Как найти начальное давление в изотермическом процессе

Задача 1.
В закрытом сосуде емкостью V
= 0,6 м3
содержится азот при давлении р1
= 0,5 МПа и температуре t1
= 20 C.
В результате охлаждения сосуда азот,
содержащийся в нем, теряет 105 кДж теплоты.
Принимая теплоемкость азота постоянной,
определить, какие давление и температура
(C)
устанавливаются в сосуде после охлаждения.

Решение.

Количество отводимой
теплоты равно:

Q
= mc(t2
t1).

Откуда следует,
что температура азота после охлаждения
будет равна:


.

Массу азота
определим из уравнения Клапейрона:


кг.

Массовая теплоемкость
азота при постоянном объеме определяется
как для двухатомного газа. По Приложению
1 ПЗ 4 сМ
= 20,93 кДж/(кмольК):


кДж/(кгК).

Тогда

C.

Так как азот
охлаждался в емкости с постоянным
объемом, то давление азота после
охлаждения определим из уравнения для
изохорного процесса:



МПа.

Ответ: t2
= – 20,7 C,
р2
= 0,43 МПа.

Задача 2.
В установке воздушного отопления внешний
воздух при t1
= – 15 C
нагревается в калорифере при р
= const
до 60 C.
Какое количество теплоты надо затратить
для нагревания 1010 м3
наружного воздуха? Давление воздуха
считать равным 755 мм рт.ст.

Решение.

Количество теплоты,
подводимое к воздуху, будет равно:

Q
= mcр(t2
t1).

Массу воздуха
определим из уравнения Клапейрона:



кг.

Массовая теплоемкость
воздуха при постоянном давлении
определяется как для двухатомного газа.
По Приложению 1 ПЗ 4 срМ
= 29,31 кДж/(кмольК):


кДж/(кгК).

Тогда Q
= mcр(t2
t1)
= 1372 
1,012 
(60 – (–15) = 104,2 МДж.

Ответ: Q
= 104,2 МДж.

Задача 3.
25 кг воздуха при t
= 27 C
изотермически сжимаются до тех пор,
пока давление не становится равным 4,15
МПа. На сжатие затрачивается работа L
= – 8,0 МДж. Найдите начальное давление
и объем, конечный объем и теплоту,
отведенную от воздуха.

Решение.

Так как при
изотермическом процессе U
= 0, то Q
=
L
= – 8,0 МДж.

Начальное давление
определим из выражения по определению
количества теплоты для изотермического
процесса:



.

Подставив в
полученную формулу

,
окончательно получим:

МПа.

Начальный объем
определим из уравнения Клапейрона:



м3.

Конечный объем
определим из уравнения изотермического
процесса:



м3.

Ответ: р1
= 0,101 МПа, V1
= 21,3 м3,
V2
= 0,518 м3,
Q
= – 8,0 МДж.

Задача 4.
В двигателе Дизеля топливо, впрыскиваемое
в цилиндр, самовоспламеняется при
соприкосновении со сжатым воздухом,
имеющим температуру большую, чем
температура воспламенения топлива.

Определите
минимальную необходимую степень сжатия

= 1/2
и давление в конце сжатия р2,
если температура воспламенения топлива
равна 630 C.
Перед началом сжатия воздух в цилиндре
имеет параметры р1
= 0,097 МПа, t1
= 60 C.
Сжатие считать адиабатным. Задачу
решить, не учитывая зависимости
теплоемкости от температуры и принимая
k
= 1,40.

Решение.

Давление
в конце сжатия определим из уравнения
адиабатного процесса:



МПа.

Отношение 1/2,
то есть степень сжатия
определим из другого уравнения адиабатного
процесса:



.

Ответ: р2
= 3,19 МПа,
= 12,1.

Задача 5.
Азот массой 1 кг в начальном состоянии
имеет параметры р1
= 2,5 МПа и
t1
= 700 C.
После политропного расширения (показатель
политропы n
= 1,18) его давление р2
= 0,1 МПа.
Определите изменение внутренней энергии
u1-2,
количество теплоты q1-2,
сообщенное азоту в процессе 1-2, и работу
расширения l1-2.

