Как найти мощность выделяющуюся на резисторе формула

Ардуино

Мощность резистора

2 марта 2022 151

Сегодня поговорим о мощности резисторов. Это тоже очень важный параметр. Я уже рассказывал о том что такое резистор, и какие виды и типы резисторов бывают. Но подробно про мощность мы не говорили.

Мощность резистора — это максимально допустимое значение мощности электрического тока (единица измерения Ватт), которое резистор может пропустить через себя без перегрева и выхода из строя. Резистор в зависимости от своего сопротивления и тока проходящего через него превращает часть электрической энергии в тепло. Это и называется мощностью рассеивания резистора.

Какая мощность будет выделяться (рассеиваться) на резисторе

Как я уже написал чуть выше, мощность рассеивания резистора зависит от его сопротивления и силы тока, проходящего по нему. Для расчета мощности, которая будет рассеиваться в виде тепла на резисторе используется формула: P = I² * R

  • P — мощность в Ватт
  • I — Сила тока в Ампер
  • R — Сопротивление в Ом

Для примера рассчитаем мощность которая будет рассеиваться на резисторе в схеме с подключением светодиода. Вот схема подключения:

Про то как рассчитать номинал резистора для подключения светодиода и силу тока в цепи, а так же как управлять светодиодом с помощью Ардуино я писал в этой статье. В нашем примере используется резистор на 150 Ом и сила тока в цепи составляет 20 миллиампер или 0.02 ампера. Теперь мы можем рассчитать мощность, которая будет рассеиваться на резисторе.

P = I² * R = 0.02² * 150 = 0.0004 * 150 = 0.06 Ватт

Это значит что на нашем резисторе будет рассеиваться 0.06 Ватт. Это совсем не много, поэтому подойдет практически любой резистор кроме самых маломощных SMD элементов.

Если фактическая рассеиваемая мощность превышает допустимую для резистора, то он будет перегреваться и в итоге сгорит. Это не только разорвет электрическую цепь, но и может стать причиной пожара. Поэтому старайтесь использовать резисторы с заявленной мощностью больше чем необходимая в 1.5-2 раза.

Как определить мощность резистора

Как я уже писал в других статьях, обычно резисторы — это мелкие элементы, поэтому на их корпусе сложно описать все их параметры. Для описания номинала и класса точности используется цветовая маркировка или специальная маркировка для SMD резисторов. А для того что бы понять какой мощности резистор нужно его измерить. Вот схема которая поможет узнать мощность резисторов в зависимости от их размера:

Мощность резисторов в зависимости от размера

Мощность резисторов в зависимости от размера

Так же существуют резисторы рассчитанные и на более высокие мощности. Они уже крупнее, поэтому их мощность и номинал написаны на корпусе «человеческим языком». Вот керамические резисторы или даже высокомощные с радиатором для рассеивания тепла:

Мощность SMD резисторов

Показатель максимальной мощности в маркировку на таких маленьких корпусах поместить было просто не возможно. Но мы все равно можем определить максимальную мощность смд резистора при помощи штангенциркуля, ну или хотя бы обычной линейки. Дело в том что мощность зависит от размера корпуса smd резистора. Поэтому они делятся на типоразмеры и обозначаются цифрами, которые означают длину и ширину корпуса в дюймах. Вот таблица с помощью которой вы сможете определить допустимую мощность резистора в smd исполнении:

Размер в дюймах Длинна в мм Ширина в мм Мощность при 70°C в Ватт
0075 0,3 0,15 0,02
01005 0,4 0,2 0,03
0201 0,6 0,3 0,05
0402 1 0,5 0,063
0603 1,6 0,8 0,1
0805 2,0 1,25 0,125
1206 3,2 1,6 0,25
1210 3,2 2,5 0,5
1218 3,2 4,8 1
1812 4,5 3,2 0,75
2010 5 2,5 0,75
2512 6,4 3,2 2
Таблица мощности SMD резисторов

Обратите внимание что при последовательном и параллельном подключении резисторов, рассеиваемая мощность рассчитывается для каждого резистора отдельно.

