Как найти мотор по моменту

Определим общее
передаточное отношение

Определим статический
момент

Определим
динамический момент.

Угловое ускорение
вала двигателя при разгоне

Момент инерции
нагрузки приведенный к валу двигателя

Момент инерции
редуктора приведенный к валу двигателя
предварительно рассчитывается следующим
образом

Тогда
статический и динамический моменты
нагрузки, приведенные к валу двигателя
должны быть меньше пускового момента
двигателя:

Двигатель ДАТ
21411 проходит по пусковому моменту

3. Кинематический расчет

3.1. Определение общего передаточного отношения

По известным
значениям скоростей на входе nдвиг
и выходе nн определяем
передаточное отношение редуктора по
формуле:

,
где

nдвиг
= 5000 об/мин. (см. табл. 2.1)

Частота вращения
выходного вала редуктора nн
= 20 об/мин (из условия)

Тогда, получаем:

3.2. Определение числа ступеней и распределения общего передаточного отношения по ступеням в соответствии с заданным критерием проектирования эмп

По заданному в ТЗ
критерию быстродействию – находим
число ступеней редуктора и осуществляем
разбивку i0 по
ступеням[1].

Число ступеней
редуктора:

Дополнительно
просчитаем по критерию минимизации
габаритов

Выберем число
ступеней редуктора n=4.

Тогда среднее
передаточное отношение
,
что соответствует опытному условию
i=3.5..4

Выберем i
по ступеням:

Табл. 3.1. Передаточные
отношения

i12

i34

i56

i78

2,5

4.083

4,167

5.833

3.3. Определение чисел зубьев колес редуктора

Назначим число
зубьев на всех шестернях

Число зубьев
ведомых колес для редуктора вычисляется
по формуле:

,
где

k =
2, 4, 6, 8 — номер колеса.

Учитывая
рекомендованный ряд [1], назначаем
количества зубьев колес и шестерен:

Табл. 3.2. Числа
зубьев колес редуктора

№ колеса

1

2

3

4

5

6

7

8

№ элементарной
передачи

I

II

III

IV

Число
зубьев

24

60

24

98

24

100

24

140

Фактическое
передаточное отношение редуктора
рассчитывается по формуле:

Подставляя значения
из табл. 3.1, находим i0:

Погрешность
передаточного отношения находится по
формуле:

Подставляя значения,
получаем:

Условие применимости
расхождения i0 и i
из практических рекомендаций [3]:
.

Так как
,
значит условие выполняется.

По результатам
выполненного расчета изобразим
кинематическую схему редуктора в виде
эскиза без соблюдения масштаба, но таким
образом, чтобы была ясна кинематическая
цепь передачи движения между валами
(рис. 3.1).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

  • 1.  Принцип работы электродвигателей
  • 2.  Однофазные электродвигатели
  • 3.  Мощность и вращающий момент электродвигателя
  • 4.  Защита электродвигателя

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

Вращающий момент

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Вращающий момент электродвигателя

Вращающий момент (T) — это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы — или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.

плечо силы

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

мощность электродвигателя

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Частота вращения электродвигателя

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

мощность электродвигателя

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Одинаковая мощность при различном вращающем моменте

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

вращающий момент электродвигателя

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение ротора

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Изменение вращающего момента в зависимости от Изменения напряжения

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

Потребляемая мощность электродвигателя

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Табличка электродвигателя с одинаковой можностью 50 и 60 Гц

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Характеристика вращающий момент/ частота вращения для электродвигателя переменного тока

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

При увеличении скорости вращения уменьшается вращающий момент, при этом мощность остаётся постоянной

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Постоянный вращающий момент независимо от скорости вращения

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Законы подобия для центробежных насосов

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

Центробежный насос, поперечный разрез

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Вращающий момент пропорционален квадрату скорости вращения, а мощность – кубу скорости вращения

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

Вращающий момент/синхронная частота вращения

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Вращающий момент/синхронная частота вращения

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Номинальный ток электродвигателя при ускорении

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Мощность/диаметр рабочего колеса

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Пусковой ток

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

Время пуска электродвигателя

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Избыточный момент

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

избыточный момент

Расчетный избыточный момент

расчет электродвигателя

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

Мощность и КПД электродвигателя

P1 (кВт) Входная электрическая мощность насосов — это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Содержание

