)

Таблица 1         

Обозначение Multisim

(международное)

Русское обозначение

Русская приставка

Порядок

m

м

мили

10−3

µ (u)

мк

микро

10−6

n

н

нано

10−9

p

п

пико

10−12

f

ф

фемто

10−15

Рисунок 7

В поле «Symbol » выбираем элемент. После выбора, нажимаем кнопку «OK » и размещаем элемент на поле схемы нажатием левой кнопки мыши. Далее можно продолжать размещение необходимых элементов или нажать кнопку «Close », чтобы закрыть окно «Select a Component ». Все элементы можно поворачивать для более удобного и наглядного расположения на рабочем поле. Для этого необходимо навести курсор на элемент и нажать левую кнопку мыши. Появится меню, в котором надо выбрать опцию «90 Clockwise » для поворота на 90° по часовой стрелке или «90 CounterCW »  для поворота на 90° против часовой стрелки. Размещённые на поле элементы необходимо соединить проводами. Для этого наводим курсор на клемму одного из элементов, нажимаем левую кнопку мыши. Появляется провод, обозначенный пунктиром, подводим его к клемме второго элемента и снова нажимаем левую кнопку мыши. Проводу так же можно придавать промежуточные изгибы, обозначая их кликом мыши (см. Рисунок 8). Схему необходимо заземлить.

Подключаем к цепи приборы. Для того, чтобы подсоединить вольтметр, на панели инструментов выбираем «Place Indicator », в списке Family » открывшегося окна выбираем тип элемента «Voltmetr_V », приборы перевести в режим измерения переменного тока (АС).

Измерение токов

Соединив все размещённые элементы,  получаем разработанную схему рисунок .

На панели инструментов выбираем «Place Source ». В списке «Family » открывшегося окна выбираем тип элемента «Power Souces », в списке «Component » — элемент «DGND ».

Измерение напряжения

Измерение мощности

6.  Контрольные вопросы

1. Сформулируйте законы Кирхгофа и объясните правила составления системы уравнений по законам Кирхгофа.

2. Метод эквивалентных преобразований. Объясните последовательность расчета.

3. Уравнение баланса мощностей для цепи синусоидального тока. Объясните правила составления уравнения баланса мощностей.

4. Объясните порядок расчета и построения векторной диаграммы для Вашей схемы.

5. Резонанс напряжений: определение, условие, признаки, векторная диаграмма.

6. Резонанс токов: определение, условие, признаки, векторная диаграмма.

7. Объясните, как рассчитать показания приборов (амперметра, вольтметра, ваттметра).

8. Сформулируйте понятия мгновенного, амплитудного, среднего и действующего значений синусоидального тока.

9. Напишите выражение для мгновенного значения тока в цепи, состоящей  из соединенных последовательно элементов R и L, если к зажимам цепи приложено напряжение   .

10. От каких величин зависит значение угла сдвига фаз между напряжением и током на входе цепи с последовательным соединением  R , L , C ?

11.  Как определить по экспериментальным данным при последовательном соединении сопротивлений  R , XL  и  XC  значения величин   Z , R , X , ZК , RК , L , XC , C ,cosφ , cosφК?

12.  В последовательной  RLC  цепи  установлен режим резонанса напряжений. Сохранится ли резонанс, если:

а) параллельно конденсатору подключить активное сопротивление;

б) параллельно катушке индуктивности подключить активное сопротивление;

в)  последовательно включить активное сопротивление?

13.  Как должен изменяться ток  I  в неразветвленной части цепи при параллельном соединении потребителя и батареи конденсаторов в случае увеличения емкости от С = 0  до  С = ∞ , если потребитель представляет собой:

а)  активную,

б) емкостную,

в) активно-индуктивную,

г) активно-емкостную нагрузку?

  6.  Литература

1. Бессонов Л.А. Теоретические основы электротехники- М.: Высшая школа, 2012г.

2. Беневоленский С.Б., Марченко А.Л. Основы электротехники. Учебник для ВУЗов – М.,Физматлит, 2007г.

3. Касаткин А.С., Немцов М.В. Электротехника. Учебник для вузов- М.: В. ш, 2000г.

4. Электротехника и электроника. Учебник для вузов, книга 1. / Под редакцией

В.Г.Герасимова. — М.: Энергоатомиздат, 1996г.

4. Волынский Б.А., Зейн Е.Н., Шатерников В.Е. Электротехника, -М.: 

      Энергоатомиздат, 1987г.