Содержание материала

  1. Что такое мощность резистора
  2. Нагрев детали в зависимости от сопротивления
  3. Как рассчитать мощность резистора в схеме
  4. Параметры резисторного элемента
  5. Формула скорости потребления энергии резистором
  6. Для чего он нужен
  7. Как определить мощность резистора
  8. Как рассчитать мощность рассеивания резистора

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Как определить мощность резистора по внешнему виду

Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Нагрев детали в зависимости от сопротивления

Выбирая подходящий резистор, обязательно надо обращать внимание на температурный диапазон, при котором возможна корректная эксплуатация детали. Она всегда указывается изготовителем. Чтобы резистор не вышел из строя, необходим своевременный выход теплоты в атмосферу. Элемент не должен перегреваться. Чем холоднее воздух (в рамках допустимого диапазона), тем дольше имеет шанс прослужить компонент. Нельзя позволять, чтобы поблизости от резистора скапливалось избыточное тепло.

Когда температурный показатель достигает своего максимума в рамках диапазона, на сопротивлении начинается процесс выгорания верхнего маркируемого слоя. В таком случае необходимо принимать меры по снижению температуры, иначе у изделия выгорит наполнение, отвечающее за сопротивляемость, и оно станет полностью непригодным к дальнейшей эксплуатации.

Если детали с требуемой размерностью под конкретную схему не обнаружилось, можно использовать вариант с превосходящим значением, если он подходит собираемому устройству. Резисторы, чьи данные по мощности не дотягивают до требуемых, применять в такой ситуации допустимо, только объединив их последовательно. Вообще знание эффектов параллельно и последовательно связанных резисторных элементов пригодится в ситуации, если под рукой не оказалось детали с идеально подходящими параметрами.

Как рассчитать мощность резистора в схеме

Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.

Если номинал написан в килоомах (кОм) или мегаомах (мОм),  его переводим в Омы. Это важно, иначе будет неправильная цифра.

Схема последовательного соединения резисторов

Схема последовательного соединения резисторов

Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.

По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт.  Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.

Есть резисторы серии МЛТ, в которых мощность рассе

Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.

При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.

Параметры резисторного элемента

Сопротивление резистора — формула для рассчета

К числу ключевых параметров данной группы деталей относятся:

  • сопротивление компонента;
  • допуск (степень вариативности номинального сопротивления) – может принимать значения до 20%;
  • ТКС – изменение сопротивляемости при нагреве или охлаждении воздуха на 1 градус (целесообразно, чтобы элементы одной электроцепи имели идентичное значение показателя);
  • мощность, показывающая, какое количество тепловой энергии может быть выделено в пространство при условии сохранения корректного функционирования элемента.

Важно! На то, сколько энергии будет рассеивать компонент, влияет его размер. Натренированный глаз способен к визуальному определению значения по габаритам резистора. Корреляция с величиной связана с тем, что когда ток течет через элемент с большим значением площади поверхности, теплота отдается в пространство с большей скоростью (если речь идет о воздухе).

Миниатюрные смд компоненты снабжаются маркировкой из полосок разного цвета. Расшифровку цветового кода можно посмотреть онлайн (например, на сайте производителя). Зачастую она дается и в прилагаемой технической документации.


Цветовая кодировка миниатюрных деталей

Формула скорости потребления энергии резистором

кВа в кВт — как правильно перевести мощность

Количество энергии, генерируемой в виде тепла на единицу объема элемента, можно найти по формуле:

w = E2* ϭ=E*j,

где Е – напряженность поля, j – его плотность, а ϭ – электрическая проводимость среды.

Для чего он нужен

Резистор предназначен для оказания сопротивления проходящему через систему току. Применяется в различных областях. Назначение устройства может быть следующим:

  • «Переделка» токовой энергии в напряжение (или обратно);
  • Ограничение поступающей силы до нужного уровня;
  • Создание разделителей (например, в измеряющих устройствах);
  • Решение специализированных проблем (например, снижение влияния радиопомех).

Важно! Самый простой вариант применения прибора – работа светодиода. Собственное сопротивление элемента слишком мало. Без ограничителя – резистора – проходящий ток моментально выведет элемент из строя.

Светодиод

Светодиод

Как определить мощность резистора

Существует два способа определить уровень сопротивления той или иной модели – размер и формула.

Понять, как определить мощность конкретного резистора по внешнему виду, несложно – для этого установлены стандарты. Установленным габаритам стараются соответствовать все производители электротехнических деталей. В СССР были созданы таблицы, согласно которым мощность устройств регулировалась по длине и диаметру.

