Как найти начальную скорость ракеты

Random converter

  • Калькуляторы
  • Ракетомоделизм

Калькулятор формулы Циолковского

Illustration

Калькулятор определяет характеристическую скорость орбитального манёвра — изменение скорости космического летательного аппарата (КА, КЛА), необходимое для выполнения орбитального манёвра. Для этого используется формула Циолковского. Условие ее использования — тяга ракетного двигателя неизменна по направлению, а другие силы (например, лобовое сопротивление и сила тяжести) на космический аппарат не действуют.

Пример: Сухая масса модели одноступенчатой ракеты 0,15 кг, а эффективная скорость истечения продуктов сгорания ее двигателя 900 м/с. Масса топлива 11,2 г. Рассчитать характеристическую скорость дельта-v и удельный импульс. Силой тяжести и лобовым сопротивлением пренебречь.

Эффективная скорость истечения продуктов сгорания

veff

или

Удельный импульс

Isp с

Начальная масса с топливом

m0

Конечная масса без топлива

mf

Характеристическая скорость орбитального манёвра

Δv

Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета введите любые три величины и нажмите кнопку Рассчитать. Четвертая величина будет рассчитана автоматически.

Немного истории

Определения и формулы

Одноступенчатые ракеты

Многоступенчатые ракеты

Немного истории

Константин Эдуардович Циолковский (1857–1935) — русский и советский ученый, разрабатывавший теоретические вопросы космонавтики, а также исследовавший философские проблемы освоения космоса. Родился в селе Ижевском Спасского уезда Рязанской губернии и бóльшую часть жизни прожил в Калуге. В 90 гг. XIX в. он систематически изучал теорию движения ракет и разработал основы теории ракет, включая идеи об использовании жидкого топлива и создании многоступенчатых ракет («ракетных поездов»). Циолковский вывел формулу, устанавливающую соотношение между изменение скорости ракеты, эффективной скоростью истечения продуктов сгорания, начальной и конечной массой ракеты.

Интересно отметить, что теоретические предпосылки для этого открытия были известны еще со времен Ньютона, поскольку для вывода формулы Циолковского используются второй и третий законы Ньютона.

В отличие от американского ученого и инженера Роберта Годдарда, который проводил множество экспериментов с ракетами, работы Циолковского были только теоретическими. Циолковский понял, что единственным практическим способом осуществления полета в космос было использование ракет, которые работают на принципе реактивной тяги и поэтому могут летать в космосе. В повести «Вне Земли», которую Циолковский задумал в конце 90-х гг. XIX в и опубликовал в 1920 г., космические путешественники использовали многоступенчатую ракету на жидком топливе и находились в невесомости, которая была подробно описана автором. Он также предложил брать в длительные космические путешествия различные растения, которые помогали бы удалять из атмосферы космического корабля диоксид углерода и насыщать ее кислородом.

Вскоре после полета в космос Юрий Гагарин отмечал, что в книге Циолковского были очень хорошо описаны факторы космического полета и те факторы, с которыми он встретился в полете, почти не отличались от его описания. Циолковский мечтал, что в 2017 году будет жизнь без войн. К сожалению, в отличие от многих других прогнозов, этот его прогноз не оправдался.

Определения и формулы

Одноступенчатые ракеты

Формула Циолковского позволяет оценить характеристическую скорость орбитального маневра Δv (дельта-v) — изменение скорости, необходимое для выполнения определенного маневра, например, для запуска с Земли или изменения орбиты космического аппарата. Формула устанавливает связь между изменением скорости ракеты Δv, эффективной скоростью истечения продуктов сгорания veff, а также начальной m0 и конечной mf массами космического аппарата:

Formula

где

m0 — начальная полная масса космического аппарата с топливом.

mf — конечная масса космического аппарата без топлива.

veff — эффективная скорость истечения продуктов сгорания топлива, определяемая как:

Formula

где Isp — удельный импульс, имеющий размерность времени, и g0 — стандартное ускорение свободного падения в вакууме у поверхности Земли, равное 9,80665 м/с².

Отношение начальной массы космического аппарата к конечной массе (m0/mf) в аргументе натурального логарифма в формуле Циолковского иногда называют просто соотношением масс. Не следует путать этот термин с похожим применяемым в англоязычной литературе термином, массовая доля топлива, который определяет отношение массы топлива к начальной массе летательного аппарата с топливом.

Соотношение начальной и конечной массы космического аппарата является мерой его эффективности. Для более эффективной конструкции потребуется меньше топлива для достижения цели (например, запуск с Марса или переход на более высокую орбиту). Следовательно, такой аппарат будет иметь меньшее отношение масс. В то же время, более высокое отношение масс позволит космическому аппарату достичь более высокой Δv. Отметим, что в некоторых учебниках отношение масс определяется наоборот, как mf/m0.

Поскольку в реальных условиях полета, кроме тяги двигателей, на космический аппарат воздействуют другие силы, развиваемая им скорость всегда будет меньше дельта-v вследствие потерь на преодоление силы тяжести, сопротивления воздуха и других. Поэтому формула Циолковского справедлива только для случая отсутствия других действующих на ракету сил.

Удельный импульс турбовентиляторных двигателей CFM56 Боинга 737-800 равен 5740 с

Удельный импульс турбовентиляторных двигателей CFM56 Боинга 737-800 равен 5740 с

Удельный импульс — концепция, аналогичная топливной эффективности автомобилей, которая измеряется в литрах топлива на 100 км пробега. В ракетном или самолетном двигателе удельный импульс представляет тягу на единицу расхода топлива по массе. Иными словами, он характеризует силу, созданную данным видом топлива в течение определенного времени. Это важная величина, характеризующая эффективность любого ракетного или авиационного реактивного двигателя и топлива для него.

Более высокий удельный импульс означает лучшую эффективность, то есть для данного веса можно получить бóльшую тягу. Чем он больше, тем меньше топлива нужно для создания требуемой тяги в течение заданного времени. Удельный импульс ракетного или самолетного двигателя — это количество секунд, в течение которого двигатель может создавать тягу, равную весу массы топлива при стандартном ускорении свободного падения над поверхностью Земли g0.

Иными словами, удельный импульс в секундах можно представить себе как время в секундах, в течение которого двигатель вместе с топливом может обеспечивать ускорение своей начальной массы при стандартном ускорении свободного падения (то есть, своего веса). Чем больше секунд он может ускорять свою начальную массу, тем большее изменение скорости может быть достигнуто.

Например, удельный импульс двигателя GE GEnx-1B70, устанавливаемого на самолетах Boeing 787 Dreamliner, равен 12 650 с. Удельный импульс ракетных двигателей намного ниже, например, удельный импульс ракетного двигателя F-1, установленного на ракете Сатурн-5 (на снимке) равен всего 260 секундам.

Двигатель F-1, установленный на ракете Сатурн-5 в экспозиции музея Космического центра им. Кеннеди; удельный импульс этого двигателя равен 260 с

Двигатель F-1, установленный на ракете Сатурн-5 в экспозиции музея Космического центра им. Кеннеди; удельный импульс этого двигателя равен 260 с

Характеристическая скорость орбитального маневра является скалярной величиной и имеет размерность скорости. Отметим, что это не просто физическое изменение скорости аппарата. Δv сводится к простому изменению величины скорости только если направление тяги двигателей не изменяется (то есть, не изменяется положение космического аппарата по тангажу и рысканию).

Ниже приводится график формулы Циолковского для различных характеристических скоростей:

График формулы Циолковского для различных характеристических скоростей

График формулы Циолковского для различных характеристических скоростей

Многоступенчатые ракеты

Одноступенчатая ракета не способна нести большую нагрузку. Такая ракета, предназначенная для вывода полезной нагрузки на низкую околоземную орбиту (НОО, 160–2000 км) была бы очень большой и полезная нагрузка была бы менее 1% от полной стартовой массы системы. Поэтому имеет смысл избавляться от пустых баков окислителя и топлива, а также от ненужных двигателей и поддерживающих их конструкций и затем использовать ракету меньшего размера с меньшей начальной массой.

Ракета может разделяться на ступени с поперечным разделением (одна ступень над другой), как в американских ракетах «Trident» или российских «Булава», или продольным разделением, когда первая ступень состоит их нескольких одинаковых ракет или ускорителей. Продольная система использовалась, например, в американских шаттлах. Существует также комбинированная система разделения, применяемая, например, в советских и российских ракетах «Восток» и «Союз» и на американских ракетах «Delta IV».

Количество ступеней не может увеличиваться бесконечно, поэтому наиболее экономичным является количество ступеней от двух до пяти. Одним из достоинств многоступенчатой конструкции является возможность использовать различные типы двигателей, предназначенные для работы в различных условиях. Например, двигатели нижней ступени рассчитаны на работу при атмосферном давлении, в то время как двигатели верхних ступеней рассчитаны на работу в условиях почти полного вакуума.