Решение.

Сначала определим
температуру газа в конце процесса
расширения:



К.

Изменение удельной
внутренней энергии при совершении
политропного процесса определяется по
формуле:

u1-2
= c(T2
T1)
=

кДж/кг.

Удельное количество
теплоты, сообщенное азоту в процессе
1-2, при совершении политропного процесса
определяется по формуле:

q1-2
= cn(T2
T1)
=

,

где

– показатель адиабаты для двухатомных
газов.

Тогда q1-2
=

кДж/кг.

Удельная работа
расширения при совершении политропного
процесса определяется по формуле:

l1-2
=

кДж/кг.

Проверку сделаем
по уравнению первого закона термодинамики:

u1-2
= q1-2
l1-2
= 345 – 624 = –279 
–283 кДж/кг, т.е. задача решена верно.

Ответ: u1-2
= –283
кДж/кг, q1-2
= 345 кДж/кг, l1-2
= 624 кДж/кг.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Для изотермического процесса характерен определенный процесс, который происходит с газовым веществом, который в свою очередь имеет неизменную массу и постоянную неизменяемую температуру вещества.

Изотермический процесс для температуры газа, основные формулы и величины

Формулы

Изотермический процесс характеризует состояние газа и данное состояние записывается следующими формулами:

[p_{1} V_{1}=v R T]

[p_{2} V_{2}=v R T]

Изотермический процесс для системы координат

Характерные изотермические процессы   зачастую отражают на термодинамических графиках и диаграммах.

Если рассмотреть подробно график можно увидеть линию, именно ее и принято называть изотермой. Она непосредственно является основной характеристикой процесса.

Изотермический процесс для системы координат

Изотермический процесс — закон Бойля-Мариотта

Разделим уравнение для второго состояния газа на выражение первого состояния и получим основное уравнение изотермического процесса.

[frac{p_{2} V_{2}}{p_{1} V_{1}}=1] или [p V=mathrm{const}] (постоянное значение)

Полученное уравнение и будет называться законом Бойля-Мариотта.

Данный процесс осуществляется с использованием тепловой энергии.

В случае, когда объем увеличивается, или отводится, для его уменьшения.

Составим первое значение термодинамики.

Затем постепенно получим уравнение для определения работы.

А также вычисления внутренней энергии и количества теплоты тела при изотермическом процессе.

[delta Q=d cup+d A=frac{i}{2} v R d T+p d V]

Температура является неизменной, поэтому, изменение значения внутренней энергии будет равняться нулевому значению. [(d cup=0)].

Из этого следует, что для изотермического процесса все подводимое тепло направлено  на работу, которую совершает газ:

[ Delta Q=int_{V_{1}}^{V_{2}} d A ]

где:

  • [delta Q] — тепло элементарного характера, которое подводится ко всей системе;
  • dA  — работа элементарного типа, совершаемая газом  в изотермическом процессе; 
  • i —  количество  свободных степеней  газовых молекул; 
  • R —   газовое значение постоянной; 
  • d —   значение молей для газа;
  • V1— первоначальное значение объема газа;
  • V2— окончательное значение объема газа.

[A=int_{V_{1}}^{V_{2}} p d V]

Давление газа, которое зависит от уравнения газа в идеальном состоянии.

[p V=v R T rightarrow p=frac{v R T}{V}]

Подставим вышеуказанное выражение в подынтегральное выражение:

[A=int_{V_{1}}^{V_{2}} frac{v R T}{V}=v R T int_{V_{1}}^{V_{2}} frac{d V}{V}=mathrm{u} R T ln left(frac{V_{2}}{V_{1}}right)]

Составленное уравнение необходимо  определения значения работы, которую совершает газ  в изотермическом процессе.

[ A=v R T ln left(frac{p_{1}}{p_{2}}right) ]

[ Delta Q=A ]

Нет времени решать самому?

Наши эксперты помогут!