Приложение 1

Схема  группа 1

Схема  группа 2                             

Приложение 2

Вариант

Z1

Z2

Z3

Z4

U

1

2+j2

5

5+j3

8-j2

40

2

2-j2

-j5

8-j2

4-j4

50

3

3

j5

4-j4

6+j3

80

4

-j5

2+j2

6+j3

2-j5

60

5

j4

2-j2

6

3

20

6

5-j2

4

5+j3

j4

80

7

2-j5

-j6

8-j2

5+j3

40

8

5+j3

3-j4

4-j4

8-j2

100

9

4+j6

4-j3

3

2-j5

20

10

6-j3

5+j5

7

j4

70

11

3-j6

8-j2

2-j5

-j5

50

12

5

2+j4

8-j2

6+j3

90

13

8+j4

5

6+j3

8

40

14

6

5+j3

j4

2

60

15

-j3

j4

6

-j5

40

16

j8

-j5

5+j3

2-j5

20

17

5

5+j3

-j5

4

60

18

6+j3

8-j2

2-j5

5+j3

80

19

4-j4

j4

8

8-j2

60

20

4+j4

5+j3

4-j4

6+j3

50

21

2

j6

2

5

120

22

-j5

5

5-j5

8

110

23

2+j4

-j4

7

j5

70

24

3-j4

3-j4

2

9

150

Вам также может быть полезна лекция «8 Рождение индустриальной цивилизации и ее влияние на Беларусь».

25

j4

2+j6

7

-j2

130

Содержание:

Расчет электрических цепей постоянного тока:

Основная цель расчета электрической цепи заключается в определении токов в ее ветвях. Зная токи, нетрудно найти напряжения и мощности ветвей и отдельных элементов цепи.

Величины токов, напряжений, мощностей дают возможность оценить условия и эффективность работы электротехнического оборудования и приборов во всех участках электрической цепи.

Связь между э.д.с., напряжениями и токами линейных электрических цепей выражается линейными уравнениями, т. е. уравнениями первой степени, поэтому для расчета их применяются аналитические методы с обычными алгебраическими преобразованиями.

Законы Кирхгофа

Для расчета электрических цепей наряду с законом Ома применяются два закона Кирхгофа, являющиеся следствиями закона сохранения энергии.

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам электрических цепей:
в ветвях, образующих узел электрической цепи, алгебраическая сумма токов равна нулю:
Электрические цепи постоянного тока

В эту сумму токи входят с разными знаками в зависимости от направления их по отношению к узлу. На основании первого закона Кирхгофа для каждого узла можно составить уравнение токов. Например, для точки 3 схемы рис. 3.16 такое уравнение имеет вид
I+ I2 — I4 — I7 = 0.
В этом уравнении токи, направленные к узлу, условно взяты положительными, а токи, направленные от узла, — отрицательными:
I+ I2 = I4 + I7.                      (4.2)

Уравнение (4.2) позволяет дать другую формулировку первого закона Кирхгофа:
сумма токов, направленных к узлу электрической цепи, равна сумме токов, направленных от этого узла.

Этот закон следует из принципа непрерывности тока. Если допустить преобладание в узле токов одного направления, то заряд одного знака должен накапливаться, а потенциал узловой точки непрерывно изменяться, что в реальных цепях не наблюдается.

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрических цепей:
в контуре электрической цепи алгебраическая сумма напряжений на его ветвях равна нулю:
Электрические цепи постоянного тока

Для доказательства второго закона Кирхгофа обойдем контур 1-2-3-4-5-6-1 в схеме рис. 3.16 по часовой стрелке и запишем выражения потенциалов точек контура при указанных направлениях токов в ветвях (выбраны произвольно). Обход начнем от точки 1, потенциал которой V1. Потенциал каждой последующей точки выразим относительно точки предыдущей: V2 = V1 + Е1; V3 = V2 — I1R1; V4 = V3 — I4R4; V5 = V4 — E3; V6 = V5 + I6R6; V1 = V6 — I3R3.
Изменение потенциала по выбранному контуру должно быть равно нулю, так как оно выражает работу, затраченную на перемещение частиц, обладающих вместе единицей заряда, по замкнутому пути в электрических полях источников и приемников энергии. Таким образом, в замкнутом контуре
Электрические цепи постоянного тока

Электрические цепи постоянного тока
или
Электрические цепи постоянного тока
В этом уравнении напряжения ветвей
Электрические цепи постоянного тока
Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока
поэтому Электрические цепи постоянного тока

В уравнении (4.4) напряжения, направленные по обходу контура, считаются положительными, а направленные против обхода — отрицательными.
Уравнение (4.4) перепишем в следующем виде:
Электрические цепи постоянного тока

Уравнение (4.5) позволяет дать другую формулировку второго закона Кирхгофа:
в контуре электрической цепи алгебраическая сумма падений напряжения на пассивных элементах равна алгебраической сумме э. д. с. этого контура:
Электрические цепи постоянного тока

Другим контурам соответствуют другие уравнения, которые нетрудно написать, не прибегая к выражениям потенциалов точек контура.

Для этого можно пользоваться следующим правилом. В левую часть уравнения следует записать алгебраическую сумму падений напряжения в пассивных элементах контура, а в правую—алгебраическую сумму э.д.с., встречающихся при обходе контура.