  1. Мощность и вращающий момент электродвигателя. Что это такое?
  2. Мощность и вращающий момент электродвигателя
  3. Работа и мощность
  4. Потребляемая мощность электродвигателя
  5. Момент электродвигателя
  6. Нагрузка насосов и типы нагрузки электродвигателя
  7. Соответствие электродвигателя нагрузке
  8. Время пуска электрдвигателя
  9. Число пусков электродвигателя в час
  10. Мощность и КПД (eta) электродвигателя
  11. Что такое крутящий момент электродвигателя
  12. Выбираем электродвигатель по крутящему моменту
  13. Расчет крутящего момента электродвигателя
  14. Таблица крутящих моментов электродвигателей
  15. Расчет крутящего момента – формула
  16. Расчет онлайн
  17. Видео

Мощность и вращающий момент электродвигателя. Что это такое?

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

Как подобрать двигатель по крутящему моменту

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Работа и мощность

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Как подобрать двигатель по крутящему моменту

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Как подобрать двигатель по крутящему моменту

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Как подобрать двигатель по крутящему моменту

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Как подобрать двигатель по крутящему моменту

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Как подобрать двигатель по крутящему моменту

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Как подобрать двигатель по крутящему моменту

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Как подобрать двигатель по крутящему моменту

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Как подобрать двигатель по крутящему моменту

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

Как подобрать двигатель по крутящему моменту

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Как подобрать двигатель по крутящему моменту

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Как подобрать двигатель по крутящему моменту

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Как подобрать двигатель по крутящему моменту

Постоянный вращающий момент

Как подобрать двигатель по крутящему моменту

Переменный вращающий момент и мощность

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Как подобрать двигатель по крутящему моменту

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

Как подобрать двигатель по крутящему моменту

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Как подобрать двигатель по крутящему моменту

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Как подобрать двигатель по крутящему моменту

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

Как подобрать двигатель по крутящему моменту

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Как подобрать двигатель по крутящему моменту

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Как подобрать двигатель по крутящему моменту

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

Как подобрать двигатель по крутящему моменту

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Источник

Что такое крутящий момент электродвигателя

Как подобрать двигатель по крутящему моменту

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

Как подобрать двигатель по крутящему моменту

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Источник

Расчет крутящего момента электродвигателя

Как подобрать двигатель по крутящему моменту

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.

Виды крутящих моментов:

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Двигатель кВт/об Мном, Нм Мпуск, Нм Ммакс, Нм Минн, Нм
АИР56А2 0,18/2730 0,630 1,385 1,385 1,133
АИР56В2 0,25/2700 0,884 1,945 1,945 1,592
АИР56А4 0,12/1350 0,849 1,868 1,868 1,528
АИР56В4 0,18/1350 1,273 2,801 2,801 2,292
АИР63А2 0,37/2730 1,294 2,848 2,848 2,330
АИР63В2 0,55/2730 1,924 4,233 4,233 3,463
АИР63А4 0,25/1320 1,809 3,979 3,979 3,256
АИР63В4 0,37/1320 2,677 5,889 5,889 4,818
АИР63А6 0,18/860 1,999 4,397 4,397 3,198
АИР63В6 0,25/860 2,776 6,108 6,108 4,442
АИР71А2 0,75/2820 2,540 6,604 6,858 4,064
АИР71В2 1,1/2800 3,752 8,254 9,004 6,003
АИР71А4 0,55/1360 3,862 8,883 9,269 6,952
АИР71В4 0,75/1350 5,306 13,264 13,794 12,733
АИР71А6 0,37/900 3,926 8,245 8,637 6,282
АИР71В6 0,55/920 5,709 10,848 12,560 9,135
АИР71В8 0,25/680 3,511 5,618 6,671 4,915
АИР80А2 1,5/2880 4,974 10,943 12,932 8,953
АИР80В2 2,2/2860 7,346 15,427 19,100 13,223
АИР80А4 1,1/1420 7,398 16,275 17,755 12,576
АИР80В4 1,5/1410 10,160 22,351 24,383 17,271
АИР80А6 0,75/920 7,785 16,349 17,128 12,457
АИР80В6 1,1/920 11,418 25,121 26,263 20,553
АИР80А8 0,37/680 5,196 10,393 11,952 7,275
АИР80В8 0,55/680 7,724 15,449 16,221 10,814
АИР90L2 3/2860 10,017 23,040 26,045 17,030
АИР90L4 2,2/1430 14,692 29,385 35,262 29,385
АИР90L6 1,5/940 15,239 30,479 35,051 28,955
АИР90LА8 0,75/700 10,232 15,348 20,464 15,348
АИР90LВ8 1,1/710 14,796 22,194 32,551 22,194
АИР100S2 4/2850 13,404 26,807 32,168 21,446
АИР100L2 5,5/2850 18,430 38,703 44,232 29,488
АИР100S4 3/1410 20,319 40,638 44,702 32,511
АИР100L4 4/1410 27,092 56,894 65,021 43,348
АИР100L6 2,2/940 22,351 42,467 49,172 35,762
АИР100L8 1,5/710 20,176 32,282 40,352 30,264
АИР112М2 7,5/2900 24,698 49,397 54,336 39,517
АИР112М4 5,5/1430 36,731 73,462 91,827 58,769
АИР112МА6 3/950 30,158 60,316 66,347 48,253
АИР112МВ6 4/950 40,211 80,421 88,463 64,337
АИР112МА8 2,2/700 30,014 54,026 66,031 42,020
АИР112МВ8 3/700 40,929 73,671 90,043 57,300
АИР132М2 11/2910 36,100 57,759 79,419 43,320
АИР132S4 7,5/1440 49,740 99,479 124,349 79,583
АИР132М4 11/1450 72,448 173,876 210,100 159,386
АИР132S6 5,5/960 54,714 109,427 120,370 87,542
АИР132М6 7,5/950 75,395 150,789 165,868 120,632
АИР132S8 4/700 54,571 98,229 120,057 76,400
АИР132М8 5,5/700 75,036 135,064 165,079 105,050
АИР160S2 15/2940 48,724 97,449 155,918 2,046
АИР160М2 18,5/2940 60,094 120,187 192,299 2,884
АИР180S2 22/2940 71,463 150,071 250,119 4,288
АИР180М2 30/2940 97,449 214,388 341,071 6,821
АИР200М2 37/2950 119,780 275,493 383,295 16,769
АИР200L2 45/2940 146,173 380,051 584,694 19,003
АИР225М2 55/2955 177,750 408,824 710,998 35,550
АИР250S2 75/2965 241,568 628,078 966,273 84,549
АИР250М2 90/2960 290,372 784,003 1161,486 116,149
АИР280S2 110/2960 354,899 887,247 1171,166 212,939
АИР280М2 132/2964 425,304 1233,381 1488,563 297,713
АИР315S2 160/2977 513,268 1231,844 1693,786 590,259
АИР315М2 200/2978 641,370 1603,425 2116,521 962,055
АИР355SMA2 250/2980 801,174 1281,879 2403,523 2163,171
АИР160S4 15/1460 98,116 186,421 284,538 7,457
АИР160М4 18,5/1460 121,010 229,920 350,930 11,375
АИР180S4 22/1460 143,904 302,199 402,932 15,110
АИР180М2 30/1460 196,233 470,959 588,699 27,276
АИР200М4 37/1460 242,021 532,445 847,072 46,952
АИР200L4 45/1460 294,349 647,568 941,918 66,229
АИР225М4 55/1475 356,102 997,085 1317,576 145,289
АИР250S4 75/1470 487,245 1218,112 1559,184 301,605
АИР250М4 90/1470 584,694 1461,735 1871,020 467,755
АИР280S4 110/1470 714,626 2072,415 2429,728 578,847
АИР280М4 132/1485 848,889 1697,778 2886,222 1612,889
АИР315S4 160/1487 1027,572 2568,931 3802,017 2363,416
АИР315М4 200/1484 1287,062 3217,655 4247,305 3603,774
АИР355SMA4 250/1488 1604,503 3690,356 4492,608 8985,215
АИР355SMВ4 315/1488 2021,673 5054,183 5862,853 12534,375
АИР355SMС4 355/1488 2278,394 5012,466 6151,663 15493,078
АИР160S6 11/970 108,299 205,768 314,067 12,021
АИР160М6 15/970 147,680 339,665 443,041 20,675
АИР180М6 18,5/970 182,139 400,706 546,418 29,324
АИР200М6 22/975 215,487 517,169 711,108 50,209
АИР200L6 30/975 293,846 617,077 881,538 102,846
АИР225М6 37/980 360,561 721,122 1081,684 186,050
АИР250S6 45/986 435,852 784,533 1307,556 440,210
АИР250М6 55/986 532,708 1012,145 1811,207 633,922
АИР280S6 75/985 727,157 1454,315 2326,904 1090,736
АИР280М6 90/985 872,589 1745,178 2792,284 1657,919
АИР315S6 110/987 1064,336 1809,372 2873,708 4044,478
АИР315М6 132/989 1274,621 2166,855 3696,400 5735,794
АИР355МА6 160/993 1538,771 2923,666 3539,174 11848,540
АИР355МВ6 200/993 1923,464 3654,582 4423,968 17118,832
АИР355MLA6 250/993 2404,330 4568,228 5529,960 25485,901
AИР355MLB6 315/992 3032,510 6065,020 7278,024 40029,133
АИР160S8 7,5/730 98,116 156,986 235,479 13,246
АИР160М8 11/730 1007,329 1712,459 2417,589 181,319
АИР180М8 15/730 196,233 333,596 529,829 41,994
АИР200М8 18,5/728 242,685 509,639 606,714 67,952
АИР200L8 22/725 289,793 579,586 724,483 88,966
АИР225М8 30/735 389,796 701,633 1052,449 214,388
АИР250S8 37/738 478,794 861,829 1196,985 481,188
АИР250М8 45/735 584,694 1052,449 1520,204 695,786
АИР280S8 55/735 714,626 1357,789 2143,878 1071,939
АИР280М8 75/735 974,490 1754,082 2728,571 1851,531
АИР315S8 90/740 1161,486 1509,932 2671,419 4413,649
АИР315М8 110/742 1415,768 2265,229 3964,151 6370,957
АИР355SMA8 132/743 1696,635 2714,616 3902,261 12215,774
AИР355SMB8 160/743 2056,528 3496,097 4935,666 18097,443
AИР355MLA8 200/743 2570,659 4627,187 6940,781 26991,925
AИР355MLB8 250/743 4498,654 7647,712 10796,770 58032,638

Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Как подобрать двигатель по крутящему моменту

Расчет онлайн

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

тут будет калькулятор

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Источник

Видео

Мощность или крутящий момент? Что важнее на треке, а что в городе? Учимся читать график двигателя.Скачать

Мощность или крутящий момент? Что важнее на треке, а что в городе? Учимся читать график двигателя.

Мощность или Крутящий момент, что Важнее!? Бензин или ДизельСкачать

Мощность или Крутящий момент, что Важнее!? Бензин или Дизель

Как собрать низовой и тяговой двигатель? Как увеличить крутящий момент на низких оборотах мотора?Скачать

Как собрать низовой и тяговой двигатель? Как увеличить крутящий момент на низких оборотах мотора?

Сколько нужно мощности автомобилю в городе и на трассе, какую мощность двигателя выбрать?Скачать

Сколько нужно мощности автомобилю в городе и на трассе, какую мощность двигателя выбрать?

Крутящий момент, обороты и мощность двигателя. Простыми словамиСкачать

Крутящий момент, обороты и мощность двигателя. Простыми словами

Этого Вам Никто Не расскажет. Крутящий Момент На 2й Скорости. Makita DF333DСкачать

Этого Вам Никто Не расскажет. Крутящий Момент На 2й Скорости. Makita DF333D

Что такое крутящий момент, обороты и мощность двигателя? Чем отличаются и, какой показатель важнееСкачать

Что такое крутящий момент, обороты и мощность двигателя? Чем отличаются и, какой показатель важнее

ДЕЙСТВИТЕЛЬНО ВЫЖНЫЕ характеристики Шагового Двигателя | по версии DARXTONСкачать

ДЕЙСТВИТЕЛЬНО ВЫЖНЫЕ характеристики Шагового Двигателя | по версии DARXTON

Энергетический расчёт и выбор на этой основе исполнительных двигателей

Время на прочтение
6 мин

Количество просмотров 2.6K

Блог компании Специальный Технологический Центр

Разберём, как можно выбрать исполнительные двигатели для своего проекта, самоделки и иных целей. Будет использоваться подход к синтезу, который получил название синтеза цифровой системы по ее непрерывному аналогу. Начальным этапом процесса проектирования является выполнение энергетического расчёта и выбор на этой основе исполнительных двигателей, механических передач и силовых преобразователей (усилителей мощности), в совокупности обеспечивающих возможность реализации силового воздействия на объект управления.