Как найти изотермический процесс — примеры решения задач

Пример №1

Основное содержание задания: газ идеального состояния, имеет способность расширяется, имея постоянную температуру, от объема.

[V_{1}=0.2 mathrm{~m}^{3}]

[V_{2}=0.6 mathrm{~m}^{3}]

Известно  сила давления во втором состоянии и  оно равняется [p_{2}=1 cdot 10^{5} mathrm{Pi a}].

Определить:

  • Величину изменения внутренней энергии газа;
  • Значение работы, которую совершает газовое вещество в данном процессе;
  • Какое необходимое количество теплоты получает газ в процессе работы.

Методика решения:

Внутренняя энергия газа неизменна, так как процесс который рассматривается в задаче, является изотермическим:

[Delta mathrm{U}=0]

Из основного закона термодинамики можно определить:

[Delta cup=A]

[A=v R T ln left(frac{V_{2}}{V_{1}}right)]

Составим и запишем уравнение, которое отражает окончательное (конечное) состояние газа:

[p_{2} V_{2}=v R T rightarrow T=frac{p_{2} V_{2}}{v R}]

Подставим в уравнение для температуры вышеизложенные формулы и получим решение:

[A=v R frac{p_{2} V_{2}}{v R} ln left(frac{V_{2}}{V_{1}}right)=p_{2} V_{2} ln left(frac{V_{2}}{V_{1}}right) .]

Следовательно, все величины расположены в международной системе единиц (СИ), можно провести вычисления и определить неизвестные значения:

[A=0.6 cdot 10^{5} ln left(frac{0.6}{0.2}right)=0.6 cdot 10^{5} cdot 1.1=6.6 cdot 10^{4} text { (Дж) }]

Ответ задачи:

  • значение изменения внутренней энергии газа в рассматриваемой процессе равно нулевому значению.
  • работа, которая совершается в процессе газовым веществом равняется  [6,6 cdot 10^{4} text { Дж }].
  • Необходимое количество тепловой энергии равно: [6,6 cdot 10^{4} text { Дж }].

Пример №2

Задание: изображен график, где изменяется идеальное состояние массы газа равное m в координатных осях p (V).

Нужно перенесите данный процесс на координатные оси в p(T).

Пример решения задачи 1

На данном графике изображен круговой процесс.

Где:

  1. Прямая 1-2  является изотермическим процессом с константой [(T=text { cons } t)].  Следовательно  значение объема будет уменьшается [(mathrm{V} downarrow)],  а давления соответственно расти [(p uparrow)].
  2. Прямая 2-3  отражает изобарический процесс [(p=text { const })]

const). Для данного процесса характерно увеличение объема  [mathrm{V} uparrow] и  применяя закон Гей-Люссака,  увеличение [Т uparrow]

  • Прямая (отрезок) 3-1  является изохорным процессом объем будет постоянной величиной  [(mathrm{V}=text { const })], а  [p downarrow],а исходя из  закона Шарля [T downarrow].

Все перечисленные процессы изобразим на координатных осях  p(T).

Пример решения задачи 2

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 6. Изотермический, изобарный и изохорный процессы
Напечатано:: Гость
Дата: Понедельник, 29 Май 2023, 19:06

Оглавление

  • Изотермический, изобарный и изохорный процессы
  • Изотермический процесс
  • Изобарный процесс
  • Изохорный процесс
  • Примеры решения задач
  • Упражнение 5

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти (p, V, T, m, M). Если при постоянных массе и молярной массе ещё один из макропараметров (p, V, T), входящих в уравнение состояния идеального газа, не изменяется, то такие процессы называют изопроцессами.

Изотермический процесс. Процесс изменения состояния физической системы при постоянной температуре (T = const) называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона–Менделеева следует:

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля–Мариотта.

Справедливость закона Бойля–Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

От теории к практике

1. Почему пузырьки воздуха, находящиеся в жидкости, поднимаясь вверх, увеличиваются в объёме?

2. Если, не отрываясь, выпить из пластиковой бутылки газированную воду, то можно обнаружить, что бутылка деформируется. Почему?