При этом положительными считаются токи и э. д. с., направление которых совпадает с направлением обхода.
Согласно этому правилу, запишем уравнения для двух других контуров схемы, представленной на рис. 3.16:
для 1-2-3-6-1
Электрические цепи постоянного тока
для 3-4-6-3
Электрические цепи постоянного тока

Неразветвленная электрическая цепь

Элементы неразветвленной электрической цепи соединены между собой последовательно.
 

Отличительной особенностью последовательного соединения является то, что электрический ток во всех участках цепи один и тот же.

Общий случай последовательного соединения

Рассмотрим общий случай последовательного соединения источников и приемников электрической энергии (рис. 4.1), пренебрегая внутренними сопротивлениями источников. Составим уравнение по второму закону Кирхгофа, произвольно задавшись направлением тока в цепи и направлением обхода контура (например, по часовой стрелке):

Электрические цепи постоянного тока
Ток в цепи
Электрические цепи постоянного тока

При обходе контура видно, что относительно направления обхода э. д. с. Е1 и Е3 направлены одинаково, т. е. согласно, а э. д. с. Е2 — им навстречу.
Ток в цепи определяется действием всех трех э.д.с., и при заданных направлениях э. д. с. и тока нетрудно установить, что элементы с э. д. с. E1 и Е3 вырабатывают электрическую энергию, а элемент с э. д. с. Е2 ее потребляет. Если в качестве источников э. д. с. в данном случае предположить аккумуляторы, то источники Е1 и Е3 разряжаются, а источник Е2 заряжается.
В элементах цепи, характеризующихся сопротивлениями R1, R2 и R3, электрическая энергия преобразуется в тепловую. Рассматривая в качестве примера схему рис. 4.1, нетрудно убедиться в том, что второй закон Кирхгофа является следствием закона сохранения энергии в применении его к контуру электрической цепи.

Электрические цепи постоянного тока
Рис. 4.1. Схема неразветвленной электрической цепи

Для этого достаточно умножить уравнение (4.7) на I, перенеся предварительно Е2 в левую часть: 
Электрические цепи постоянного тока

Получим уравнение баланса мощности — для рассматриваемой цепи: сумма мощностей источников электрической энергии равна сумме мощностей приемников.

Ток в цепи с последовательным соединением элементов (рис. 4.1) не изменится и баланс мощностей сохранится, если произвести перестановку элементов цепи, сгруппировав э. д. с. и сопротивления, как показано на рис. 4.2, а.
Электрические цепи постоянного тока
Рис. 4.2. Преобразование схемы неразветвленной электрической цепи

Последовательное соединение пассивных элементов

Участок цепи 4-5-6-1 представляет собой последовательное соединение резисторов. На рассматриваемом участке действует напряжение U, равное алгебраической сумме э. д. с. левой части схемы [см. правую часть уравнения (4.7)]. Это напряжение равно также сумме падений напряжения в правой части схемы [см. левую часть уравнения (4.7)].
Электрические цепи постоянного тока
Вынеся I за скобку, получим
Электрические цепи постоянного тока
или
Электрические цепи постоянного тока

Отношение U/I = R есть некоторое сопротивление, эквивалентное по своему действию всем трем сопротивлениям:
Электрические цепи постоянного тока

Это равенство позволяет на участке 4-5-6-1 три сопротивления заменить одним (эквивалентным) и получить более простую схему (рис. 4.2, б) при условии неизменности тока в цепи и сохранении того же баланса мощностей. Этот вывод можно распространить на любое число последовательно включенных пассивных элементов:
Электрические цепи постоянного тока
т. е. общее сопротивление неразветвленной цепи равно сумме сопротивлений ее участков.

Последовательное соединение источников э.д.с.

Участок 1-2-3-4 цепи на рис. 4.2, а представляет собой последовательное соединение источников э. д. с. Напряжение между точками 4-1 Электрические цепи постоянного тока
Последнее равенство позволяет на участке 1-2-3-4 три э. д. с. заменить одной (эквивалентной)
Электрические цепи постоянного тока
и получить более простую схему (рис. 4.2, в), в которой только одна (эквивалентная) э. д. с. Е.

Этот вывод можно распространить на любое число последовательно включенных источников. Если э. д. с. всех источников равны и направлены согласно, как это имеет место при включении аккумуляторных элементов в батарее, то общая э. д. с. может быть определена по формуле
Электрические цепи постоянного тока
где Еn — э. д. с. одного элемента; n — число элементов в батарее.

Согласно составленной эквивалентной схеме (рис. 4.2, в),
Электрические цепи постоянного тока

Потенциальная диаграмма

В схеме, представленной на рис. 4.1, при переходе от точки 1 к точке 2 потенциал повышается на величину Е1, а при переходе от точки 2 к точке 3 — снижается на величину U2.3 = IR1. При переходе от точки 3 к точке 4 потенциал понижается на величину U3.4 = —E2
Электрические цепи постоянного тока

Рис. 4.3. Потенциальная диаграмма электрической цепи

Изменение потенциалов в электрической цепи можно наглядно изобразить графически в виде потенциальной диаграммы.