1. Энергетический расчёт.

Целью энергетического расчета является рациональный выбор исполнительных элементов приводов системы, которые обладают энергетическими возможностями для обеспечения механического объекта управления по заданному закону во всех предусмотренных режимах работы. Задача энергетического расчета состоит в анализе сил (моментов сил) и скоростей, которые должны развивать приводы системы и выборе исполнительных элементов, энергетически обеспечивающих возможность получения требуемых сил и скоростей движения механических объектов управления и удовлетворяющих заданным критериям эффективности такого выбора.

Считаем, что динамическая жёсткость приводов бесконечно высока и поэтому взаимовлияние степеней подвижности манипулятора не проявляется. Тогда можно считать, что при движении одного из звеньев второе звено остаётся неподвижным.

Примем себе техническое задание:

Спроектировать привода для двухзвенного плоского манипулятора робота.  Возьмём для этого упрощенную модель двухзвенного механизма манипулятора (рис.1), имеющего «плечевое» и «локтевое» звенья, причем рабочий орган (РО) условно считается закрепленным непосредственно на конце «локтевого» звена.

Рисунок 1.Расчётная кинематическая схема манипуляционного механизма.

Рисунок 1.Расчётная кинематическая схема манипуляционного механизма.

На рисунке приняты обозначения:

q1 и q2 — обобщённые координаты манипуляционного механизма. Они представляют собой углы поворота «плечевого» и «локтевого» звеньев манипулятора, соответственно. Угол q1 определяется как отклонение «плечевого» звена от вертикали, а угол q2 определяется как отклонение «локтевого» звена от продольной оси «плечевого» звена. Положительные значения этих углов соответствуют вращению звеньев по часовой стрелке;

L1 и L2 — длины «плечевого» и «локтевого» звеньев, соответственно. L2 — расстояние от оси поворота «локтевого» звена до центра масс рабочего органа с объектом манипулирования;

m1 и m2 — массы «плечевого» и «локтевого» звеньев, соответственно.

Считается, что каждая из этих масс сосредоточена в центре соответствующего звена;

m0 — суммарная масса рабочего органа и объекта манипулирования;

mДВ1 и mДВ2 — массы исполнительных двигателей;

V и a — скорость и ускорение конечной точки манипулятора соответственно;

R — расстояние от оси вращения «плечевого» звена до конечной точки манипулятора;

M1 и M2 — моменты сил, развиваемые приводами и действующие на звенья манипулятора.

Таблица 1. Параметры манипуляционного механизма:

Параметр

условное обозначение

значение

Длина «плечевого» звена манипуляционного механизма, м

L.1

0.8

Расстояние от оси поворота «локтевого» звена до центра масс рабочего органа с объектом манипулирования, м

L.2

0.2

Диапазон изменения перемещенй «плечевого» звена манипулятора, град

q.1

-30… +120

Диапазон изменения » локтевого» звена манипулятора, град

q.2

-60 … +120

Масса «плечевого» звена, кг

m1

20

Масса «локтевого» звена, кг

m2

15

Масса рабочего органа, кг

mс

6

Масса объекта манипулирования, кг

mо

2

Таблица 2. Основные требования к исполнительной системе робота:

Параметр

условное обозначение

значение

Допустимая статическая погрешность рабочего органа, мм

ΔX.доп.ст

0.05

Допустимая динамическая погрешность рабочего органа, мм

ΔX.доп.дин

0.1

Максимальная скорость рабочего движения, м/с

V.p.max

0.5

Максимальное ускорение рабочего движения,

а.p.max

0.2

Максимальная скорость рабочего органа при «переброске», м/с

V.п.max

0.75

Время разгона до максимальной скорости, с

t.раз

0.3

Перерегулирование при малом ступенчатом воздействии, %

σ.доп

0

Относительная длительность “переброски” в рабочем цикле, %

t.пер.отн

0.3

1.1 Выбор двигателя и редуктора привода второго звена.