Изменение скорости Δvf для многоступенчатой ракеты определяется по формуле:

Formula

Двухступенчатая ракета советского подвижного зенитного ракетного комплекса С-75 в экспозиции Военно-исторического музея артиллерии, инженерных войск и войск связи в Санкт-Петербурге

Двухступенчатая ракета советского подвижного зенитного ракетного комплекса С-75 в экспозиции Военно-исторического музея артиллерии, инженерных войск и войск связи в Санкт-Петербурге

Ракетомоделизм

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Содержание статьи

  • ТЕОРИЯ ДВИЖЕНИЯ
  • РАКЕТНЫЙ ДВИГАТЕЛЬ
  • Конструкция.
  • Тяга и удельный импульс тяги.
  • Относительная начальная масса и характеристическая скорость ракеты.
  • РАКЕТНЫЕ СТУПЕНИ
  • ТВЕРДОТОПЛИВНЫЕ РАКЕТНЫЕ СТУПЕНИ
  • Геометрия твердотопливного заряда.
  • Состав и технология производства.
  • Испытания.
  • Достоинства и недостатки.
  • ЖИДКОСТНЫЕ РАКЕТНЫЕ СТУПЕНИ
  • Криогенные и самовоспламеняющиеся топлива.
  • Двухкомпонентные ЖРД.
  • Трехкомпонентные ЖРД.
  • Однокомпонентные ЖРД.
  • Двигательная установка.
  • Производство.
  • Испытания.
  • Выключение, повторный запуск и регулирование тяги.
  • СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ
  • ИСТОРИЧЕСКАЯ СПРАВКА
  • Древность и Средние века.
  • Циолковский, Оберт и Годдард.
  • Нацистская Германия.
  • Послевоенный период.
  • ПЕРСПЕКТИВНЫЕ РАКЕТНЫЕ СИСТЕМЫ
  • Гибридные двигатели.
  • Электроракетный двигатель.
  • Ядерные ракетные двигатели.
  • Внешние источники энергии.
  • Использование энергии атомного взрыва.
  • Фотонные двигатели.

РАКЕТА, летательный аппарат, движущийся вследствие отбрасывания высокоскоростных горячих газов, создаваемых реактивным (ракетным) двигателем. В большинстве случаев энергия для движения ракеты получается при сгорании двух или более химических компонентов (горючее и окислитель, которые вместе образуют ракетное топливо) или при разложении одного высокоэнергетического химического вещества. Большинство ракет относятся к одному из двух типов – твердотопливному или жидкостному. Эти термины относятся к тому, в каком виде хранится топливо, прежде чем оно сгорит в камере ракетного двигателя. Ракета состоит из двигательной установки (двигателя и топливного отсека), систем управления и наведения, полезной нагрузки и некоторых вспомогательных систем.

Поскольку ракета несет на борту все необходимое для создания реактивной струи газа, она является единственным эффективным средством транспортировки грузов в вакууме космического пространства и одним из наиболее эффективных средств доставки боевого заряда в военных действиях. Ни один из существующих типов ракет не является универсальным. Твердотопливные и жидкостные ракеты имеют свои достоинства и недостатки, и выбор той или другой из них производится с учетом многих критериев, включающих экономичность, стоимость, сложность конструкции, задачу полета, надежность и долговечность. Твердотопливные ракеты широко используются для военных задач благодаря малому времени их подготовки к запуску, простоте и возможности длительного хранения. Жидкостные ракеты предпочтительнее для космических полетов из-за их большей экономичности и возможности регулирования тяги.
См. также КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ.

ТЕОРИЯ ДВИЖЕНИЯ

Два всем знакомых примера поясняют принцип движения ракеты. При выстреле из ружья пороховые газы, расширяясь в стволе, толкают пулю вперед, а ружье назад. Пуля летит в цель, а стрелок (или лафет артиллерийского орудия) поглощают энергию отдачи за счет силы трения с поверхностью земли. Если бы стрелок стоял на коньках на льду, то из-за отдачи он покатился бы назад (и остановился только из-за трения с воздухом и льдом).

Другой пример – надутый воздушный шарик. Пока отверстие шарика закрыто, внутреннее давление воздуха уравновешивается силами упругости оболочки шарика. Если открыть отверстие, воздух будет выходить из шарика, и его неуравновешенное давление на оболочку будет толкать шарик вперед. Отметим, что шарик приводится в движение силой, действующей только на площадь отверстия. Все остальные силы, действующие на оболочку, уравновешены и не влияют на движение шарика, которое носит хаотичный характер из-за непрерывного изменения формы шарика и гибкости его горловины.

Ракетный двигатель работает аналогично, за исключением того, что за счет реакций горения или химического разложения обеспечивается устойчивый поток горячих газов, которые выбрасываются наружу через сопло. Существуют и другие методы получения реактивной струи газа (см. ниже), однако ни один из них не получил такого широкого распространения, как химический.

Все рассмотренные выше примеры движения стрелка и пули, надутого шарика и ракеты описываются третьим законом движения Ньютона, который гласит, что всякое действие имеет противоположное и равное по величине противодействие. Математически этот закон выражается в виде равенства количеств движения MV = mv. Важно отметить, что полное изменение количества движения (импульса) в системе равно нулю. Если две массы M и m равны, то их скорости V и v также равны. Если масса одного из взаимодействующих тел больше массы другого, то его скорость будет соответственно меньше. В примере со стрелком импульс mv, сообщаемый пуле, в точности такой же, как и импульс MV, сообщаемый стрелку, однако из-за малой массы пули ее скорость намного больше, чем скорость стрелка. В случае ракеты выбрасывание газов в одном направлении (действие) вызывает движение ракеты в противоположном направлении (противодействие).

РАКЕТНЫЙ ДВИГАТЕЛЬ

Внутри работающего ракетного двигателя происходит интенсивный процесс быстрого контролируемого горения. Для осуществления реакции горения (выделения энергии при реакции двух химических веществ, в результате которой образуются продукты с меньшей скрытой энергией) необходимо наличие окислительного агента (окислителя) и восстановительного агента (горючего). При горении энергия выделяется в виде тепла, т.е. внутреннего движения атомов и молекул в результате повышения температуры.

Конструкция.

Ракетный двигатель состоит из двух основных частей: камеры сгорания и сопла. Камера должна иметь достаточный объем для полного смешения, испарения и сгорания компонентов топлива. Сама камера и система подачи топлива должны быть спроектированы таким образом, чтобы скорость газа в камере была ниже скорости звука, иначе горение будет неэффективным. Как и в случае надувного шарика, молекулы газа соударяются со стенками камеры и выходят через узкое отверстие (горловину сопла). При стеснении потока газа в сужающейся части сопла его скорость возрастает до скорости звука в горловине, а в расширяющейся части сопла поток газа становится сверхзвуковым. Сопло такой конструкции было предложено Карлом де Лавалем, шведским инженером, работавшим в области паровых турбин, в 1890-х годах.

Контур расширяющейся части сопла и степень его расширения (отношение площадей на выходе и в горловине) подбираются, исходя из скорости истечения газовой струи и давления окружающей среды, так что давление выхлопных газов на стенки сверхзвуковой части сопла увеличивает силу тяги, создаваемую давлением газов на переднюю часть камеры сгорания. Поскольку наружное (атмосферное) давление уменьшается с ростом высоты, а профиль расширяющейся части сопла можно оптимизировать только для одной высоты, степень расширения выбирается такой, чтобы обеспечить приемлемую эффективность для всех высот. Двигатель для малых высот должен иметь короткое сопло с небольшой степенью расширения. Разработаны сопла для регулируемой степени расширения. Однако на практике они оказываются слишком сложными и дорогими и поэтому редко используются.

КОНСТРУКЦИЯ РДТТ и различные типы зарядов топлива; продольное (вверху) и поперечные (внизу) сечения. 1 – устройство зажигания; 2 – корпус двигателя; 3 – поверхность горения (открытая); 4 – изоляция; 5 – переднее днище; 6 – центральный канал; 7 – топливный заряд; 8 – выхлопное сопло. а – торцевое горение; б – радиальное горение; в – регрессивное канальное горение.

Тяга и удельный импульс тяги.

Тяга двигателя F равна произведению давления, создаваемого выхлопными газами, на площадь выходного сечения сопла, за вычетом силы давления окружающей среды на ту же площадь. Эффективность двигателя оценивается его удельным импульсом Isp, который имеет несколько различных единиц измерения. Одна из единиц представляет собой тягу, деленную на полный секундный расход топлива (w), т.е. Isp = F/w. Другая есть эффективная скорость истечения C, деленная на ускорение силы тяжести g, в этом случае Isp = C/g. Удельный импульс обычно выражают в секундах (в системе СИ Isp измеряется в НЧс/кг или м/с), и в этом случае его величина равна числу килограммов тяги, получаемой при сгорании одного килограмма топлива. Величина Isp зависит от ряда факторов, главным образом от энергии, выделяемой при сгорании топлива, и эффективности использования этой энергии в двигателе (например, короткое коническое сопло в вакууме будет менее эффективно, чем длинное и тщательно спрофилированное).