Важно! На элементах российского производства и некоторых зарубежных аналогах (сопротивлением в 1Вт и больше) значение мощности указывается на внешнем корпусе с помощью цифр. На иностранных устройствах другого уровня сопротивления дополнительно печатают букву «W».

Маркировка

Маркировка

Важно! На некоторых элементах импортного производства могут стоять другие обозначения. Это возможно, если производитель отказывается применять общепринятые стандарты.

Кроме этого – при определении мощности резистора по внешнему виду важно помнить, что стандарты отечественных моделей несколько выше (идентичные российские модели немного крупнее).

Вам это будет интересно   Формулировка и определение закона Ома

Мощность тока, выделяющаяся на резисторе, также определяется по специальной формуле. В качестве основы используется закон Ома, уравнение имеет следующий вид:

R = U / I, в которой R – сопротивление, U – напряжение в точках вывода В, I – сила тока на заданном участке.

Важно! Электротехнические платы редко содержат один элемент. Чаще платы содержат множество составляющих, соединяющихся последовательно или параллельно.

Последовательная сцепка означает, что выход одного элемента соединяется с входом следующего – один за другим. Для расчета, используют онлайн-калькуляторы или следующую формулу мощности тока, выделяющегося на резисторе:

R123 = R1 + R2 + R3.

Элементов в формуле должно быть столько, сколько сопротивлений содержит электрическая схема.

Параллельное соединение означает, что резисторы соединяются парно, а формула выглядит следующим образом:

R = (R1 * R2) / ( R1 + R2).

Схема с резистором

Схема с резистором

Результат обычно меньше, чем значение самого маломощного элемента в системе. В некоторых схемах применяют смешанное соединение. Расчет применяется поэтапно – сначала вычисляют последовательные, затем параллельные. Результат складывается и получается итоговое сопротивление технической платы.

Как рассчитать мощность рассеивания резистора

Вот мы и узнали, что мощность тока в резисторе рассчитывается по формуле. В реальной цепочке(последовательной или параллельной) через резисторные элементы протекает ток. Поскольку резистор имеет сопротивление, то под влиянием проходящего тока резисторный компонент греется. На нём выделяется немного тепловой энергии. Это и есть та мощность, которая рассеивается на резисторном элементе.

Если в электросхему вмонтировать резистор с мощностью меньше, чем надо, то резисторный компонент в итоге сгорит из-за перегрева. Поэтому, если в схеме требуется заменить резисторное устройство мощностью 0,5 Вт, то устанавливает на 0,5 Ватт и больше. Каждый резисторный компонент рассчитан на конкретные показатели мощности. Типовой ряд мощностей рассеивания резисторных компонент состоит из значений:

  • 0,125 В.
  • 0,25 В.
  • 0,5 В.
  • 1 Ватт.
  • 2 Ватт.
  • Более 2 Ватт.

Чем крупнее резистор, тем, он мощнее. К примеру, у нас есть резисторный элемент с сопротивлением 100 Ом. Через него течет ток 0,1 Ампер. Как вычислить его хар-ки мощности? Тут потребуется сопротивление резистора формула:

P(Вт) – мощность;

R(Ом) – сопротивление цепочки (а точнее резистора);

I(А) – ток.

Все расчёты необходимо выполнять, помня про размерность, даже связанные с площадью. Определим показатели мощности для нашего резисторного компонента: на выходе, получается мощность 1 Ватт. Здесь подойдёт резисторный компонент мощностью 2 В. Мощность резистора должна быть равна мощности заменяемого.

Теги

Мощность резистора

Как рассчитать мощность резистора?

Мощность рассеивания резистора
Мощность рассеивания резистора

У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.

Сама по себе мощность постоянного тока рассчитывается по простой формуле:

Формула мощности постоянного тока

Здесь, P(Вт) – мощность;

U(В) – напряжение;

I(А) – ток.

Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.

Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше!

Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:

  • 0,125 Вт
  • 0,25 Вт
  • 0,5 Вт
  • 1 Вт
  • 2 Вт
  • Более 2 Вт.

Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.

Резисторы разной мощности

Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?

Тут нам потребуется формула. Выглядит она так:

Формула: Сопротивление - Мощность

Здесь, P(Вт) – мощность;

R(Ом) – сопротивление цепи (в данном случае резистора);

I(А) – ток, протекающий через резистор.

Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).

Рассчитаем мощность для нашего резистора:

Расчёт мощности резистора

Мы получили мощность 1 Ватт. Теперь небольшое отступление.

В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.

Поэтому нам подойдёт резистор мощностью 2 Вт (см. стандартный ряд мощностей резисторов).

Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.

Формула расчёта мощности через напряжение и сопротивление

Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?

Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.

Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?

Для последовательной цепи действует одно правило. Через последовательно соединённые резисторы течёт один и тот же ток. Теперь применим формулу для расчёта мощности и получим, что мощность рассеивания резистора на 20 Ом должна быть равна 0,2 Вт, а резистора на 80 Ом — 0,8 Вт. Выбираем резисторы согласно стандартному ряду мощностей:

R1 – 20 Ом (0,5 Вт);

R2 – 80 Ом (1 Вт)

Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.

Мощность, рассеивающаяся на резисторе, зависит в первую очередь от тока, который течёт через данный резистор. А ток зависит от сопротивления резистора. Поэтому, если вы соединяете последовательно резисторы разных номиналов, то и рассеивающаяся мощность распределиться между ними.

Это обстоятельство необходимо учитывать при самостоятельном конструировании электронных самоделок иначе при неправильном подборе резисторов может получиться так, что на одном резисторе выделиться больше мощности, чем на другом, и он будет работать в тяжёлом температурном режиме.

Чтобы не ломать голову и не рассчитывать мощность каждого в отдельности резистора, можно поступать так:

Мощность каждого резистора, входящего в составляемую нами цепь (параллельную или последовательную) должна быть равна мощности заменяемого резистора. Иными словами, если нам надо заменить резистор, мощностью 1 Вт, то каждый из резисторов для его замены должен иметь мощность не менее 1 Ватта. На практике это самое быстрое и эффективное решение.

Для параллельного соединения резисторов нужно учитывать, что через резистор с меньшим сопротивлением протекает больший ток. Следовательно, и мощности на нём будет рассеиваться больше.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Научись паять! Минимальный наборчик для пайки.

  • Научись паять! Подготовка и уход за паяльником.

На чтение 7 мин. Просмотров 7.5k. Опубликовано 26.05.2020

Резисторы присутствуют в каждой электросхеме. Но в различных схемах течет разной величины ток. Не могут же одни и те же компоненты функционировать при 0,1 А и при 100 Ампер. Ведь при протекании тока сопротивление нагревается. Чем выше сила тока, тем интенсивнее нагрев. Значит, и резисторные компоненты должны быть на разную токовую величину. Отражает их возможность функционировать при различных токах такой параметр, как мощность.

резистор-сопротивление

Мощность резистора — что это такое, на что влияет

Рассеиваемая мощность резисторного элемента — это макс. ток, который может выдерживать сопротивление долгое время без ущерба для работоспособности.

То есть, этот параметр необходимо подбирать для каждой электросхемы отдельно. Мощность вычисляется с помощью следующей формулы: P = I * R.

Физически рассеиваемый параметр резисторного устройства — это то количество тепла, которое его корпус может «передать» и не сгореть. Мощность в первую очередь влияет на надёжность работы резисторного устройства.

Важно! Все резисторные компоненты, вне зависимости от установленных параметров, функционируют на основании закона Ома, это главный ключ благодаря которому определяется напряжение. Спад напряжения – это разница в показателях на входе и выходе. Внутри механизма протекающий ток меняется или ограничивается – электроны сталкиваются с неоднородной структурой материала проводниковой.

закон ома

Стандартный ряд мощностей резисторов и их обозначение на схемах

Не забывайте, что резисторные компоненты одного номинала, могут иметь разную мощность. Все зависит от техники создания, материала корпуса. Ниже указан ряд мощностей и их официальное обозначение.