Кинематический анализ:

Найдём максимальные значения угловой скорости и углового ускорения для второго звена манипулятора. Ω2max=(Vп.max)/L2=3.75 рад/с

Максимальное угловое ускорение 2-го звена: E2max=(Vп.max)/(L2*tраз)=12.5 рад/с2

Максимальная угловая скорость рабочего движения 2-го звена:Ω2pmax=(Vp.max)/L2=2.5 рад/с

Максимальное угловое ускорение рабочего движения 2-го звена:E2pmax=(ap.max)/L2=1 рад/с2

Рисунок 2 Схема сил, приложенных к локтевому звену.

Рисунок 2 Схема сил, приложенных к локтевому звену.

Максимальный суммарный момент сил  M2max , который должен развивать привод второго звена, определяется по формуле.

η — КПД механической передачи.

Статический момент относительно оси вращения 2-го звена определяется по формуле:

где g =9.807 м/с2 —  ускорение свободного падения.

Mст2  имеет максимальное значение при выполнении условия sin(q1+q2)=1. Mст2 = 30.4 Н*м.

Для вычисления динамического момента, действующего на второе звено, находим эквивалентный момент инерции Jэкв2 этого звена по формуле:

Jэкв2 = 0.62 кг*м2

Максимальное значение динамического момента (для режима переброски) получим:

Мдин2max=Jэкв2*E2max=7.75 Н*м       

С целью обеспечения точной работы приводов манипулятора могут быть

выбраны волновые или планетарные редукторы. Предварительно выбираем волновой редуктор HDUR-32 компании Harmonic drive gearing. По данным производителя КПД такого редуктора η2̗ = 0.85 В этом случае максимальный суммарный момент сил M2max , который должен развивать привод второго звена:

М2max=1/η*(Мдин2max+Mcт2mах)=44.88 Н*м

Оценка мощности двигателя второго звена:

Максимальное значение мощности механического движения второго звена:P2max=M2max*Ω2max=168.3 Вт

Требуемую мощность двигателя второго звена P2 выбираем из условия.

P2≈(2…3)*P2max.  P2= 420 Вт

Выбор исполнительного двигателя производим по требуемой мощности. Выбираем двигатель TETRA 85SR2.2, обладающий следующими параметрами:

Pн2 = 650 Вт — номинальная мощность.

Мн2 = 2.2  ̗- номинальный момент Н*м.

 J дв2 =1.8Έ10˕4 кг*Ем2  — момент инерции ротора.

mдв2 = 4.2 кг — масса двигателя.

 n2ном  =  3000 об/мин — номинальная частота вращения.

Rя  = 19.76  Ом — активное сопротивление якоря.

U2ном = 250 В — номинальное напряжение якоря.

Определение требуемого передаточного отношения и марки редуктора.

Оценка значения передаточного отношения редуктора привода второго звена:i_p2опт=√(P2/(Jдв2*Ω2max*E2max ))= 223.1

Выбираем редуктор HDUR FDD-32-260, обладающий следующими параметрами:

iр2 = 260 — передаточное отношение.

mp2 ̗= 1.7 кг- масса редуктора.

Для дальнейших расчётов и выбора компонентов привода первого звена принимаем массу привода второго звена равной:

m_пр2=m_дв2+m_р2=5.9 кг

Теперь проверим выполнения необходимых условий правильности выбора

двигателя и редуктора. Проверяем выбранный двигатель по моменту:M_2=J_дв2*E_2max*i_р2+M_2max/i_р2 =0.757 Н*м

M_2=0.757 < M_н2=2.2

Следовательно, подсистема «двигатель-редуктор» способна создавать момент, не меньше требуемого.

1.2 Выбор двигателя и редуктора привода первого звена.

Кинематический анализ манипуляционного механизма

Расчёты проводятся в соответствии с кинематической схемой и схемой действия сил, представленной на рис. 3

Рисунок 3 Схема манипулятора

Рисунок 3 Схема манипулятора

В таком положении момент М1 первого звена будет иметь значения, наиболее близкие к максимально возможным значениям. Скорость вращения первого звена Ω1 определяется по формуле: Ω1=V/R R=√(L1^2+L2^2+2L1*L2*cos⁡(q2))

где q2 — обобщённая координата, характеризующая положение второго звена

относительно продольной оси первого звена. Таким образом, видно, что скорость вращения первого звена Ω1 зависит от обобщенной координаты q2

Угловое ускорение, с которым движется первое звено, определяется по формуле:E1=V/(tp*R)

Следовательно, угловое ускорение тоже зависит от q2.