Относительная начальная масса и характеристическая скорость ракеты.

Эти величины являются основными характеристиками ракеты как летательного аппарата. Относительная начальная масса представляет собой отношение начальной массы ракеты W к ее конечной массе после выгорания топлива w. Величина Isp зависит от конструктивного совершенства ракеты и эффективности ее двигателя; эти параметры определяют конечную скорость, которую развивает ракета. Характеристическая конечная скорость ракеты определяется по формуле Циолковского

Vb0 = (gIsp ln [W/w]) – (VLg + VLd + VLt),

где VLg, VLd и VLt – потери скорости (определяемые из дополнительных уравнений), связанные с силой тяжести, сопротивлением атмосферы и меньшей силы тяги в атмосфере.

ХАРАКТЕРИСТИЧЕСКАЯ КОНЕЧНАЯ СКОРОСТЬ ракеты для данной относительной начальной массы.

Как видно из этой формулы, для повышения конечной скорости ракеты необходимо: 1) увеличивать относительную начальную массу (W/w) за счет облегчения конструкции; 2) увеличивать удельный импульс за счет применения более высокоэнергетического топлива; 3) снижать лобовое сопротивление за счет улучшения обтекания и уменьшения размеров ракеты. Однако из-за того, что полетное задание ракеты (особенно космической) изменяется от полета к полету, а в процессе полета внешние условия непрерывно изменяются, при проектировании ракеты приходится идти на компромиссы.

СОВЕТСКИЙ экспериментальный электрический ракетный двигатель электротермического типа

РАКЕТНЫЕ СТУПЕНИ

Если большую ракету сделать одноступенчатой, то по мере расходования топлива все бóльшую ненужную массу – освободившуюся часть топливных баков – придется перемещать вместе с ракетой. Это приводит к уменьшению эффективной полезной нагрузки, которую может нести ракета. Идеальной была бы ракета, в которой ненужная часть баков использовалась бы в качестве топлива. Однако при используемых в настоящее время материалах и двигателях этот идеал неосуществим на практике, и поэтому конструкторы пошли по пути создания большой ракеты в виде объединения нескольких отдельных ступеней, каждая со своей двигательной установкой, системой управления и другими обеспечивающими системами. Каждая ступень оптимизирована для соответствующего участка траектории полета ракеты и сбрасывается после полного выгорания топлива. (Например, мощная и тяжелая первая ступень может быть использована в качестве ускорителя для подъема ракеты в плотных слоях атмосферы.) Разработка таких конструкций требует сложных математических расчетов и высокого технического уровня исполнения замысла. Часто на выбор конструкции влияет наличие уже готовых ступеней, применение которых может оказаться дешевле, чем разработка новых более совершенных ступеней.

Компоновка ступеней может быть последовательной, параллельной или комбинированной. При последовательной компоновке каждая ступень запускается, работает и отделяется прежде, чем начнет работать другая. Большинство космических и военных ракет-носителей представляют собой двух- или трехступенчатые ракеты последовательной компоновки. Космическая ракета «Сатурн-5» (использовалась с 1967 по 1973) и баллистическая ракета «Титан II» представляют собой примеры такой компоновки. При параллельной компоновке две или более ступеней запускаются и работают одновременно. Параллельная компоновка часто применяется для ускорителей, которые создают дополнительную тягу при движении ракеты в плотных слоях атмосферы. Носители американского «Шаттла» и российского «Союза» представляют собой пример параллельной компоновки, в которой ускорители и двигатели основной ступени работают одновременно в течение первых нескольких минут полета, после чего ускорители сбрасываются, а основная ступень выходит на орбиту. Уникальная полутораступенчатая компоновка использовалась в американской ракете «Атлас» (она создавалась как баллистическая ракета, а теперь применяется для космических запусков), которая имеет два ускорителя (сбрасываемые через несколько минут после старта) и один маршевый двигатель, которые питаются из общих топливных баков.

Конструкторы космической техники долгое время пытались разработать одноступенчатый космический носитель (SSTO), который имел бы достаточный суммарный импульс тяги для вывода на орбиту полезной нагрузки. Однако из-за того, что такая ракета должна иметь очень эффективный двигатель и малую массу конструкции, одноступенчатый носитель не удавалось разработать до начала 1990-х годов, когда эксперименты с ракетой DC-X («Дельта Клипер», экспериментальная), в конструкции которой использованы легкие сплавы, композиционные материалы и высокосовершенная электроника, показали, что такая конструкция в принципе возможна.

ТВЕРДОТОПЛИВНЫЕ РАКЕТНЫЕ СТУПЕНИ

В современных твердотопливных ракетных двигателях (РДТТ) горючее и окислитель смешиваются в мелкодисперсную однородную топливную смесь, в которой (в идеале) молекулы горючего и окислителя расположены рядом, так что горение, в теории, получается равномерным и полным. Проблемы более ранних пороховых ракет связаны с неоднородностью порохового состава. Основой современного твердотопливного двигателестроения является строгий контроль процесса производства топлива с тем, чтобы его компоненты были равномерно перемешаны, что обеспечивает повторяющуюся и предсказуемую работу каждой ракетной ступени.

Геометрия твердотопливного заряда.

Горение в РДТТ происходит только на открытой поверхности заряда, поэтому процесс горения происходит не быстро, как при взрыве, а медленно, подобно тому, как горят дрова в печке, когда проходит фронт пламени и газифицирует дерево. Форма заряда топлива определяет характер изменения тяги в процессе горения.

ИЛЛЮСТРАЦИЯ СОЗДАНИЯ ТЯГИ реактивным двигателем. Величина тяги F определяется уравнением **. Здесь m – секундный расход газообразных продуктов сгорания, Ve и pe – скорость и давление газов на срезе сопла соответственно, Ae – площадь выходного сечения сопла, pa – внешнее (атмосферное) давление, Aкр – площадь критического сечения сопла.

Геометрия заряда может быть нейтральной, прогрессивной или регрессивной в зависимости от того, как должна изменяться тяга двигателя. Заряд нейтральной геометрии представляет собой сплошной литой цилиндрический стержень, который горит с одного конца (заряд торцевого горения). Специальные защитные покрытия препятствуют горению топлива с краев. Заряд прогрессивной геометрии обычно отливается в виде трубки; горение происходит на внутренней стороне (заряд канального горения). По мере выгорания такого заряда увеличиваются поверхность горения и, соответственно, тяга. Придавая каналу звездообразную форму, можно добиться того, чтобы скорость выгорания и тяга со временем уменьшались; конический канал позволяет плавно регулировать тягу.

Придавая заряду специальную форму или комбинируя несколько простых форм, можно получить нужный закон изменения тяги ракеты в полете. Для снаряда воздух – воздух, например, может использоваться заряд прогрессивной геометрии для получения больших ускорений, необходимых, чтобы осуществить перехват цели. В ракетах-носителях для космических полетов, с другой стороны, полезнее сочетание прогрессивной и регрессивной геометрий заряда, чтобы получить большую тягу на старте, когда ракета имеет максимальную массу и велико сопротивление атмосферы, и меньшую тягу в верхних слоях атмосферы, когда масса ракеты мала, а ускорения велики.

Состав и технология производства.

Твердотопливная смесь, наиболее часто используемая в США, – перхлорат аммония в качестве окислителя и алюминиевый порошок в качестве горючего с полимерным связующим, бутадиен-нитрильным каучуком (российское обозначение СКН – синтетический каучук нитрильный). Порошок оксида железа добавляется для регулирования скорости горения. Смеси этих компонентов в различных пропорциях используются для космических носителей, баллистических и тактических ракет. Эти топлива имеют удельный импульс от 280 до 300 с в зависимости от состава смеси. Продукты сгорания таких РДТТ содержат хлористый водород и частицы оксида алюминия.

Описанное выше топливо получают путем измельчения отдельных компонентов в мелкодисперсный порошок и последующего их смешения с эластичным СКН в специальных смесителях, по конструкции похожих на обычные промышленные тестомешалки. После того как смесь достаточно перемешана, она заливается в корпус двигателя. В двигатель вставляется специальная форма для получения нужной конфигурации заряда (этот процесс напоминает приготовление бисквитного торта). Затем заряд подвергается полимеризации при тщательно контролируемой температуре. После окончания процесса полимеризации вставка удаляется, и к корпусу крепятся сопло, устройство воспламенения и другие элементы, необходимые для запуска двигателя и полета ракеты.