Вт Условное обозначение на электросхемах
мощность резисторного компонента 0,05 Вт Как подписывается на схеме 0,05 В.
мощность элемента 0,125 Вт мощность резистора 0,125 Ватт.
мощность 0,025 Вт как на схеме выделяется элемент с мощностью 0,25 Вт
мощность 0,5 Вт таким образом, на схеме выделяется резистор мощностью 0,5 Ватт.
мощность 1 Вт мощность резистора 1 В.
мощность 2 Вт мощность рассеивания резистора 2 Вт.
мощность резисторного элемента 5 Вт так выделяется мощность 5 Вт

Графическая кодировка мощностей резисторов на электросхеме — черточки и римские символы. Самое маленькое типовое значение 0,05 Ватт, максимальное — 25 Ватт, но есть и помощнее.
Как указывается мощность слабых деталей необходимо запомнить. Это косого типа линии на прямоугольниках, которыми выделяют сопротивления. При номиналах сопротивлений от 1 Ватта на схеме выставляются определенные римские символы: I, II, III, и так далее. Цифровые обозначения выделяют мощность резисторного компонента в ваттах. О том как определить сопротивление резистора по цвету читайте здесь. 

мощности сопротивления

Формула для расчета мощности тока в резисторе, как узнать сколько ватт

Мощность резистора формула:

Здесь, P(Вт) – показатели мощности;

U(В) – напряжение;

I(А) – ток.

Расчет выполнить несложно, как можно заметить, мощность зависит от напряжения и тока.
Если вы не любите формулы, можете попробовать воспользоваться мультиметром, он поможет определить, сколько потребляет резистор.

постоянные резисторы

Как рассчитать мощность рассеивания резистора

Вот мы и узнали, что мощность тока в резисторе рассчитывается по формуле. В реальной цепочке(последовательной или параллельной) через резисторные элементы протекает ток. Поскольку резистор имеет сопротивление, то под влиянием проходящего тока резисторный компонент греется. На нём выделяется немного тепловой энергии. Это и есть та мощность, которая рассеивается на резисторном элементе.

Если в электросхему вмонтировать резистор с мощностью меньше, чем надо, то резисторный компонент в итоге сгорит из-за перегрева. Поэтому, если в схеме требуется заменить резисторное устройство мощностью 0,5 Вт, то устанавливает на 0,5 Ватт и больше.
Каждый резисторный компонент рассчитан на конкретные показатели мощности. Типовой ряд мощностей рассеивания резисторных компонент состоит из значений:

  • 0,125 В.
  • 0,25 В.
  • 0,5 В.
  • 1 Ватт.
  • 2 Ватт.
  • Более 2 Ватт.

Чем крупнее резистор, тем, он мощнее.
К примеру, у нас есть резисторный элемент с сопротивлением 100 Ом. Через него течет ток 0,1 Ампер. Как вычислить его хар-ки мощности?
Тут потребуется сопротивление резистора формула:

P(Вт) – мощность;

R(Ом) – сопротивление цепочки (а точнее резистора);

I(А) – ток.

Все расчёты необходимо выполнять, помня про размерность, даже связанные с площадью.
Определим показатели мощности для нашего резисторного компонента:
на выходе, получается мощность 1 Ватт.
Здесь подойдёт резисторный компонент мощностью 2 В.
Мощность резистора должна быть равна мощности заменяемого.

расчет мощности резисторов

Как определить по внешнему виду

На принципиальной электросхеме выделена, необходимая мощность резисторного элемента — тут все ясно. Но как вычислить мощность по визуальному виду на плате для печати? В общем, чем огромнее корпус, тем больше он может рассеивать тепла.

На российских сопротивлениях рядом с цифрами ставят букву В и все. А в зарубежных указывают W. Но эти символы есть не всегда. В иностранных может выделяться V или SW перед цифрами. Еще в импортных может также красоваться буква B, а в российских МЛТ может быть пустота или буква W. Сложно что-то понять, конечно. Подробнее о буквенной маркировке резисторов, читайте тут.

Еще есть небольшие замкнутые резисторные устройства, на которых и номинал невозможно поместить. В зарубежных он нанесен цветовыми полосами. Как в таком случае вычислить мощность рассеивания, насколько важен цвет?
В старом ГОСТе была табличка соответствий габаритов и мощностей. Отечественные резисторные элементы по-прежнему изготавливают в соответствии с ней. Импортные, кстати, тоже, но они по габаритам уступают нашим. Однако и с ними можно разобраться.

Если не можете решить, к какой группе причислить определенный экземпляр, лучше считать что он слабый в плане мощности. Тогда компонент точно не сгорит.

Важно! Есть резисторные элементы крупные с малой рассеивающей способностью и наоборот. Но в подобных случаях, обозначают этот параметр в маркировке, как и информацию о соединении.