Рис.
Рис. 22

График изотермического процесса, совершаемого идеальным газом, в координатах (p, V) представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля–Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

От теории к практике

Изобразите графики изотермического процесса в координатах (p, T) и (V, T).

Интересно знать

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. К огда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел. ↑

Изобарный процесс. Процесс изменения состояния газа при постоянном давлении (p = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778–1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона–Менделеева:

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Рис.
Рис. 23

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

От теории к практике

Можно ли считать расширение газа при медленном нагревании его в цилиндре с подвижным поршнем изобарным процессом?

Рис.
Рис. 24

Поскольку V ~ T, то в координатах (V, T) график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах (V, T) можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

От теории к практике

Изобразите графики изобарного процесса в координатах (p, V) и (p, T).

Изохорный процесс. Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746–1823)*.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона–Менделеева:

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Рис.
Рис. 25

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

От теории к практике

Идеальный газ определённой массы изохорно охлаждают так, что его температура уменьшается от t1 = 327 °С до t2 = 7 °С. Во сколько раз уменьшается давление газа?

Рис.
Рис. 26

В координатах (p, T) график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах (p, T) можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной молярной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

От теории к практике

Изобразите графики изохорного процесса в координатах (p, V) и (V, T).

img

img

1. Как связаны давление и объём идеального газа при изотермическом процессе?

2. Как связаны объём и абсолютная температура идеального газа при изобарном процессе?

3. Как связаны давление и абсолютная температура идеального газа при изохорном процессе?

4. При выполнении каких условий справедлив каждый из законов изопроцессов в реальном газе?

5. Объём идеального газа определённой массы и неизменного химического состава изобарно увеличили в b = 1,5 раза, а затем давление газа изохорно уменьшили в c = 3 раза.

а) Как изменилась абсолютная температура газа в результате первого процесса?

б) Как изменилась абсолютная температура газа в результате второго процесса?

в) Во сколько раз начальная абсолютная температура газа отличается от его конечной температуры?

Рис.
Рис. 27

6. На рисунке 27 представлен график трёх процессов изменения состояния идеального газа определённой массы и неизменного химического состава.

а) Какому процессу соответствует участок 1 rightwards arrow 2 графика? Во сколько раз увеличилось давление газа в этом процессе?

б) Какому процессу соответствует участок 2 rightwards arrow 3 графика? Во сколько раз увеличились объём и абсолютная температура газа в этом процессе?

в) Какому процессу соответствует участок 3 rightwards arrow 4 графика? Как и во сколько раз изменились объём и давление газа в этом процессе?

г) Во сколько раз следует уменьшить температуру газа, чтобы изохорно перевести газ из состояния 4 в состояние 2?

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему. ↑

Примеры решения задач

Решение. На участке 1 rightwards arrow 2 объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход 1 rightwards arrow 2 colon space p space equals space const, V upwards arrow, T upwards arrow, V subscript 2 space equals space 4 V subscript 1T subscript 2 space equals space 4 T subscript 1 space rightwards double arrow
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:

переход 2 rightwards arrow 3 colon space V space equals space const, T downwards arrow, p downwards arrowp subscript 3 space equals space T subscript 3 over T subscript 2 p subscript 2 space equals space 1 fourth p subscript 2 rightwards double arrow
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля–Мариотта, увеличение давления газа в 4 раза:

переход 3 rightwards arrow 1 colon space T space equals space const, V downwards arrowp upwards arrow rightwards double arrow
происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах (p, V) и (p, T) (рис. 29, а, б).

Рис.

Рис. 29

Пример 2. При изотермическом расширении идеального газа определённой массы его объём увеличился от V1 = 2,0 л до V2 = 5,0 л, а давление уменьшилось на Δp = –15 кПа. Определите первоначальное давление газа.

Дано:
V1 = 2,0 л = 2,0 · 10–3 м3
V2 = 5,0 л = 5,0 · 10–3 м3
Δp = –15 кПа = –1,5 · 104 Па

р1 — ?