Изготовление даже простейшего твердотопливного двигателя весьма опасно и требует тщательного контроля, в частности, защиты от статического электричества, использования неискрящих материалов и хорошей вентиляции паров и пыли для обеспечения безопасности рабочих. Производственные помещения для снаряжения РДТТ обычно разделены толстыми стенами и имеют слабые крыши, чтобы взрывная волна в случае аварии уходила вверх и не наносила большого ущерба.

Корпус твердотопливного двигателя обычно изготавливается путем сварки из высококачественных металлических сплавов или композиционных материалов, наматываемых вокруг оправки, повторяющей внешние обводы заряда топлива. Корпус должен иметь очень высокую прочность, чтобы противостоять внутреннему давлению при горении, особенно в конце полета. Когда корпус готов, он очищается и снабжается изоляцией для предотвращения прогара. Для лучшего контакта изоляции и заряда часто применяется связующее.

Одним из последних этапов изготовления твердотопливного двигателя является его проверка на наличие дефектов и инородных включений. Трещины в заряде служат дополнительными поверхностями горения, что может привести к увеличению тяги и изменению траектории полета. В худшем случае давление в камере сгорания может стать настолько большим, что двигатель разрушится. Процесс снаряжения двигателя завершается установкой пускового воспламенителя на его переднем днище и сопла на заднем. Пусковой воспламенитель обычно представляет собой небольшой ракетный двигатель, содержащий быстро сгорающее топливо, который выбрасывает факел пламени и поджигает заряд топлива.

Для некоторых военных приложений необходимы такие ускорения, которые не могут обеспечить двигатели на основе СКН; тогда применяются металлизированные смесевые топлива на основе нитроглицерина или других мощных взрывчатых веществ. В этих случаях в двигателе протекает контролируемый взрывной процесс. Для контроля за процессом взрыва добавляются специальные химические замедлители реакции. Другие военные нужды потребовали разработки тактических ракет с бездымным горением, чтобы не было возможности проследить, откуда запущена ракета.

Испытания.

РДТТ обычно испытываются на огневых стендах, где двигатель устанавливается неподвижно в горизонтальном или вертикальном положении и проверяется работа всех его систем. В процессе работы двигателя установленные на нем датчики измеряют тягу, давление и температуру продуктов сгорания, нагрузки на корпус и т.д. Во время огневых испытаний проверяются все возможные режимы работы, включая нерасчетные, которых не должно быть при нормальном полете.

Достоинства и недостатки.

Твердотопливные двигатели используются в тех случаях, когда основными требованиями являются простота, легкость обслуживания, быстрый запуск и большая мощность при небольшом объеме. В первых американских баллистических ракетах использовалось жидкое топливо, однако начиная с 1960-х годов произошел переход на твердое топливо, что было связано с улучшением технологии его производства. РДТТ всегда использовались в небольших боевых снарядах и ракетах, устройствах катапультирования на реактивных самолетах и для отделения ракетных ступеней.

Основным недостатком твердотопливных двигателей является практическая невозможность регулирования тяги во время полета, а также трудность отключения двигателя. В некоторых РДТТ отсечка тяги осуществляется путем открытия отверстий в передней части двигателя. Когда отверстия открываются (обычно это происходит с помощью специальных пиропатронов), давление внутри двигателя падает и соответственно уменьшается интенсивность горения. Кроме того, возникает обратная тяга, противоположная нормальной тяге основного сопла, и ускорение ракеты прекращается. Поскольку тяга РДТТ определяется геометрией и химическим составом заряда, изменение параметров двигателя для получения другой зависимости тяги от времени может потребовать проведения полного цикла испытаний нового двигателя.

ЖИДКОСТНЫЕ РАКЕТНЫЕ СТУПЕНИ

Наиболее эффективные ракеты работают на жидком топливе, потому что химическая энергия жидких компонентов больше, чем твердых, а продукты их сгорания имеют меньшую молекулярную массу.

Криогенные и самовоспламеняющиеся топлива.

К жидким топливам, имеющим большую теплотворную способность, относятся некоторые криогенные вещества – газы, которые превращаются в жидкость при очень низких температурах, например жидкий кислород (при температуре ниже 183° С) и жидкий водород (ниже 253° С). С другой стороны, применение криогенных компонентов имеет ряд недостатков, к которым относятся необходимость содержания больших промышленных установок для ожижения газов, большое время заправки ракеты (несколько часов) и необходимость теплоизоляции топливных баков. Поэтому первые американские межконтинентальные баллистические ракеты на криогенном топливе, «Атлас» и «Титан I», были уязвимы для внезапного нападения, при котором для ответного удара имелось всего несколько минут.

СИСТЕМЫ ПОДАЧИ горючего и окислителя в камеру сгорания ЖРД: а – вытеснительная; б – насосная. 1 – бак горючего; 2 – форсунки смесительной головки; 3 – баллоны с газом высокого давления; 4 – клапаны; 5 – бак окислителя; 6 – рубашка охлаждения; 7 – баллоны с газом низкого давления; 8 – насосы; 9 – турбины; 10 – отбор горячего газа на привод турбины.

Жидкостные ракетные двигатели (ЖРД), использующие самовоспламеняющееся жидкое топливо, которое может храниться при нормальных температурах в течение длительного времени и воспламеняется при контакте компонентов друг с другом, были созданы в 1950-х годах, чтобы удовлетворить потребности военных по упрощению эксплуатации и уменьшению времени подготовки к пуску баллистических ракет. В таких двигателях в качестве окислителя применялся азотный тетроксид (N2O4), а в качестве горючего гидразин (N2H4) или несимметричный диметилгидразин (NH2N [CH3]2) – комбинация, которая дает удельный импульс около 340 с. Компоненты самовоспламеняющегося топлива чрезвычайно токсичны и довольно агрессивны, поэтому они требуют крайней осторожности в обращении и периодической замены элементов конструкции, которые их содержат или находятся в контакте с ними. И хотя жидкостные баллистические ракеты с самовоспламеняющимся топливом впоследствии были заменены твердотопливными, это топливо по-прежнему незаменимо в двигателях ориентации и коррекции.

Двухкомпонентные ЖРД.

В описанных выше ЖРД горючее и окислитель хранятся в отдельных баках и путем вытеснения или с помощью насосов подаются в камеру сгорания, где они воспламеняются и сгорают, создавая высокоскоростную газовую струю. В качестве окислителя часто используется жидкий кислород, что связано с простотой его получения из атмосферного воздуха. Хотя по сравнению со многими другими химическими веществами жидкий кислород сравнительно безопасен, для его хранения должны использоваться только очень чистые емкости, потому что кислород вступает в химическую реакцию даже с жировыми пятнами, оставляемыми отпечатками пальцев, что может привести к возгоранию.

В качестве горючего в паре с кислородом чаще всего используются тяжелые углеводороды или жидкий водород. Теплота сгорания углеводородного горючего на единицу объема, например, очищенного керосина или спирта, выше, чем водорода. Углеводородное топливо горит ярким оранжевым пламенем. Основными продуктами сгорания смеси кислород/углеводород являются углекислый газ и пары воды. Удельный импульс такого топлива может достигать 350 с.

Жидкий водород требует более глубокого охлаждения, чем жидкий кислород, однако его теплота сгорания на единицу массы выше, чем у углеводородных горючих. Водород горит почти невидимым голубым пламенем. Основным продуктом сгорания кислородо-водородной смеси является перегретый водяной пар. Удельный импульс двигателей на этом топливе может достигать от 450 до 480 с в зависимости от конструкции двигателя. (Двигатели, использующие жидкий водород, обычно работают в режиме избытка горючего, что позволяет уменьшить массовый расход топлива и повысить экономичность.)

За прошедшие годы были испытаны многие другие комбинации горючего и окислителя, однако от большинства из них пришлось отказаться из-за их токсичности. Например, фтор является более эффективным окислителем, чем кислород, однако он чрезвычайно токсичен и агрессивен как в исходном состоянии, так и в продуктах сгорания. Различные смеси азотной кислоты с окислами азота раньше использовались в качестве окислителя, однако их достоинства перевешивались опасностью хранения и эксплуатации таких двигателей и ракет.

Не всегда легко сделать выбор между углеводородным горючим и жидким водородом. Обычно для первых ступеней ракет используют жидкое углеводородное (или смесевое твердое) топливо для прохождения плотных слоев атмосферы на первых минутах полета. Конечно, жидкий водород – очень эффективное горючее, однако из-за его малой плотности для первой ступени потребовались бы большие топливные баки, что привело бы к увеличению веса конструкции и лобового сопротивления ракеты. На больших высотах и в космосе чаще применяются водородные двигатели, где их преимущества проявляются в полной мере.

Такой подход осуществлен на ракете-носителе «Сатурн-5», где керосин используется в качестве горючего на первой ступени, жидкий водород – на второй и третьей ступенях, а жидкий кислород в качестве окислителя на всех трех ступенях. Аналогичный подход использован на «Шаттле», где в качестве ускорителей служат два мощных твердотопливных двигателя, а три двигателя основного блока работают на жидких кислороде и водороде, которые обеспечивают большой удельный импульс.
См. также КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ; КОСМИЧЕСКИЙ КОРАБЛЬ «ШАТТЛ».