Потенциальная диаграмма представляет собой график изменения потенциала при обходе цепи, построенный в прямоугольной системе координат, в которой по оси абсцисс откладываются в определенном масштабе сопротивления участков цепи, а по оси ординат — потенциалы соответствующих точек. Потенциальная диаграмма цепи, изображенной на рис. 4.1, показана на рис. 4.3.

Потенциалы точек цепи найдены согласно равенствам

Электрические цепи постоянного тока

Электрические цепи постоянного тока
причем потенциал точки 1 принят равным нулю.

Поскольку внутренние сопротивления источников э. д. с. приняты равными нулю, при переходе через эти элементы потенциалы изменяются скачком.
 

Задача 4.3.

Генератор постоянного тока, аккумуляторная батарея и два резистора с постоянным сопротивлением составляют неразветвленную цепь Э. д. с. генератора Eг = 120 В; внутреннее сопротивление rг = 1,0 Ом, э. д. с. батареи Еа = 72 В, внутреннее сопротивление rа = 3 Ом, R1 = 16 Ом, R2 = 12 Ом.
Определить ток в цепи, составить баланс мощностей и построить потенциальную диаграмму цепи.
Решение. По условию задачи составлена схема (рис 4.4), из которой видно, что генератор и аккумуляторная батарея включены согласно: относительно произвольно выбранного направления обхода цепи обе э. д. с. направлены одинаково.
Электрические цепи постоянного тока

Рис. 4.4. К задаче 4.3

Эквивалентная э. д. с. цепи
Электрические цепи постоянного тока

Эквивалентное внутреннее сопротивление
Электрические цепи постоянного тока
Эквивалентное сопротивление нагрузки
Электрические цепи постоянного тока
Ток в цепи
Электрические цепи постоянного тока
Для составления баланса мощностей найдем мощность каждого элемента цепи:
генератора
Электрические цепи постоянного тока

аккумуляторной батареи

Электрические цепи постоянного тока
потерь внутри генератора

Электрические цепи постоянного тока

потерь внутри аккумуляторной батареи

Электрические цепи постоянного тока

потребления в резисторе R1

Электрические цепи постоянного тока

потребления в резисторе R2
Электрические цепи постоянного тока
Баланс мощностей (общая мощность источников энергии равна суммарной мощности потребления)
Электрические цепи постоянного тока

Электрические цепи постоянного тока

Для построения потенциальной диаграммы найдем потенциалы точек цепи, полагая потенциал точки 1 V1 = 0:

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока
Потенциальная диаграмма показана на рис. 4.5.

Электрические цепи постоянного тока

Рис. 4.5. Потенциальная диаграмма.

Разветвленная электрическая цепь с двумя узлами

Разветвленная электрическая цепь, как видно из названия, состоит из нескольких ветвей.

Ветви, присоединенные к одной паре узлов, включены параллельно (рис. 4.7, а). Отличительной особенностью параллельного соединения является то, что ко всем ветвям приложено одно и то же напряжение.

Электрические цепи постоянного тока
Рис. 4.7. Преобразование схемы с параллельным соединением приемников

Параллельное соединение пассивных элементов

Приемники электрической энергии, представленные на схеме рис.4. 7, а сопротивлениями R1, R2, R3 и источник электрической энергии Е с внутренним сопротивлением r подключены к одной паре узлов (точки А и Б). Составим уравнение токов для узла А в соответствии с первым законом Кирхгофа: Электрические цепи постоянного тока
Токи приемников можно выразить, используя напряжение между узлами и проводимости ветвей:
Электрические цепи постоянного тока
где
Электрические цепи постоянного тока
Электрические цепи постоянного тока
Разделим это уравнение на U:
Электрические цепи постоянного тока
Отношение UU есть проводимость G, соответствующая общему току цепи и общему напряжению:
Электрические цепи постоянного тока
Этот вывод можно распространить на любое число n параллельно соединенных приемников:
Электрические цепи постоянного тока
 

При параллельном соединении пассивных ветвей общая проводимость между двумя узлами равна сумме проводимостей всех ветвей.

Исходя из формул (4.13) и (4.14), можно заменить три проводимости (в общем случае n проводимостей) одной (эквивалентной) проводимостью GО и получить более простую схему (рис. 4.7, б).

Эквивалентное сопротивление при параллельном соединении нескольких ветвей определяется из равенства

Электрические цепи постоянного тока

Очень часто встречается параллельное соединение двух ветвей. В этом случае эквивалентное сопротивление определяется по формуле
Электрические цепи постоянного тока

или

Электрические цепи постоянного тока

Схема на рис. 4.7, б, полученная после замены трех проводимостей одной (эквивалентной), представляет собой простейшую схему электрической цепи.
Ток в этой схеме, равный току в неразветвленной части (рис. 4.7,а), определяется по формуле Электрические цепи постоянного тока

Целью расчета электрической цепи является не только определение общего тока, но и тока в каждой ветви.

