Как найти начальную длину тела

Как найти L0(начальная длина пружины) если известны L, масса и коофицент жесткости пружины

Комментарии

Решу не по школьным правилам! Я вывел свою формулу l0 = l — x(в конце объясню все формули). Также вывел ещё одну формулу x = F : k — Чтобы найти L0 нужно X, а чтобы найти X нужно F, вывел ещё одну формулу F = 10m, поэтому m умножаем на 10, потом это делим на k, и этот результат отнимаем от l, и вышло l0 :)

l0 = l -x объясняю формулу : Другая формула x в книгах — l — l0! Делаем выводи что l — l + l0(меняем знаки из за минусов) = l0 Выходит l0 = l0 Вывод : формула работает!

F = 10m ! F = mg(из книг) ! g = 10 ! Вывод : F = 10m!

Как найти L0(начальная длина пружины) если известны L, масса и коофицент жесткости пружины.

На этой странице сайта вы найдете ответы на вопрос Как найти L0(начальная длина пружины) если известны L, масса и коофицент жесткости пружины?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 5 — 9 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

Путь и перемещение, теория и онлайн калькуляторы

Путь и перемещение

При своем движении материальная точка описывает некоторую линию, которую называют ее траекторией движения. Траектория может быть прямой линией, а может представлять собой кривую.

Путь

Определение

Путь — длина участка траектории, который прошла материальная точка за рассматриваемый отрезок времени. Путь — это скалярная величина.

При прямолинейном движении в одном направлении пройденный путь ($Delta s$) равен модулю изменения координаты тела. Так, если тело двигалось по оси X, то путь можно найти как:

[Delta s=left|x_2-x_1right|left(1right),]

где $x_1$ — координата начального положения тела; $x_2$ — конечная координата тела.

Его можно вычислить, если известен модуль скорости ($v=v_x$):

[Delta s=vt left(2right),]

где $t$ — время движения тела.

Графиком, который отображает зависимость пути от времени при равномерном прямолинейном движении, является прямая (рис.1). С увеличением величины скорости увеличивается угол наклона прямой относительно оси времени.

Путь и перемещение, рисунок 1

Если по графику $Delta s(t)$ необходимо найти путь, который проделало тело за время $t_1$, то из точки $t_1$ на оси времени проводят перпендикуляр до пересечения с графиком $Delta s(t)$. Затем из точки пересечения восстанавливают перпендикуляр к оси $Delta s$. На пересечении оси и перпендикуляра получают точку ${Delta s}_1$, которая соответствует пройденному пути за время от $t=0 c$ до $t_1$.

Путь не бывает меньше нуля и не может уменьшаться при движении тела.

Перемещение

Определение

Перемещением называют вектор, который проводят из начального положения движущейся материальной точки в ее конечное положение:

[Delta overline{r}=overline{r }left(t+Delta tright)-overline{r }left(tright)left(3right).]

Вектор перемещения численно равен расстоянию между конечной и начальной точками и направлен от начальной точки к конечной.

Приращение радиус-вектора материальной точки — это перемещение ($Delta overline{r}$).

Путь и перемещение, рисунок 2

В декартовой системе координат радиус-вектор точки представляют в виде:

[overline{r }left(tright)=xleft(tright)overline{i}+yleft(tright)overline{j}+zleft(tright)overline{k}left(4right),]

где $overline{i}$, $overline{j}$,$ overline{k}$ — единичные орты осей X,Y,Z. Тогда $Delta overline{r}$ равен:

[Delta overline{r}=left[xleft(t+Delta tright)-xleft(tright)right]overline{i}+left[yleft(t+?tright)-yleft(tright)right]overline{j}+left[zleft(t+?tright)-zleft(tright)right]overline{k}left(5right).]

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и длина вектора перемещения равна пройденному точкой пути:

[left|Delta overline{r}right|=Delta s left(6right).]

Длину вектора перемещения (как и любого вектора) можно обозначать как $left|Delta overline{r}right|$ или просто $Delta r$ (без указания стрелки).

Если тело совершает несколько перемещений, то их можно складывать по правилам сложения векторов:

[Delta overline{r}=Delta {overline{r}}_1+Delta {overline{r}}_2+dots left(7right).]

Если направление движения тела изменяется, то модуль вектора перемещения не равен пройденному телом пути.

Примеры задач на путь и перемещение

Пример 1

Задание: Мяч бросили вертикально вверх от поверхности Земли. Он долетел до высоты 20 м. и упал на Землю. Чему равен путь, который прошел мяч, каков модуль перемещения?

Решение: Сделаем рисунок.