 Rockwell International     МАРШЕВЫЙ ДВИГАТЕЛЬ «ШАТТЛА». Слева – основной ТНА горючего; в центре – камера сгорания; справа – основной ТНА окислителя. Газы после турбин через коллектор подаются в камеру, куда впрыскивается основной расход окислителя.

Трехкомпонентные ЖРД.

С начала 1970-х годов в России и США изучалась концепция трехкомпонентных двигателей, которые сочетали бы в себе достоинства минимального объема и минимальной массы в одном двигателе. При запуске такой двигатель работал бы на кислороде и керосине, а на больших высотах переключался на использование жидких кислорода и водорода. Такой подход, возможно, позволил бы создать одноступенчатую ракету, однако конструкция двигателя при этом значительно усложняется.

Однокомпонентные ЖРД.

В таких двигателях используется однокомпонентное жидкое топливо, которое при взаимодействии с катализатором разлагается с образованием горячего газа. Хотя однокомпонентные ЖРД развивают небольшой удельный импульс (в диапазоне от 150 до 255 с) и намного уступают по эффективности двухкомпонентным, их преимуществом является простота конструкции. Топливо, например гидразин или перекись водорода, хранится в единственной емкости. Под действием вытесняющего давления жидкость через клапан поступает в камеру сгорания, в которой катализатор, например, оксид железа, вызывает ее разложение (гидразина на аммиак и водород, а перекиси водорода – на водяной пар и кислород). Однокомпонентные ЖРД обычно используются как двигатели малой тяги (иногда их тяга составляет всего лишь несколько ньютонов) в системах ориентации и стабилизации космических аппаратов и тактических ракет, для которых простота и надежность конструкции и малая масса являются определяющими критериями. Можно привести замечательный пример использования гидразинового двигателя малой тяги на борту первого американского спутника связи TDRS-1; этот двигатель работал в течение нескольких недель, чтобы вывести спутник на геостационарную орбиту, после того как на ускорителе случилась авария и спутник оказался на значительно более низкой орбите.

Наиболее простой однокомпонентный двигатель работает от баллона сжатого холодного газа (например, азота), выпускаемого через клапан. Такие струйные двигатели применяются там, где недопустимо тепловое и химическое воздействие выхлопной струи газа или продуктов сгорания и где основным требованием является простота конструкции. Этим требованиям удовлетворяют, например, индивидуальные устройства маневрирования космонавтов (УМК), расположенные в ранце за спиной и предназначенные для перемещения при работах вне космического корабля. УМК работают от двух баллонов со сжатым азотом, который подается через соленоидные клапаны в двигательную установку, состоящую из 16 двигателей.

Двигательная установка.

За большую мощность, регулируемость и высокий удельный импульс жидкостных ракетных двигателей приходится расплачиваться сложностью конструкции. Специальные системы должны обеспечивать подачу горючего и окислителя в строго определенных количествах из топливных баков в камеру сгорания. Подача компонентов топлива осуществляется с помощью насосов или путем вытеснения их давлением газа. В вытеснительных системах, обычно используемых в небольших двигательных установках, топливо подается за счет наддува баков; при этом давление в баке должно быть больше, чем в камере сгорания.

В насосной системе для подачи топлива используются механические насосы, хотя некоторый наддув баков также применяется (для предотвращения кавитации насосов). Наиболее часто применяются турбонасосные агрегаты (ТНА), причем турбина питается газом собственной двигательной установки. Иногда для питания турбины используется газ, получаемый в результате испарения жидкого кислорода при прохождении его через контур охлаждения двигателя. В других случаях используется специальный газогенератор, в котором сжигается небольшое количество основного топлива или специального однокомпонентного топлива.

Маршевый двигатель «Шаттла» с насосной системой подачи топлива относится к наиболее совершенным двигателям, которые когда-либо поднимались в космос. Каждый двигатель имеет по два ТНА – бустерный (низконапорный) и основной (высоконапорный). Горючее и окислитель имеют одинаковые системы подачи. Бустерный ТНА, приводимый в действие расширяющимся газом, повышает давление рабочего тела перед входом его в основной ТНА, в котором давление повышается еще больше. Большая часть жидкого кислорода проходит через охлаждающий тракт камеры сгорания и сопла (а в некоторых конструкциях – и ТНА) прежде, чем он подается в камеру сгорания. Часть жидкого кислорода подается на газогенераторы основных ТНА, где он реагирует с водородом; при этом образуется богатый водородом пар, который, расширяясь в турбине, приводит в действие насосы, а затем подается в камеру сгорания, где сгорает с оставшейся частью кислорода. Хотя небольшие количества кислорода и водорода расходуются на привод бустерных ТНА и наддув баков кислорода и водорода, в конце концов они также проходят через основную камеру сгорания и вносят вклад в создание тяги. Этот процесс обеспечивает суммарный КПД двигателя до 98%.

Производство.

Производство ЖРД более сложно и требует большей точности, чем производство твердотопливных двигателей, поскольку они содержат вращающиеся с большой скоростью детали (до 38 000 об/мин в основных ТНА маршевого двигателя «Шаттла»). Малейшая неточность в изготовлении вращающихся деталей может привести к возникновению вибраций и разрушению.

Даже когда лопатки, колеса и валы турбин и насосов двигателя должным образом сбалансированы, могут возникнуть другие проблемы. Опыт эксплуатации кислородо-водородного двигателя J-2, использовавшегося на второй и третьей ступенях ракеты «Сатурн-5», показал, что в таких двигателях часто возникает проблема высокочастотной неустойчивости. Даже если двигатель правильно сбалансирован, взаимодействие ТНА с процессом горения может вызвать вибрацию с частотой, близкой к частоте вращения водородного насоса. Вибрации двигателя происходят в определенных направлениях, а не случайным образом. При такой неустойчивости уровень вибраций может стать настолько большим, что это потребует отключения двигателя, чтобы избежать его поломки. Камеры сгорания обычно представляют собой сварную или штампованную тонкостенную металлическую конструкцию с охлаждающим трактом и смесительной головкой для подачи топлива.

Испытания.

Необходимым этапом разработки ЖРД и его агрегатов являются испытания их на гидравлических и огневых стендах. В процессе огневых испытаний двигатель работает при давлениях и скоростях вращения ТНА, которые превышают нормальные рабочие значения, чтобы можно было оценить допустимые предельные нагрузки на отдельные агрегаты и конструкцию в целом. Летные образцы двигателей должны пройти приемо-сдаточные испытания, которые включают кратковременные и контрольно-выборочные огневые испытания, имитирующие основные этапы полета. Суммарное время испытаний и работы двигателя в полете не должно превышать его общий ресурс.

Выключение, повторный запуск и регулирование тяги.

Основным преимуществом ЖРД является возможность выключения, повторного запуска и регулирования тяги. Маршевый двигатель «Шаттла», например, может устойчиво работать в диапазоне от 65 до 104% номинальной тяги. Экипаж лунного модуля космического корабля «Аполлон», маневрируя при посадке, мог регулировать тягу двигателей до 10% от номинала. Напротив, тяга двигателей, обеспечивающих старт модуля с Луны, не регулировалась, что позволило повысить их эффективность и надежность.

Возможность повторного запуска ЖРД в космосе представляет проблему, поскольку топливо, как и любые предметы в невесомости, хаотически располагается внутри баков и не будет поступать в систему питания двигателя при отсутствии ускорения. Самый простой способ решения проблемы состоит в использовании специальных двигателей малой тяги, которые создают небольшое ускорение, достаточное для того, чтобы топливо стало поступать в трубопроводы. Запуск этих двигателей обеспечивается либо за счет небольших эластичных мешков с топливом, прикрепленных к трубопроводам, либо с помощью специальных сеток, на которых за счет сил поверхностного натяжения удерживается достаточно топлива для запуска двигателя. Эластичные топливные емкости и устройства сбора жидкости используются и для непосредственного запуска космических ЖРД.

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ

Важной составной частью ракеты являются системы управления и наведения. Система наведения определяет положение и курс ракеты и выдает системе управления необходимые данные для управления ее полетом. Управление полетом ракеты осуществляется небольшими рулевыми двигателями или путем изменения направления вектора тяги основного двигателя.

В больших РДТТ соединение корпуса и сопла может быть выполнено из множества тонких слоев стали и жаростойкой резины, что позволяет соплу поворачиваться на несколько градусов в любом направлении. С помощью одного или двух гидроприводов сопло отклоняется, изменяя направление вектора тяги. Приводы используют энергию небольшого турбонасосного агрегата, работающего на продуктах разложения гидразина. В некоторых РДТТ горячий газ (от небольшого вспомогательного двигателя) подается через несколько клапанов, расположенных по окружности в расширяющейся части сопла. При закрытии одного или нескольких клапанов происходит изменение направления основной струи и, соответственно, вектора тяги. ЖРД устанавливают в поворотных цапфах или в кардановом подвесе, что позволяет поворачивать двигатель целиком.