Если заданы э.д.с. и все сопротивления, то после определения общего тока по формуле (3.15) нужно определить напряжение между узловыми точками и токи в ветвях по закону Ома:
Электрические цепи постоянного тока

Параллельное соединение источников энергии

В практике часто встречаются случаи параллельного включения источников электрической энергии, работающих совместно на один или несколько приемников (рис. 4.8).

Электрические цепи постоянного тока

Рис. 4.8. Преобразование схемы с параллельным соединением источников

В таких случаях определением токов в источниках решается важная задача распределения нагрузки между ними.

Представим источники энергии в схеме рис. 4.8, а эквивалентными схемами источников тока, а сопротивление приемника заменим проводимостью G (рис. 4.8, б):

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

где U = Uаб — напряжение между узловыми точками А и Б.

По первому закону Кирхгофа, для узла А
Электрические цепи постоянного тока
или
Электрические цепи постоянного тока
Это равенство дает основание три источника тока заменить одним (эквивалентным), а схему рис. 4.8, б заменить более простой (рис. 4.8, в). Эквивалентный источник тока характеризуется током короткого замыкания

Электрические цепи постоянного тока
и внутренней проводимостью
Электрические цепи постоянного тока
Для схемы рис. 4.8, в
Электрические цепи постоянного тока
Напряжение между узлами
Электрические цепи постоянного тока
Токи в ветвях можно определить по следующим формулам:

Электрические цепи постоянного тока
Из этих выражений следует, что источники с относительно большей э. д. с. и меньшим внутренним сопротивлением имеют больший ток, т. е. принимают на себя большую нагрузку. Если э. д. с. и внутренние сопротивления источников одинаковы, нагрузка между ними распределяется поровну.

Общий ток в этом случае определяется произведением тока одного источника In на число параллельно включенных источников:
Электрические цепи постоянного тока

Величина тока каждого источника ограничена его номинальным значением Iном, сверх которого нагружать источник нельзя. Параллельное соединение источников применяется для увеличения общего тока, благодаря чему достигается увеличение мощности потребления энергии без изменения напряжения.

От схемы с эквивалентным источником тока можно перейти к схеме с эквивалентным источником э. д. с. (рис. 4.8, г), разделив уравнение (4.17) на g:
Электрические цепи постоянного тока
Так как l/g = r — внутреннее сопротивление эквивалентного источника э. д. с., то Iкr = Ir + U.
Но Iкr — Е — э. д. с. эквивалентного источника; Ir — падение напряжения во внутреннем сопротивлении, поэтому Е = U + Ir.

Рассматривается метод расчета разветвленных электрических цепей, предусматривающий замену всех источников э.д.с. одним (эквивалентным), который принято называть эквивалентным генератором.

Общий случай параллельного соединения источников и приемников электрической энергии

Выводы и формулы, полученные ранее, могут быть применены для расчета электрических цепей с двумя узловыми точками, между которыми содержится любое число параллельных ветвей с источниками и приемниками энергии, в том числе и такие ветви, которые имеют несколько элементов, соединенных последовательно (например, схема рис. 4.9).

Порядок расчета таких цепей, предусматривающий предварительное определение напряжения между узловыми точками, называется методом узлового напряжения.

Для применения этого метода должны быть заданы э.д.с. источников и проводимости ветвей (последние можно определить, если заданы сопротивления элементов каждой ветви).
Электрические цепи постоянного тока

Рис. 4.9. Схема с двумя узлами

В общем случае токи в ветвях и э. д. с. могут иметь различное направление, поэтому при определении узлового напряжения нужно взять алгебраическую сумму произведений ЕG и формула (4.18) примет вид
Электрические цепи постоянного тока

Знак э. д. с. устанавливается в соответствии с положительным направлением токов в ветвях, которое выбирается произвольно, но одинаково для всех ветвей (например, от Б к А).

Э. д. с. ветви считается положительной, если ее направление совпадает с положительным направлением тока. В противном случае э. д. с. подставляют со знаком минус в формулу (4.21) и также при определении токов по формулам (4.19).
 

Задача 4.8.

Для схемы, изображенной на рис. 4.7, а, известны: Е = 130 В, r = 0,5 Ом, R1 = 30 Ом, R2 = 20 Ом, R3 = 12 Ом. Определить токи в схеме, мощность передачи энергии приемникам и к. п. д. источника.
Решение. Вначале определим эквивалентное сопротивление между точками А и Б:
Электрические цепи постоянного тока
Электрические цепи постоянного тока
Ток в неразветвленной части цепи
Электрические цепи постоянного тока
Для определения токов в параллельных ветвях между узловыми точками определим напряжение на зажимах источника, которое в данном случае равно напряжению на приемниках:
Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока
Проверим правильность определения токов по уравнению (4.1):

Электрические цепи постоянного тока
Мощность передачи энергии приемникам
Электрические цепи постоянного тока
К. п. д. источника
Электрические цепи постоянного тока
 

Задача 4.10. 