Путь и перемещение, пример 1

В нашей задаче мяч движется прямолинейно сначала вверх, затем вниз. Так как путь — длина траектории, то получается, что мяч дважды прошел расстояние h, следовательно:

[Delta s=2h.]

Перемещение — направленный отрезок, соединяющий начальную точку и конечную при движении тела, но тело начало движение из той же точки, в которую вернулось, следовательно, перемещение мяча равно нулю:

[Delta r=0.]

Ответ: $ Путь Delta s=2h$. Перемещение $Delta r=0$

   

Пример 2

Задание: В начальный момент времени тело находилось в точке с координатами $(x_0=3;; y_0=1)$(см). Через некоторый промежуток времени оно переместилось в точку координаты которой ($x=2;;y=4$) (см). Каковы проекции вектора перемещения на оси X и Y?

Решение: Сделаем рисунок.

Путь и перемещение, пример 2

Радиус — вектор начальной точки запишем как:

[{overline{r }}_0left(tright)=x_0left(tright)overline{i}+y_0left(tright)overline{j}=3overline{i}+1overline{j}left(2.1right).]

Радиус — вектор конечной точки имеет вид:

[overline{r}left(tright)=xleft(tright)overline{i}+yleft(tright)overline{j}=2overline{i}+4overline{j}left(2.2right).]

Вектор перемещения представим как:

[Delta overline{r}=left[xleft(tright)-x_0left(tright)right]overline{i}+left[уleft(tright)-у_0left(tright)right]overline{j}=left[2-3right]+left[1-4right]overline{j}=-1overline{i}+3overline{j}(2.3).]

Из формулы видим, что:

[Delta r_x=-1;;Delta r_y=3. ]

Ответ: $Delta r_x=-1;;Delta r_y=3 $

   

Читать дальше: равнодействующая всех сил.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание материала

  1. Кинематика
  2. Видео
  3. Как выглядит формула пути без времени, когда скорость тела уменьшается
  4. Импульс
  5. График скорости равномерного движения
  6. Виды движения и формулы длины пути
  7. Основные формулы электричества
  8. Примеры решения задач

Кинематика

К оглавлению…

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начально

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость пути:

Средняя скорость перемещения:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получае

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движ

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изм

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорос

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, бр

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с выс

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске по

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошен

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движе

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движе

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Связь периода и частоты:

Линейная скорость при равномерном движении по окру

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выраж

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движени

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной и

Центростремительное ускорение находится по одной из формул:

 

Видео

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Импульс

К оглавлению…

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма век

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущ

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

 

График скорости равномерного движения

Т.к. скорость – это векторная величина, она характеризуется и модулем, и направлением. В зависимости от выбранного направления скорость по знаку может быть как положительной, так и отрицательной.

На рисунке 1 изображен динозавр, автомобиль и дом. Зададим ось координат $x$.

Рисунок 1. Положительная и отрицательная скорости.

Рисунок 1. Положительная и отрицательная скорости.

Если динозавр начнет двигаться к дому, то его скорость будет положительной, т.к. направление движения совпадает с направлением оси $x$. Если же динозавр направится к автомобилю, то его скорость будет отрицательной, т.к. направление движения противоположно направлению оси $x$.

Итак, график скорости равномерного движения имеет вид, представленный на рисунке 2.

Рисунок 2. График скорости равномерного движения.

Рисунок 2. График скорости равномерного движения.

Из графика видно, что скорость с течением времени не изменяется – она постоянна в любой выбранный момент времени. Из графика положительной скорости мы видим, что $upsilon = 6 frac{м}{с}$; из графика отрицательной — $upsilon = -4 frac{м}{с}$.

Зная скорость и время, мы можем рассчитать пройденный путь за определенный промежуток времени. Рассчитаем какой путь пройдет тело с положительной скоростью за $4 с$.

$$S = upsilon t = 6 frac{м}{с} cdot 4 c = 24 м$.$

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути $Delta s$ на отрезке времени от $t$ до $t + Delta t$ находят как:

где $langle vrangle$ – средняя путевая скорость. При равномерном движении $langle vrangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

где a – постоянное ускорение, v – начальная скорость движения.

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Переходим к постоянному электрическому току:

Переходим к постоянному электрическому току:

Далее добавляем формулы по теме: “Магнитное поле э

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Электромагнитная индукция тоже важная тема для зна

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Ну и, конечно, куда же без электромагнитных колеба

Ну и, конечно, куда же без электромагнитных колебаний:

Примеры решения задач

Примеры решения задач

1. Самым быстрым животным на Земле считается гепард. Он способен развивать скорость до $120 frac{км}{ч}$, но сохранять ее способен в течение короткого промежутка времени. Если за несколько секунд он не настигнет добычу, то, вероятнее всего, уже не сможет ее догнать. Найдите путь, который пробежит гепард на максимальной скорости за $3$ секунды.