В системе наведения обычно используют гироскопы для измерения изменений в ориентации ракеты, акселерометры для измерения изменений скорости, радиоаппаратуру для определения положения ракеты и бортовой компьютер для выработки команд управления полетом. Достижения микроэлектроники позволили разработать лазерные гироскопы, в которых используется эффект Доплера для измерения вращения и ускорения.
См. также ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ; ГИРОСКОП.

ИСТОРИЧЕСКАЯ СПРАВКА

Древность и Средние века.

Хотя свое развитие ракетная техника получила в связи с современными военными потребностями и космическими исследованиями, история ракет уходит своими корнями в Древнюю Грецию. В паровой машине, названной его именем, Герон продемонстрировал принцип реактивного движения. Небольшой металлический сосуд, имеющий форму птицы и наполненный водой, подвешивался над огнем. Когда вода закипала, струя пара выбрасывалась из хвоста птицы, толкая сосуд вперед. Это устройство не нашло практического применения, и сам принцип был впоследствии забыт.

В Китае приблизительно в 960 н.э. впервые был применен черный порох – смесь селитры (окислитель) и древесного угля с серой (горючее) – для метания снарядов, и в 11 в. была достигнута дальность метания таких снарядов около 300 м. Эти «ракеты» представляли собой бамбуковые трубки, наполненные порохом, и не отличались особой точностью полета. Их главным назначением в бою было наводить панику на людей и лошадей. В 13 в. вместе с монгольскими завоевателями ракеты попали в Европу, и в 1248 английский философ и естествоиспытатель Роджер Бэкон опубликовал труд по их применению. Период использования таких неуправляемых ракет в военных целях был непродолжительным, так как довольно скоро они были вытеснены артиллерийскими орудиями.

Циолковский, Оберт и Годдард.

Современная ракетная техника обязана своим развитием главным образом трудам и исследованиям трех выдающихся ученых: Константина Циолковского (1857–1935) из России, Германа Оберта (1894–1989) из Румынии и Роберта Годдарда (1882–1945) из США. Хотя эти подвижники работали независимо друг от друга и их идеи в то время часто игнорировались, они заложили теоретические и практические основы ракетной техники и космонавтики. Их труды вдохновили поколения мечтателей и, что самое важное, нескольких энтузиастов, которые дали жизнь их трудам.
См. также ГОДДАРД, РОБЕРТ ХАТЧИНГС; ОБЕРТ, ГЕРМАН; ЦИОЛКОВСКИЙ, КОНСТАНТИН ЭДУАРДОВИЧ.

Циолковский, школьный учитель, впервые написал о жидкостных ракетах и искусственных спутниках в 1883 и 1885. В своей работе Исследования мировых пространств реактивными приборами (1903) он изложил принципы межпланетных полетов. Циолковский утверждал, что наиболее эффективным топливом для ракет было бы сочетание жидких кислорода и водорода (хотя даже лабораторные количества этих веществ в то время были весьма дорогостоящими), и предложил использовать связку небольших двигателей вместо одного большого. Он также предложил использовать многоступенчатые ракеты вместо одной большой для облегчения межпланетных перелетов. Циолковский разработал основные идеи систем жизнеобеспечения экипажа и некоторые другие аспекты космических путешествий.

В своих книгах Ракета в межпланетное пространство (Die Rakete zu den Planetenraumen,1923) и Пути осуществления космических полетов (Wege zur Raumschiffahrt, 1929) Г.Оберт изложил принципы межпланетного полета и выполнил предварительные расчеты массы и энергии, необходимые для полетов к планетам. Его сильной стороной была математическая теория, но в практической деятельности он не продвинулся дальше стендовых испытаний ракетных двигателей.

Разрыв между теорией и практикой заполнил Р.Годдард. Еще юношей он был захвачен идеей межпланетного полета. Его первое исследование относилось к области твердотопливных ракет, в которой он получил свой первый патент в 1914. К концу Первой мировой войны Годдард далеко продвинулся в создании ракет со ствольным запуском, которые не были использованы армией США в связи с наступлением мира; во время Второй мировой войны, однако, его разработки привели к созданию легендарной базуки, первой эффективной противотанковой ракеты. Смитсоновский институт в 1917 предоставил Годдарду исследовательский грант, результатом которого стала его классическая монография Метод достижения экстремальных высот (A Method of Reaching Extreme Altitudes,1919). Годдард начал работу над ЖРД в 1923, а работающий прототип был создан к концу 1925. 16 марта 1926 он осуществил запуск первой жидкостной ракеты, в которой в качестве топлива использовались бензин и жидкий кислород, в Оберне (шт. Массачусетс). Во время Второй мировой войны Годдард работал над стартовыми ускорителями для морской авиации.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР, Германии и Великобритании. В СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). Члены Британского межпланетного общества BIS, ограниченные в своих испытаниях британским законом о фейерверках, идущим от Порохового заговора (1605) с целью взорвать парламент, сосредоточили усилия на разработке «пилотируемого лунного космического корабля», основываясь на доступных для того времени технологиях.

Немецкое Общество межпланетных сообщений VfR в 1930 смогло создать примитивную установку в Берлине, и 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты.

Нацистская Германия.

Среди членов VfR был и Вернер фон Браун (1912–1997), молодой аристократ, докторант Берлинского университета, который с декабря 1932 начал работать над диссертацией по ЖРД на артиллерийском полигоне немецкой армии в Куммерсдорфе. При плохом техническом оснащении фон Браун за один месяц создал двигатель тягой 1300 Н и начал работу над созданием двигателя с тягой 3000 Н, который был использован на экспериментальной ракете А-2, успешно запущенной с острова Боркум в Северном море 19 декабря 1934.
См. также БРАУН, ВЕРНЕР ФОН.

Немецкая армия рассматривала ракеты как оружие, которое она может использовать, не опасаясь международных санкций, поскольку в Версальском договоре (который подвел итоги Первой мировой войны) и последующих военных договорах о ракетах не упоминалось. После прихода Гитлера к власти военному ведомству Германии были выделены дополнительные средства на разработку ракетного оружия, и весной 1936 была одобрена программа строительства ракетного центра в Пенемюнде (фон Браун был назначен его техническим директором) на северной оконечности острова Узедом у балтийского побережья Германии.

Следующая ракета – А-3 имела двигатель тягой 15 кН с системой наддува на жидком азоте и парогенератором, гироскопическую систему управления и наведения, систему контроля параметров полета, электромагнитные сервоклапаны для подачи компонтов топлива и газовые рули. Хотя все четыре ракеты А-3 взорвались на старте или вскоре после старта с полигона в Пенемюнде в декабре 1937, технический опыт, полученный при проведении этих запусков, был использован при разработке двигателя тягой 250 кН для ракеты А-4, первый успешный запуск которой состоялся 3 октября 1942.

После двух лет конструкторских испытаний, подготовки производства и обучения войск ракета А-4, переименованная Гитлером в Фау-2 («Оружие возмездия-2»), была развернута начиная с сентября 1944 против целей в Англии, Франции и Бельгии.

Послевоенный период.

Ракета А-4 показала огромные возможности ракетной техники, и наиболее мощные послевоенные державы – Соединенные Штаты и Советский Союз – вскоре оказались втянутыми в разработку баллистических управляемых ракет, способных доставлять ядерное оружие. Достижения ракетной техники позволили также создать тактические ракеты, которые радикально изменили характер ведения войны.

 Lockheed Martin Astronautics     РАКЕТА «АТЛАС» вскоре после отрыва от стартового стола.

В то время как военные ведомства обеих стран совершенствовали боевые ракеты, многие ученые (С.П.Королев в СССР, В. фон Браун в США) стремились использовать возможности ракетной техники для доставки научных приборов и в конце концов человека в космос. Со времени запуска первого спутника в 1957 и первого космонавта Ю.Гагарина в 1961 ракетно-космическая техника прошла большой путь.

СОВЕТСКАЯ РАКЕТА «ВОСТОК»

ПЕРСПЕКТИВНЫЕ РАКЕТНЫЕ СИСТЕМЫ

До конца 20 в. сгорание топлива оставалось основным источником энергии для реактивного движения. Хотя с 1920-х годов было предложено немало перспективных технических концепций, большинство из них не получило практического воплощения.

Гибридные двигатели.