Решение: Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля–Мариотта, т. е. p subscript 1 V subscript 1 space end subscript equals space p subscript 2 V subscript 2. С учётом того, что p subscript 2 space equals space p subscript 1 space end subscript plus space increment p, получим:

p subscript 1 V subscript 1 space equals space left parenthesis p subscript 1 plus increment p right parenthesis V subscript 2.

Откуда       fraction numerator increment p V subscript 2 over denominator V subscript 1 minus V subscript 2 end fraction.

p subscript 1 space equals space fraction numerator negative 1 comma 5 times 10 to the power of 4 space Па times 5 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed minus 5 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed end fraction space equals space 2 comma 5 times 10 to the power of 4 space Па space equals space 25 space кПа.

Ответ: p subscript 1 space equals space 25 space кПа.

Материал повышенного уровня

Пример 3. В двух сосудах вместимостью V1 = 20 л и V2 = 30 л находятся химически не реагирующие идеальные газы, давления которых p1 = 1,0 МПа и p2 = 0,40 МПа соответственно. Определите давление газов в сосудах после того, как их соединили тонкой короткой трубкой. Температура газов до и после соединения сосудов одинаковая.

Дано:
V1 = 20 л = 2,0 · 10-2 м3
V2 = 30 л = 3,0 · 10-2 м3
p1 = 1,0 МПа = 1,0 · 106 Па
p2 = 0,40 МПа = 4,0 · 105 Па
T = const

р — ?

Решение: Давление смеси газов равно сумме парциальных давлений (закон Дальтона): p equals p subscript 1 superscript apostrophe plus p subscript 2 superscript apostrophe. Найдём парциальное давление каждого газа после соединения сосудов. Так как температура и массы газов не изменяются, то начальное и конечное состояния каждого газа связаны законом Бойля–Мариотта, т. е.

p subscript 1 V subscript 1 equals p subscript 1 superscript apostrophe left parenthesis V subscript 1 plus V subscript 2 right parenthesis, p subscript 2 V subscript 2 equals p subscript 2 superscript apostrophe left parenthesis V subscript 1 plus V subscript 2 right parenthesis.

Следовательно, парциальные давления газов после соединения сосудов: p subscript 1 superscript apostrophe equals fraction numerator p subscript 1 V subscript 1 over denominator V subscript 1 plus V subscript 2 end fraction, p subscript 2 superscript apostrophe equals fraction numerator p subscript 2 V subscript 2 over denominator V subscript 1 plus V subscript 2 end fraction. Тогда p equals fraction numerator p subscript 1 V subscript 1 plus p subscript 2 V subscript 2 over denominator V subscript 1 plus V subscript 2 end fraction.

p equals fraction numerator 1 comma 0 times 10 to the power of 6 space Па times 2 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed plus 4 comma 0 times 10 to the power of 5 space Па times 3 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed over denominator 2 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed plus 3 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed end fraction equals 6 comma 4 times 10 to the power of 5 space Па equals 0 comma 64 space МПа.

Ответ: p = 0,64 МПа.

Упражнение 5

1. При изобарном увеличении температуры идеального газа, находящегося в герметично закрытом цилиндре, на ΔT = 60,0 К его объём увеличился в β = 1,21 раза. Определите начальную абсолютную температуру газа.

2. Изобразите графически процесс изобарного охлаждения определённой массы идеального газа в координатах (p, T); (V, T); (V, p).

3. Идеальный газ определённой массы сначала изобарно расширили, а затем изотермически сжали до первоначального объёма. Изобразите графически эти процессы в координатах (V, T); (p, V).

Рис.
Рис. 30

4. На рисунке 30 представлен график изменения состояния определённой массы идеального газа. (Переход 3 rightwards arrow 1 осуществляется при неизменной температуре.) Изобразите графически этот процесс в координатах (T, V) и (p, T).

5. При температуре t1 = –3,0 °С манометр на баллоне со сжатым кислородом показывал давление p1 = 1,8 · 106 Па, а при температуре t2 = 27 °С — давление p2 = 2,0 · 106 Па. Определите, была ли утечка газа из баллона.