как выглядят резисторы

Определение мощности SMD-резистора по размерам

Так же, как и иные детали, SMD-резисторы рассчитаны на конкретную мощность рассеивания. Но, как её вычислить? Мощность стандартных чип-резисторов, которых сейчас много, можно определить исходя из их размерных характеристик.

Ниже, будет показана табличка №1, в которой выделено соответствие типоразмера СМД-резисторного компонента и его мощности. Также там выделен типовой размер резисторов в дюймовой системе маркировки, а реальные размерные хар-ки указаны в мм.

Так сделали, потому что самой популярной считается система маркировки типоразмера чип-резисторных компонентов в дюймах. Её все эксплуатируют: изготовители, люди занимающиеся поставками и магазины. А для того, чтобы вычислить типовой размер и мощность выделяемую на резисторе, вы должны определить длину и ширину с помощью линейки.
Таблица №1.

Типовой размер (дюймы) Параметры мощности (PR at 70°C) Мощность, Ватт. Длина (L) /Ширина (W), мм.
0075 1/50W 0,02 Ватт 0,3/0,15
01005 1/32W 0,03 Ватт 0,4/0,2
0201 1/20W 0,05 Ватт 0,6/0,3
0402 1/16W, 1/8W 0,063 Вт; 0,125 Ватт 1,0/0,5
0603 1/10W, 1/5W 0,1 Вт; 0,2 Ватт 1,6/0,8
0805 1/8W, 1/4W 0,125 Вт; 0,25 В 2,0/1,25
1206 1/4W, 1/2W 0,25 В; 0,5 В 3,2/1,6
1210 1/2W 0,5 Ватт 3,2/2,5
1218 1W; 1,5W 1 Вт; 1,5 Ватт 3,2/4,8
1812 1/2W, 3/4W 0,5 Вт; 0,75 Ватт 4,5/3,2
2010 3/4W 0,75 Ватт 5,0/2,5
2512 1W; 1,5W; 2W 1 Вт; 1,5 Вт; 2 Ватт 6,4/3,2

Необходимо выделить тот факт, что в колонке (Мощность, PR 70°C) для некоторых типовых размеров указано много значений мощностей. Дело в том, что компании занимающиеся производством, создают разные модели СМД-резисторов. В одних модификациях мощность компонентов для типового размера 0,5 Ватт, а в иной 0,25 Ватт.

К примеру, чип-резисторные элементы серии CRM компании Bourns® рассчитаны на макс. параметры мощности: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Эксплуатируются такие в импульсных питательных источниках в виде токовых сенсоров, токоограничительных резисторов, и так далее.

Об этом необходимо помнить, если вы будете эксплуатировать электрический резистор, мощность которого была установлена исходя из типовых размеров. Еще придется остановиться на минимальном значении мощности, взятом из таблички №1. Увеличить нельзя.

Данные в табличке №1 можно отнести лишь к стандартным SMD-резисторам.
Чаще всего, это чип резисторные компоненты на базе толстенькой плёнки. Они недорогие и самые популярные.

Уже давно известно, что есть немало специальных SMD-резисторов, которые выделяются своими фишками. К таким можно причислить элементы, которые функционируют при высоких температурных нагрузках (до 230°C), в агрессивных условиях среды, миллиомные чип резисторы, СМД резисторы-перемычки.

Их хар-ки, в том числе и мощность рассеивания, может быть отличной от значений, которые указаны в табличке №1 и считаются типовыми для обычных СМД-резисторов, количество которых в электронном графическом документе бывает огромным.

  1. Расчет мощностей рассеивания на резисторах

Произведем расчет
мощностей, рассеиваемых на резисторах,
и выберем резисторы в соответствии с
ГОСТ 28884-90 с 5% запасом мощности.