Заманчивой альтернативой РДТТ и ЖРД является идея гибридного двигателя, в которой объединены лучшие качества обоих. В гибридном двигателе используются твердое горючее и жидкий окислитель, например жидкий кислород или азотный тетроксид. Такой подход позволяет наполовину упростить систему подачи топлива при сохранении присущей РДТТ компактности. Поскольку окислитель и горючее хранятся раздельно, трещины в твердотопливном заряде горючего менее опасны, чем в традиционном РДТТ, что упрощает его изготовление. Однако, несмотря на значительные исследовательские усилия, особенно в 1980-х годах, эта идея так и не нашла широкого применения. Основная проблема состояла в недостаточно устойчивом и эффективном процессе горения.

Электроракетный двигатель.

Электричество можно использовать для нагрева рабочего тела. Примером такого двигателя может служить ионный двигатель, в котором используются высоковольтная дуга для ионизации рабочего тела, например аргона или паров ртути, и электрическое поле для ускорения потока ионов. Принципиальным преимуществом такого двигателя является очень высокий удельный импульс (до 5000 с, в зависимости от конструкции двигателя и используемого рабочего тела). Тяга ионных двигателей очень мала и обычно находится в диапазоне от 0,02 до 0,03 Н. Ионные двигатели предназначаются для длительных космических полетов, когда за месяцы работы в условиях невесомости получается значительный суммарный прирост скорости. Ионные двигатели нашли также применение на геостационарных спутниках, где они обеспечивают постоянный небольшой импульс, достаточный для управления положением и сохранения орбиты. В других схемах ЭРД используются высокоэнергетическая плазма и магнитогидродинамический эффект.

Ядерные ракетные двигатели.

Другой реактивной системой, которая едва не получила практическое воплощение, является ядерная. В США в рамках программы по созданию ядерного ракетного двигателя (ЯРД) NERVA был разработан графитовый реактор, охлаждаемый жидким водородом, который испарялся, нагревался и выбрасывался через ракетное сопло. Графит был выбран из-за его высокой температурной стойкости. По проекту NERVA ЯРД должен был развивать тягу 1100 кН в течение одного часа и иметь удельный импульс 800 с, что почти вдвое превышает соответствующий показатель для химических двигателей. Программа NERVA была отменена в 1972 из-за того, что на неопределенный срок был отодвинут пилотируемый полет на Марс, для которого она разрабатывалась.

Разновидность ЯРД, использующего реакцию деления, представляет газофазный ядерный двигатель, в котором медленно движущаяся газовая струя делящегося плутония окружена более быстрым потоком охлаждающего водорода. Эта идея не вышла, однако, из стадии предварительных исследований.

Интересная идея создания двигателя, использующего реакцию аннигиляции материи и антиматерии, изучалась в рамках программы стратегической оборонной инициативы (СОИ) США. Антивещество в виде атомов хранится в электромагнитной ловушке и посредством магнитного поля подается в камеру двигателя, где оно взаимодействует с обычным веществом, превращаясь в гамма-излучение, которое нагревает рабочую жидкость и создает реактивную струю. Хотя магнитные ловушки используются в физике высоких энергий, для получения нескольких граммов антивещества, необходимых для полета, требуется огромное количество энергии.

Внешние источники энергии.

В рамках программ СОИ и Национального управления по аэронавтике и исследованию космического пространства (НАСА) также изучалась реактивная система с мощным лазером, который нагревает рабочее тело, находящееся на борту ракеты. Сама ракета имеет небольшую массу, так как основная масса системы приходится на лазер, который может располагаться на Земле. Такая система требует исключительно точного наведения лазерного луча на цель, чтобы не сжечь ракету вместо нагрева рабочего тела. Рассматривалась также идея использования больших зеркал для фокусирования солнечных лучей на двигатель.

 NASA     РАКЕТА-НОСИТЕЛЬ «Сатурн-1B» на стартовом столе.

Использование энергии атомного взрыва.

В 1960-х годах НАСА и Комиссия по атомной энергии США исследовали один довольно экзотический метод получения тяги в рамках проекта «Орион». В этом методе разгон ракеты до большой скорости, необходимой для полета к другим планетам, предполагалось осуществлять путем последовательных взрывов небольших атомных зарядов, выбрасываемых за ракетой. Специальные гасители должны были сглаживать воздействие взрывов. Однако проект «Орион» был отменен в соответствии с международными договорами по использованию космического пространства и ограничению ядерных вооружений.

Фотонные двигатели.

Изучалась также возможность использования света для получения тяги в космосе. Частицы света – фотоны – создают очень малый реактивный импульс при воздействии на поверхность. Простейший двигатель такого рода представляет собой огромное пластиковое зеркало, которое отражает солнечные лучи и толкает космический аппарат в сторону от Солнца (солнечный ветер создает добавочный импульс). В настоящем фотонном двигателе вследствие аннигиляции обычного вещества и антивещества должен создаваться поток гамма-излучения, обеспечивающий реактивную тягу для движения космического аппарата.

РАКЕТНЫЕ ДВИГАТЕЛИ/СИСТЕМЫ РЕАКТИВНОГО ДВИЖЕНИЯ

РАКЕТНЫЕ ДВИГАТЕЛИ/СИСТЕМЫ РЕАКТИВНОГО ДВИЖЕНИЯ
Двигатели/Реактивные системы Применение Топливо Тяга Удельный импульс, с
ДВУХКОМПОНЕНТНЫЕ ЖРД       200–480
РД-107 (Россия) Ускоритель для А-серии носителей («Союз») Керосин и O2 822 кН (на уровне моря) 1002 кН ( в вакууме) 257–314
LR-91-AJ-11(США) 2-я ступень ракеты «Титан 4» Азотный тетроксид и Аэрозин 50 (50% гидразина и 50% НДМГ) 467 кН (на высоте) 316
Маршевая ДУ «Шаттла» (3) (США) Разгонный блок орбитального корабля H2 и O2 1670 кН (на уровне моря) 2093 кН (в вакууме) 453
РД-701 (Россия) Трехкомпонентный ЖРД для перспективных космических носителей Первая ступень – керосин и O2; верхние ступени – H2 и O2 1962 кН (на уровне моря) 786 кН (в вакууме) 330–415
ОДНОКОМПОНЕНТНЫЕ ЖРД       180–240
Однокомпонентный ракетный двигатель MRE-1 (США) Система ориентации спутника Разложение гидразина при взаимодействии с катализатором 4,5 Н 210–220
РДТТ       200–300
«Кастор» 4А (США) Ускоритель для ракет «Дельта 2» и «Атлас 2» Бутадиеновое, 18% Al 477 кН (на уровне моря) 238
ИОННЫЕ       3000–25000
UK-10 (Великобритания) Двигатель коррекции орбиты геостационарных спутников связи Ксеноновая плазма 0,02–0,03 Н (в вакууме) 3084–3131
ЯДЕРНЫЕ       500–1100
NERVA (США) Двигатель для пилотируемых космических полетов к другим планетам (разработка прекращена в 1972) H2, источник испарения и нагрева – графитовый реактор   815
СОЛНЕЧНЫЕ       400–700
ISUS (США) Последняя разгонная ступень для выведения спутников на геостационарную орбиту H2, испарение и нагрев солнечным излучением, сфокусированным на двигатель двумя рефлекторами 45 Н 600
ЭЛЕКТРОТЕРМИЧЕСКИЕ   H2, испарение и нагрев электрической дугой   400–2000
ПЛАЗМЕННЫЕ   H2, испарение, ионизация и ускорение магнитным полем   3000–15000
АННИГИЛЯЦИОННЫЕ   H2, испарение и нагрев за счет энергии электронов и позитронов   2000–50000
Источник: Sutton G., Rockets Propulsion Elements (Wiley, 1992), Jane’s Spaceflight Directory, 1995–1996

Формула Циолковского: использование и пример

Формула Константина Эдуардовича Циолковского выражает максимальную скорость летательного аппарата, которой он достигает во время полета при реактивном движении. Она получается при интегрировании уравнения Мещерского.

Формула Циолковского

Эта формула выражает скорость ракеты, переданную газами от сожженного топлива. Уравнение Мещерского и формула Циолковского неразрывно связаны — уравнение Мещерского описывает массу материальной точки, которая изменяется со временем, в то время как при реактивном движении ракеты постоянно идет уменьшение ее массы из-за сгорания топлива. Изменение скорости при изменяющейся массе (уменьшающейся в нашем случае) движущегося тела — вот что подразумевает под собой реактивное движение. Формула Циолковского основывается именно на нем.

Для решения ряда задач теоретической механики в области реактивного движения используют уравнение Мещерского (основное уравнение материальной точки переменной массы) и формулу Циолковского (формула конечной скорости летательного аппарата), которые называются основными соотношениям теории реактивного движения.

Основой при проектировании и планировании в области космических полетов является именно формула Циолковского, вывод которой стал настоящим прорывом для освоения космоса.