Для схемы, изображенной на рис. 4.7, а, известны: R1 = 10 Ом; R2 = 15 Ом; R3 = 6 Ом, r = 0,5 Ом, l3 = 10 А. Определить токи в схеме, мощность и к. п. д. источника.
Решение. Используя данные условия, относящиеся к третьей ветви, определим напряжение между узлами А и Б по закону Ома:
Электрические цепи постоянного тока
Напряжение U является общим для всех ветвей, присоединенных к точкам А и Б. Это дает возможность использовать ту же формулу для определения токов в двух ветвях:
Электрические цепи постоянного тока
Ток в неразветвленной части цепи
Электрические цепи постоянного тока
Э. д. с. источника
Электрические цепи постоянного тока
Мощность источника
Электрические цепи постоянного тока
Мощность потребления энергии приемниками

Электрические цепи постоянного тока
К. п. д. источника
Электрические цепи постоянного тока
 

Задача 4.12.

Определить токи и составить баланс мощностей для схемы, изображенной на рис. 4.9, если известны: E1 = 120 В; E2 = 80 В; E3 = 60 В; r1 = 0,5 Ом; r2 = 0,4 Ом; r3 = 0,2 Ом; R1 = 2 Ом; R2 = 15,6 Ом; R3 = 12,4 Ом; R4 = 7,5 Ом; R5 = 7,4 Ом.
Решение. Применяя метод узлового напряжения, найдем UАБ по формуле (4.21). Предварительно зададим положительное направление токов от Б к А и подсчитаем проводимости ветвей:
Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Токи в ветвях:

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Электрические цепи постоянного тока

Токи l1 и l3 положительны. Их направление совпадает с выбранным ранее условно-положительным направлением от узла Б к узлу А. Направление тока l2 противоположно положительному направлению; в результате расчета этот ток получился отрицательным. На схеме рис. 4.9 пунктиром показано положительное направление токов в ветвях, а сплошной стрелкой — их действительное направление.

Для составления баланса мощностей необходимо подсчитать мощность каждого элемента схемы, в том числе и мощность потерь внутри источников. Заметим, что направления э. д. с. и токов во всех ветвях совпадают — источники Э. д. с. являются источниками энергии.
Мощности источников: P1.1 = E1I1 = 120 • 7,3 = 876 Вт; P1.2 = Е2I2 = 80 • 7,95 = 636 Вт; Р1.3 = E3I3 = 60 • 0,65 = 39 Вт.
Общая мощность источников 1551 Вт.

При определении мощности источников можно не задумываться над тем, в каком режиме работает тот или другой источник. Ответ на этот вопрос дает знак полученной мощности, если токи и э. д. с. подставлять с теми знаками, какие были приняты или получены в расчете. Например, мощность второго источника положительна: P1.2 = —80 • (—7,95) = 636 Вт. Это указывает на то, что в данной ветви работает источник энергии. Раньше Е2 и I2 сразу были взяты положительными, так как отмечено совпадение направлений напряжения и тока.

Мощность потерь внутри источников: Электрические цепи постоянного токаЭлектрические цепи постоянного токаЭлектрические цепи постоянного тока
Общая мощность потерь внутри источников приблизительно 52 Вт. Мощность приемников:
Электрические цепи постоянного тока
Электрические цепи постоянного тока
Электрические цепи постоянного тока
Электрические цепи постоянного тока
Электрические цепи постоянного тока

Общая мощность приемников 1499 Вт.
Баланс мощностей (мощность источников равна мощности приемников плюс мощность потерь внутри источников) 1551 Вт = 1499 + 52 Вт.

Расчет электрических цепей методом эквивалентных сопротивлений (метод «свертывания» цепи)

Метод эквивалентных сопротивлений применяется для расчета таких электрических цепей, в которых имеются пассивные элементы, включенные между собой последовательно, параллельно или по смешанной схеме.
 

Определение эквивалентных сопротивлений

На схеме рис. 4.10, а сопротивления R3 и R4 включены последовательно: между ними (в точке 3) нет ответвления с током, поэтому I3 = I4. Эти два сопротивления можно заменить одним (эквивалентным), определив его как сумму Электрические цепи постоянного тока
После такой замены получается более простая схема (рис. 4.10, б). Сопротивления R2 и R3.4 соединены параллельно, их можно заменить одним (эквивалентным), определив его по формуле (4.16):

Электрические цепи постоянного тока
и получить более простую схему (рис. 4.10, в).