Силовой анализ манипуляционного механизма.

Определяется момент сил, который должен развивать привод первого звена. При этом считаем, что силы приложены в центрах масс первого и второго звеньев, рабочего органа и объекта манипулированияM1=1/ƞ*(Мдин1+Мст1)

Статический момент Мст1 действующий относительно оси поворота первого звена, зависит от обобщённых координат:

Динамический момент Mдин1 , зависящий от углового ускорения ε1 и

эквивалентного момента инерции Jэкв1 вычисляется по формуле:

Эквивалентный момент инерции манипуляционного механизма, перемещаемого первым приводом, можно оценить по формуле:

где ρ — расстояние от оси вращения первого звена до центра масс второго звена, причём

Максимальное значение суммарного момента М1 можно определить, варьируя значения переменных q1 и q2. Для упрощения решения задачи будем рассматривать конфигурацию манипулятора, представленную на рис. 3, при которой рабочий орган находится на горизонтальной прямой линии, проходящей через ось вращения первого звена. Тогда между переменными q1 и q2 будет существовать связь следующего вида:

КПД редуктора привода первого звена примем η1̗0.85

Оценка мощности механического движения первого звена.

Для определения максимального значения мощности механического движения первого звена воспользуемся графиком зависимости требуемой мощности P1 от обобщенной координаты q2.

Рисунок 4 Зависимость мощности от угла поворота

Рисунок 4 Зависимость мощности от угла поворота

P1max = 303 Вт. Примем q2pmax = 58 град.

1.3 Выбор двигателя привода первого звена.

Выбираем двигатель по мощности из расчета P1≈(2…3)*P1max. P1 = 2.5 * P1max = 757.5 Вт.

Выбираем двигатель ESA 3L обладающий следующими параметрами:

Pн1 = 800 Вт — номинальная мощность.

Мн1 = 1.75 Н*м — номинальный момент.

Jдв1 = 0.64 * 10^-4 кг*м^2 — момент инерции ротора.

Mдв1 = 3.05 кг – масса двигателя.

n1ном = 3000 обмин — номинальная частота вращения.

Rя1 = 5.24 Ом — сопротивление якоря.

U1ном = 250 В — номинальное напряжение якоря.

Iяном = 2.5 А — номинальный ток якоря.

Tэ = 0.00275  — электромагнитная постоянная времени.

Вычислим номинальную угловую скорость двигателя:

Выбираем редуктор аналогичный редуктору второго звена HDUR-32-260

обладающий следующими параметрами:

i = 260 — передаточное отношение.

m 1.7 кг- масса редуктора.

Формула перевода момента в мощность

Автор удалён.

Как известно — стенды измеряют момент с колёс, (или все-таки мощность напрямую?) а мощность получается путём пересчёта.
Вот нашёл такую формулу, теперь каждый может проверить свой график.

Формула расчета мощности в зависимости от крутящего момента и оборотов двигателя:

P = Mкр х N : 9549, где:

Р — мощность в кВт (кило Ваттах)
Mкр — крутящий момент в Hм (Ньютона метрах)
N — обороты мотора об/мин
9549- это коэффициент, что бы не возится с косинусами альфа и обороты подставлять в об/мин.

Например, если мотор выдает 357 Нм момента при 4400 об/мин, его мощность в киловаттах:
357 x 4400 : 9549 =164,5 (кВт)

или

164.5 х 1.36 = 223,72 л.с.

Я свой график проверил))

PS: Так я прав: Первично на барабанах снимают момент в Нм?
А силы получают расчётом?

Войдите или зарегистрируйтесь, чтобы писать комментарии, задавать вопросы и участвовать в обсуждении.

Понравилась статья? Поделить с друзьями:
  • Как найти силу реакции сопротивления
  • Как найти массу соли nacl
  • Как найти сумму углов семиугольника если
  • Как найти все четные числа в excel
  • Как найти все распечатанные документы