При расчетах будем
руководствоваться общей формулой
расчета мощности

,

(6.1)

Мощности, рассеиваемые
на резисторах R1, R2, R3,
R4, R5, R6 определяются
следующим образом:

(6.2)

(6.3)

(6.4)

(6.5)

,

(6.6)

,

(6.7)

Произведя подстановку
числовых значений в (6.2)–(6.7), получим:

PR1=((0,18+0,06)∙10-3)2∙15520=0,894
мВт,

PR2=(0,18∙10-3)2∙42910=
1,390 мВт,

PR3=((2,8+0,06)∙10-3)2∙230=1,881
мВт,

PR4=((0,18+0,06)∙10-3)2∙15520=0,894
мВт,

PR5=(0,18∙10-3)2∙42910=
1,390 мВт,

PR6==(2,8∙10-3)2∙2500=19,6
мВт,

Мощность, выделяемая
на резисторах фазовращающей цепочки,
при различной частоте, определяется по
формуле:

(6.8)

Найдем максимальную
мощность, выделяемую в ветвях фазовращающей
цепи при различных диапазонах частот
по формуле (6.8):

f1=10÷50Гц:
P2 =(4/√2)2/26300=0,3
мВт

f2=100÷200Гц:
P1=(4/√2)2/6570=1,2
мВт

В соответствие с
ГОСТ 28884-90 произведем подбор резисторов
с 5% запасом по мощности:

R1:
МЛТ-0,125-16
кОм5%;

R2:
МЛТ-0,125-43
кОм5%;

R3:
МЛТ-0,125-240
Ом5%;

R4:
МЛТ-0,125-51
кОм5%;

R5:
МЛТ-0,125-1,6
Ом5%;

R6:
МЛТ-0,125-2,7
кОм5%;

R7,
R8, R9
: МЛТ-0,125-6,8
кОм5%;

R7’,
R8’, R9’
: МЛТ-0,125-27
кОм5%;

Заключение

В процессе расчета
RC-генератора гармонических
колебаний были изучены схема генератора
и принципы его действия; также был
произведен электрический расчет
генератора, фазовращающей цепи и расчет
номиналов резисторов и конденсаторов.
Был произведен графоаналитический
расчет генератора, определены постоянные
составляющие токов коллектора и базы,
напряжений коллектор-эмиттер и
база-эмиттер, найдены амплитуды токов
и напряжений; Были построены выходные
и входные характеристики транзистора,
графики которых представлены в приложении
А.

Список используемой литературы

1.
Каяцкас А.А. Основы
радиоэлектроники: учебное пособие
для студентов ВУЗов по специальности
«Конструирование и производство
радиоаппаратуры»-М.:Высш.шк.,1988.

2.
Справочник по полупроводниковым диодам,
транзисторам и интегральным схемам/под
общ. ред. Н.Н.Горюнова-М,:Энергия,1972.

3.
Терещук P.M..
Терещук К.М., Седов С.А. Полупроводниковые
приемно-усилительные устройства:
Справочник радиолюбителя-Киев :Hayкова
думка, 1982.

4.
Скаржепа В.А., Сенько В.И. Электроника и
микросхемотехника: Сборник задач/под
общ, ред. Красношеиной, -Киев: Выщя школа,
1989.

5.
Манаев Е.И. Основы радиоэлектроники:
учеб. для вузов. – М.: МИРЭА,

1997–
512 с.

6.
Нефёдов В.И. Основы радиоэлектроники:
учеб. для вузов. – М.: В.Ш., 2000

– 398
с.

7.
Кушнир В.Ф., Ферсман Б.А. Теория нелинейных
электрических цепей. М.:

Связь.,
1974 –383с.

8.
Ушаков В.Н. Основы радиоэлектроники. –
М.: В.Ш., 1979 – 287 с.

9.
Гусев В.Г., ГусевЮ.М. Электроника. – М.:
В.Ш., 1982 – 495 с.

10.
Горбачев Г.Н., Чаплыгин Е.Е. Промышленная
электроника. – М.:

Энергоатомиздат.,
1988 – 320 с.

11.
Методические указания к лабораторным
раб

Резисторы:
Справочник/ В.В. Дубровский, Д.М. Иванов,
Н.Я. Пратусевич и др.; Под ред. И.И.
Четверткова и В.М. Терехова. – 2-е изд.,
перераб. и доп. – М.: Радио и связь, 1991.
-528 с.: ил.

Приложение
А

RC-
генератор гармонических колебаний –
принципиальная схема

RC-
генератор гармонических колебаний –
входная характеристика

RC-
генератор гармонических колебаний –
выходная характеристика

RC-
генератор гармонических колебаний –
перечень элементов

26

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти ивана дорна
  • Как найти спутники сатком на небе
  • Как найти утечку газа газель
  • Как найти соц сети человека зная имя
  • Как исправить текст отсканированного документа