Электрические цепи постоянного тока

Рис. 4.10. К методу эквивалентных сопротивлений

В схеме рис. 4.10, в сопротивления R1, К2.4, К5 соединены последовательно. Заменив эти сопротивления одним (эквивалентным) сопротивлением между точками 1 и 5, получим простейшую схему (рис. 4.10, г).

Подобными преобразованиями схему смешанного соединения пассивных элементов с одним источником энергии в большинстве случаев можно привести к простейшей схеме. В более сложных схемах методом эквивалентных сопротивлений достигается упрощение, которое значительно облегчает расчет.

Определение токов

В простейшей схеме (рис. 4.10, г) ток I определяется по закону Ома с использованием формулы (3.15). Токи в других ветвях первоначальной схемы определяют, переходя от схемы к схеме в обратном порядке.
Из схемы рис. 4.10, в видно, что
Электрические цепи постоянного тока
Кроме того, напряжение между точками 2 и 4
Электрические цепи постоянного тока
Зная это напряжение, легко определить токи I2 и I3 = I4:

Электрические цепи постоянного тока

После определения токов I1 и I5 напряжение U2.4 можно найти как разность потенциалов между точками 2 и 4. Для этого положим V4 известным (например, равным нулю), а V2 найдем так же, как при построении потенциальной диаграммы, обойдя от точки 4 неразветвленный участок цепи с током I1 =I5:
Электрические цепи постоянного тока
Электрические цепи постоянного тока

Метод преобразования треугольника и звезды сопротивлений

Пассивные элементы в электрических цепях соединяются не только последовательно или параллельно. Во многих схемах можно выделить группы из трех элементов, образующих треугольник или звезду сопротивлений.
При расчете подобных цепей упрощение схем выполняют известным методом эквивалентных сопротивлений, но предварительно проводят преобразование треугольника сопротивлений в эквивалентную звезду или наоборот.

Треугольник и звезда сопротивлений

Рассмотрим в качестве примера схему рис. 4 .11, а, которая применяется для измерения сопротивлений (схема моста Уитстона).

В этой схеме нет элементов, соединенных последовательно или параллельно, но имеются замкнутые контуры из трех сопротивлений (треугольники сопротивлений), причем точки, разделяющие каждую пару смежных сопротивлений, являются узловыми.

К узловым точкам a, b, c присоединен треугольник сопротивлений Rab, Rbc, Rca. Его можно заменить эквивалентной трехлучевой звездой сопротивлений Ra, Rb, Rc (на рисунке изображены штриховыми линиями), присоединенных с одной стороны к тем же точкам a, b, c, а с другой — в общей (узловой) точке e.

Электрические цепи постоянного тока
Рис. 4.11. Преобразование треугольника сопротивлений в эквивалентную звезду


Смысл замены становится понятным при рассмотрении эквивалентной схемы 4.11, б, где сопротивления Rb и Rbd соединены между собой последовательно, так же как b сопротивления Rc и Rdc.
Две ветви между узловыми точками e и d с этими парами сопротивлений соединены параллельно. Соответствующими преобразованиями схему можно привести к простейшему виду.

Преобразование треугольника сопротивлений в эквивалентную звезду

Замена треугольника сопротивлений эквивалентной звездой и наоборот осуществляется при условии, что такая замена не изменяет потенциалов узловых точек a, b, c, являющихся вершинами треугольника и эквивалентной звезды.
Одновременно предполагают, что в остальной части схемы, не затронутой преобразованием, режим работы не изменяется (не меняются токи, напряжения, мощности). Для доказательства возможности перехода от треугольника к звезде и наоборот рассмотрим схемы рис. 4.11, в, г.
Эти схемы остаются эквивалентными для всех режимов, в том числе и для режима, при котором Ia = 0, что соответствует обрыву общего провода, ведущего к точке а. В этом случае в схеме треугольника между точками b и c включены параллельно две ветви с сопротивлениями Rbc и Rab + Rca
Общее сопротивление между этими точками
Электрические цепи постоянного тока

В схеме звезды между точками b и c включены последовательно сопротивления Rb и Rc. Общее сопротивление между этими точками Rb + Rc.
По условиям эквивалентности напряжение между точками b и c и токи Ib и Ic в обеих схемах должны быть одинаковыми. Следовательно, и сопротивления между точками b и c в обеих схемах одинаковы, т. е.
Электрические цепи постоянного тока
Полагая Ib =0, а затем Ic = 0, получим:
Электрические цепи постоянного тока
Электрические цепи постоянного тока

Совместное решение трех полученных уравнений приводит к следующим выражениям, которые служат для определения сопротивлений трехлучевой звезды по известным сопротивлениям эквивалентного треугольника:
Электрические цепи постоянного тока
 

Преобразование звезды сопротивлений в эквивалентный треугольник

Для расчета некоторых схем применяется преобразование трехлучевой звезды в эквивалентный треугольник, которое показано на рис. 4.12, а, где схема взята такой же, как на рис. 4.11, а.