Переведем единицы измерения скорость в СИ и решим задачу.

$120 frac{км}{ч} = 120 cdot frac{1000 м}{3600 с} approx 33 frac{м}{с}$.

Дано:$upsilon=120 frac{км}{ч}$$t = 3 c$СИ:$upsilon=33 frac{м}{с}$

Найти:$S — ?$

Показать решение и ответ

Скрыть

Решение:
Гепард двигается равномерно в течение 3 с.
Путь, который он проходит за это время:
$S = upsilon t = 33 frac{м}{с} cdot 3 с approx 100 м$

Ответ: $100 м$

2. Колибри – самые маленькие птицы на нашей планете. При полете они совершают около 4000 взмахов в минуту. Тем не менее, они способны пролетать очень большие расстояния. Например, некоторые виды данной птицы перелетают Мексиканский залив длиной $900 км$ со средней скоростью $40 frac{км}{ч}$. Сколько времени у них занимает такой полет?

Переведем единицы измерения скорость в СИ и решим задачу.

$40 frac{км}{ч} = 40 cdot frac{1000 м}{3600 с} approx 11 frac{м}{с}$;

$900 км = 900 000 м$.

Дано:$upsilon_{ср} = 40 frac{км}{ч}$$S = 900 км$CИ:$upsilon_{ср} = 11 frac{м}{с}$$S = 900 000 м$

Найти:$t-?$

Показать решение и ответ

Скрыть

Решение:
Полет колибри будет примером неравномерного движения. Зная среднюю скорость и путь, рассчитаем время перелета:
$t = frac{s}{upsilon_{ср}} = frac{900 000 м}{11 frac{м}{с}} approx 82 000 с$.

Переведем время в часы:
$1 ч = 60 мин = 60 cdot 60 c = 3600 c$.

Тогда,
$t = frac{82 000 c}{3600 c} approx 23 ч$.

Ответ: $t = 82 000 c = 23 ч$.

Теги

Как узнать длину

Длину тела, отрезка или траектории движения можно найти, измерив ее, вычислив при помощи математических формул или по параметрам движения тел, преодолевающих расстояние, длина которого измеряется. Во всех случаях длина узнается по своей методике.

Как узнать длину

Вам понадобится

  • — линейка;
  • — рулетка;
  • — лазерный дальномер;
  • — роликовый дальномер.

Инструкция

Для измерения длины отрезка используйте линейку. Приложите ее к измеряемому отрезку и совместив один из его концов нулем. По шкале линейки определите расстояние, на котором находится другой конец отрезка. Это и будет его длина. Отрезки большего размера измеряйте при помощи рулетки таким же образом. Измерьте длину лазерным дальномером, направив луч из начальной точки в конечную, и на экране сразу высветится длина измеряемого отрезка.

Чтобы измерить длину предмета или линии, которая не является прямой, используйте рулетку. Она должна полностью повторять все изгибы линии, длина которой измеряется. Если есть такая возможность, для измерения длины непрямой траектории используйте роликовый дальномер (курвиметр). Поставьте его колесо в начальной точке траектории, и проведите ним до конечной точки. На специальной шкале или табло появится расстояние, пройденное колесом.

Длина всех сторон геометрической фигуры называется периметром. Чтобы найти его измерьте каждую из сторон фигуры, и найдите их сумму. Для некоторых фигур периметр можно найти по формулам:

• чтобы найти периметр равностороннего треугольника, измерьте его сторону и умножьте на 3;
• для квадрата и ромба длину стороны умножьте на 4;
• для параллелограмма, в том числе прямоугольника сумму неравных сторон умножьте на 2;
• для прямоугольного треугольника к сумме катетов, прибавьте гипотенузу, которая равна корню квадратному из суммы квадратов катетов.

Чтобы найти длину окружности, ее радиус умножьте на число 6,28, или диаметр на число 3,14.

Чтобы узнать длину пути, которую прошло тело S, его среднюю скорость v на этом пути умножьте на время, которое понадобилось на его преодоление t (S=v∙t). Таким же образом рассчитывайте путь тела при равномерном движении. Если тело движется равноускоренно, с начальной скоростью v0 и ускорением a в течение времени t, то длину пути узнайте, найдя сумму произведения начальной скорости на время и половины ускорения на время в квадрате S= V0•t+a•t²/2. При расчетах учитывайте, что если тело замедляется, то ускорение имеет знак «минус».

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти новогодние фотографии
  • Как найти ведьмин знак
  • Как найти правильный шрифт
  • Как составить график работы по совместительству
  • Как составить приказ об организации мероприятия в организации