Материал повышенного уровня

6. В герметичном сосуде, заполненном воздухом (M equals 0 comma 029 space кг over моль), лежит полый металлический шарик, диаметр которого d = 4,0 см, а масса m = 0,64 г. Определите минимальное значение давления воздуха, накачиваемого в сосуд, при котором бы шарик поднялся вверх, если температура t = 17 °С остаётся постоянной.

7. Идеальный газ, давление которого p1 = 4 · 105 Па, занимал объём V1 = 2 л. Сначала газ изотермически расширили до объёма V2 = 8 л, а затем изохорно нагрели, в результате чего его абсолютная температура увеличилась в α = 3 раза. Определите давление р3 газа в конце процесса, если при переходе из начального состояния в конечное масса газа оставалась неизменной.

Содержание:

Изотермический, изобарный и изохорный процессы:

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти Изопроцессы в физике - формулы и определение с примерами

Изотермический процесс

Процесс изменения состояния физической системы при постоянной температуре Изопроцессы в физике - формулы и определение с примерами называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона—Менделеева следует:
Изопроцессы в физике - формулы и определение с примерами
 

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля—Мариотта.

Справедливость закона Бойля—Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел.

График изотермического процесса, совершаемого идеальным газом, в координатах Изопроцессы в физике - формулы и определение с примерами представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Изопроцессы в физике - формулы и определение с примерами

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля —Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

Интересно знать:

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. Когда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

Изобарный процесс

Процесс изменения состояния газа при постоянном давлении (р = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778-1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

Изопроцессы в физике - формулы и определение с примерами

Поскольку Изопроцессы в физике - формулы и определение с примерами то в координатах Изопроцессы в физике - формулы и определение с примерами график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изопроцессы в физике - формулы и определение с примерами

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

Изохорный процесс

Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746-1823)*.

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Изопроцессы в физике - формулы и определение с примерами

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

В координатах Изопроцессы в физике - формулы и определение с примерами график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Изопроцессы в физике - формулы и определение с примерами

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной моляр- О ной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

Изопроцессы в физике - формулы и определение с примерами

Пример №1

На рисунке 28 представлен график трёх процессов изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках Изопроцессы в физике - формулы и определение с примерамиИзопроцессы в физике - формулы и определение с примерами Изобразите эти процессы в координатах Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

Решение. На участке Изопроцессы в физике - формулы и определение с примерами объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход  Изопроцессы в физике - формулы и определение с примерами
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:
переход Изопроцессы в физике - формулы и определение с примерами
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля—Мариотта, увеличение давления газа в 4 раза:

  • переход Изопроцессы в физике - формулы и определение с примерами происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах Изопроцессы в физике - формулы и определение с примерами (рис. 29, а, б).
Изопроцессы в физике - формулы и определение с примерами

Пример №2

При изотермическом расширении идеального газа определённой массы его объём увеличился от Изопроцессы в физике - формулы и определение с примерами а давление уменьшилось на Изопроцессы в физике - формулы и определение с примерами Определите первоначальное давление газа.

Изопроцессы в физике - формулы и определение с примерами

Решение. Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля—Мариотта, т. е. Изопроцессы в физике - формулы и определение с примерами С учётом того, что Изопроцессы в физике - формулы и определение с примерами получим:

Изопроцессы в физике - формулы и определение с примерами

Откуда

Изопроцессы в физике - формулы и определение с примерами

Ответ: Изопроцессы в физике - формулы и определение с примерами

Обобщение и систематизация определений:

Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

  • Твердые тела и их свойства в физике
  • Строение и свойства жидкостей в физике
  • Испарение и конденсация в физике
  • Влажность воздуха в физике
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация 
  • Тепловое равновесие в физике

Понравилась статья? Поделить с друзьями:
  • Как исправить тесто на оладьи чтобы были пышными
  • Как составить платежное требование поручение
  • Как составить портфолио для техникума
  • Как вконтакте найти людей по фотографии
  • Как найти секретную комнату в лабиринте минотавра