При этом для определения параметров треугольника по заданным параметрам звезды пользуются формулами, которые записаны применительно к схемам рис. 4.12, а, б:
Электрические цепи постоянного тока
где Gad; Gdc; Gca — проводимости сторон треугольника; Ga; Gd; Gc — проводимости лучей звезды.

Зная проводимости, нетрудно определить сопротивления треугольника, если это необходимо.

Электрические цепи постоянного тока

Рис. 4.12. Преобразование трехлучевой звезды в эквивалентный треугольник

  • Методы анализа сложных электрических цепей
  • Метод узловых напряжений
  • Метод узловых потенциалов 
  • Принцип и метод наложения
  • Цепи с распределенными параметрами
  • Электрическая энергия, ее свойства и применение
  • Электрическая цепь
  • Электрический ток

Цепь постоянного тока

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

. (6.1)

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви, состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы – точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры, не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

. (6.2)

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа: алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

. (6.3)

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

(6.4)

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

(6.5)

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

.

Напряжение на источнике тока (на сопротивлении ) равно

В.

Затем можно найти токи ветвей

А,

А.

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

В,

В.

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

(6.6)

Из первого уравнения выразим , а из третьего

.

Тогда из второго уравнения получим

,

,

.

Из уравнений закона Ома запишем

.

.

Нетрудно убедиться, что выполняется второй закон Кирхгофа

.

Подставляя численные значения, получим

, ,

, .

Эти же результаты можно получить, используя только закон Ома.

Мощность в цепи постоянного тока

Действующие в цепи идеальные источники тока и (или) напряжения отдают мощность в подключенную к ним цепь (нагрузку). Для цепи на рис. 6.1а отдаваемая идеальным источником напряжения мощность равна

, (6.7)

а в цепи на рис. 6.2а идеальный источник тока отдает в нагрузку мощность

. (6.8)

Подключенная к источнику внешняя резистивная цепь потребляет от него мощность, преобразуя ее в другте виды энергии, чаще всего в тепло.

Если через сопротивление протекает ток , а приложенное к нему напряжение равно , то для потребляемой сопротивлением мощности получим

. (6.9)

С учетом уравнений закона Ома (6.1) можно записать

. (6.10)

Если в цепи несколько сопротивлений, то сумма потребляемых ими мощностей равна суммарной мощности, отдаваемой в цепь всеми действующими в ней источниками. Это условие баланса мощностей.

Например, для цепи на рис. 6.3 в общем виде получим

. (6.11)

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9005 — | 7249 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Цепь постоянного тока

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

. (6.1)

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви, состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы – точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры, не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

. (6.2)

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа: алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

. (6.3)

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

(6.4)

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

(6.5)

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

.

Напряжение на источнике тока (на сопротивлении ) равно

В.

Затем можно найти токи ветвей

А,

А.

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

В,

В.

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

(6.6)

Из первого уравнения выразим , а из третьего

.

Тогда из второго уравнения получим

,

,

.

Из уравнений закона Ома запишем

.

.

Нетрудно убедиться, что выполняется второй закон Кирхгофа

.

Подставляя численные значения, получим

, ,

, .

Эти же результаты можно получить, используя только закон Ома.

Мощность в цепи постоянного тока

Действующие в цепи идеальные источники тока и (или) напряжения отдают мощность в подключенную к ним цепь (нагрузку). Для цепи на рис. 6.1а отдаваемая идеальным источником напряжения мощность равна

, (6.7)

а в цепи на рис. 6.2а идеальный источник тока отдает в нагрузку мощность

. (6.8)

Подключенная к источнику внешняя резистивная цепь потребляет от него мощность, преобразуя ее в другте виды энергии, чаще всего в тепло.

Если через сопротивление протекает ток , а приложенное к нему напряжение равно , то для потребляемой сопротивлением мощности получим

. (6.9)

С учетом уравнений закона Ома (6.1) можно записать

. (6.10)

Если в цепи несколько сопротивлений, то сумма потребляемых ими мощностей равна суммарной мощности, отдаваемой в цепь всеми действующими в ней источниками. Это условие баланса мощностей.

Например, для цепи на рис. 6.3 в общем виде получим

. (6.11)

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8447 — | 7339 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Полная мощность источника тока:

P полн = P полезн + P потерь ,

где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ — электродвижущая сила (ЭДС) источника тока.

Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).

Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I — сила тока в цепи; r — внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн ,

где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i — сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r >

и выполним деление уравнений:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r >

и выполним деление уравнений:

I 1 i = r R 1 + r .

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Понравилась статья? Поделить с друзьями:
  • Физика как найти частоту вращения
  • Как составить диалог знакомства на немецком языке
  • Как найти эрозию шейки матки
  • Найти как пройти risen
  • Как найти инфернус в gta 4