Задачи Циолковского

Для того, чтобы разрешить проблему межпланетных перелетов, К. Э. Циолковский рассмотрел в качестве средства перелета ракету. Он вывел формулу, с помощью которой можно получить зависимость массы летательного аппарата с топливом и скорости отдаления продуктов сгорания используемого топлива ракеты относительно нее. Покажем две его задачи:

  • Исследование движения тела с переменной массы с действующей на него одной реактивной силы.
  • Исследование движение тела в однородном поле силы тяжести переменной массы вблизи поверхности Земли.

Предисловие

Для всех космических полетов изначальной и основополагающей стала формула Циолковского для скорости ракеты, вывод которой представлен ниже.

Для начала необходимо приняв ее, грубо говоря, за материальную точку. На нее будут действовать силы притяжения Земли и других небесных тел (в момент взлета сила гравитации Земли будет, конечно же, наиболее сильной), сила сопротивления воздуха с одной стороны и противоположно им направленная реактивная сила, возникающая из-за выброса сгоревшего газа у основания тела. Ракета с большой силой выбрасывает эти газы, которые сообщают ей ускорение, направленное противоположно стороне выброса. Теперь необходимо представить эти рассуждения в виде формулы.

Сам принцип полета ракеты достаточно простой. С большой скоростью из ракеты вырывается газ, полученный при сгорании топлива, который сообщает самой ракете определенную силу, которая действует противоположно направлению движения. Так как считается, что внешние силы не действуют на ракету, то система будет замкнутой, и импульс ее не зависит от времени.

Уравнение Мещерского

Одним из основных примеров движения тела с изменяющейся массой является ракета с одной ступень, масса которой изменяется только из-за сжигания топлива, содержащегося в ней. Масса такой ракеты складывается из неизменяющейся (сама ракета и ее полезная нагрузка) и изменяющейся (топливо). Такой пример является упрощенной моделью.

Однако в современном ракетостроении используются многоступенчатые ракеты. Принцип их работы заключается в том, что благодаря большому объему ступеней они способны перевозить и использовать после взлета гораздо большее количество топлива. После его сгорания, ракете сообщается значительный импульс (гораздо больший, чем тот, которого можно добиться, используя одну ступень), а ставшие ненужными части открепляются от основы, уменьшая общий вес на 80-90%. Тем не менее, для расчета параметров многоступенчатой ракеты необходимо сложить показатели каждой из ее составляющей.

Дифференциальное уравнение Мещерского описывает движение материальной точки с переменной массой.

(m+dm)(υ+dυ) + dm′ υ′ — mυ = Fdt — в момент времени dt (разность между силой в момент времени t и dt+t и будет приращением).

Где m и υ зависят от времени, dt — какое-то время полета. За его образуется сила перемещения газа — dm′ υ′, dm′ — масса образованного из топлива газа. F — равнодействующая сила.

В описанном выше выражении приращения массы ракеты и газа и скорости устремляется к нулю, поэтому выражение принимает следующий вид:

причем υ′′ равняется разности скорости газа и скорости и является скоростью истечения газа.

Оно и называется уравнением Мещерского.

Вывод формулы Циолковского

Необходимо вывести формулу, описывающую движение тела с переменной массой. Формула Циолковского таковой и является. Вывод представлен ниже.

В данных вычислениях считается, что на движущееся тело не действуют внешние силы, то есть F = 0.

Так как воздействие внешних сил на летящую ракету равно нулю, то она движется прямолинейно, а скорость движения противоположно направлена скорости выхода газа. Соответственно, υ = -υ′′

Получается выражение, которое необходимо проинтегрировать.

Необходимо найти константу. Для этого достаточно подставить в уравнение начальные условия — скорость равна нулю, а масса — сумме массы топлива и массы ракеты (m0 + m)

Вообще говоря, m в формуле складывается из двух параметров — из полезной нагрузки и конструкции ракеты. Полезной нагрузкой называется общая масса груза и экипажа.

Подставляем найденную константу в формулу. В результате и получается выражение искомой формулы.

Это и есть один из вариантов формулы Циолковского для скорости. Однако иногда необходимо принять во внимание именно массу. Поэтому ее иногда записывают следующим образом:

Данная формула используется для расчета массы топлива, которая требуется для развития определенной скорости при заданных условиях.

Рассмотрю далее небольшую задачу. Предположим, ракете необходимо развить первую космическую скорость для вращения по орбите Земли. Тогда для этого необходимо в первую очередь рассчитать массу топлива, конечно же. Тогда ее очень просто выразить из формулы Циолковского.

Релятивистская механика

Все вышеописанные формулы могут применяться только в том случае, когда скорость ракеты много меньше скорости света (υ

Движение тела с переменной массой. Уравнение Мещерского. Формула Циолковского

Вы будете перенаправлены на Автор24

Уравнение движения тела с переменной массой

Под переменной массой будем понимать массу тел, которая при медленном движении тел меняется за счет потери или приобретения вещества.

Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. На ракету действуют внешние силы: сила земной тяжести, гравитационное притяжение Солнца и планет, а также сила сопротивления среды, в которой движется ракета.

Пусть $m(t)$- масса ракеты в произвольный момент времени $t$, а $v(t)$- ее скорость в тот же момент. Количество движения ракеты в этот момент времени будет $mv$. Спустя время $dt$ масса и скорость ракеты получат приращение $dm$ и $dv$ (величина $dm$ отрицательна). Количество движения ракеты станет равным $(m+dm)(v+dv)$. Сюда надо добавить количество движения газов, образовавшихся за время $dt$. Оно равно $dm_ <газ>v_ <газ>$, где $dm_ <газ>$- масса газов, образовавшихся за время $dt$, а $v_ <газ>$- их скорость. Вычитая из суммарного количества движения в момент $t+dt$ количество движения системы в момент времени $t$, найдем приращение этой величины за время $dt$. Это приращение равно $Fdt$, где $F$- геометрическая сумма всех внешних сил, действующих на ракету. Таким образом:

Время $dt$ и приращения $dm$ и $dv$ устремим к нулю, т.к. нас интересуют предельные отношения или производные $dm/dt$ и $dv/dt$. Поэтому, раскрывая скобки, можно отбросить произведение $dmcdot dv$, как бесконечно малую высшего порядка. Далее, ввиду сохранения массы, $dm+dm_ <газ>=0$. Пользуясь этим, можно исключить массу газов $dm_ <газ>$. А разность $v_ <отн>=v_ <газ>-v$ есть скорость истечения газов относительно ракеты — скорость газовой струи. С учетом этих замечаний уравнение (1) преобразуется к виду:

Готовые работы на аналогичную тему

Разделив на $dt$, получаем:

Уравнение Мещерского

По форме уравнение (3) совпадает с уравнением, выражающим второй закон Ньютона. Однако масса тела $m$здесь не постоянна, а меняется во времени из-за потери вещества. К внешней силе $F$ добавляется дополнительный член $v_ <отн>frac

$, который может быть истолкован как реактивная сила, т.е. сила, с которой действуют на ракету вытекающие из нее газы. Уравнение (3) впервые было получено русским механиком И. В. Мещерским. Оно, так же как и эквивалентное ему уравнение (2), называется уравнением Мещерского или уравнением движения точки с переменной массой.

Формула Циолковского

Применим уравнение (2) к движению ракеты, на которую не действуют никакие внешние силы. Полагая $F=0$, получим:

Допустим, что ракета движется прямолинейно в направлении, противоположном скорости газовой струи $v_ <отн>$. Если направление полета принять за положительное, то проекция вектора $v_ <отн>$ на это направление будет отрицательной и равной $-v_ <отн>$. Поэтому в скалярной форме предыдущее уравнение можно записать так $mdv=v_ <отн>dm$. Тогда:

Скорость газовой струи $v_ <отн>$ может меняться во время полета. Однако простейшим и наиболее важным является случай, когда она постоянна. Предположение о постоянстве сильно облегчает решение уравнения (4). В этом случае:

Значение постоянной интегрирования С определяется начальными условиями. Допустим, что в начальный момент времени скорость ракеты равна нулю, а ее масса равна $m_ <0>$. Тогда из предыдущего уравнения получаем:

Последнее соотношение называется формулой Циолковского.

Формула Циолковского позволяет рассчитать запас топлива, необходимый, чтобы сообщить ракете скорость $upsilon $.

Величина достигаемой ракетой максимальной скорости не зависит от времени сгорания топлива.

Оптимальным путем изменения достигаемой максимальной скорости является увеличение относительной скорости истечения газов.

Для получения первой космической скорости при меньшем соотношении между массой ракеты и требуемой массы топлива целесообразно использование многоступенчатых ракет.

Примеры

Космический корабль двигался с постоянной по величине скоростью $v$. Для изменения направления его полета включается двигатель, выбрасывающий струю газа со скоростью $v_ <отн>$ относительно корабля в направлении, перпендикулярном к его траектории. Определить угол $alpha $, на который повернется вектор скорости корабля, если начальная масса его $m_ <0>$, а конечная $m$.

Решение:

Ускорение корабля по абсолютной величине равно:

$a=omega ^ <2>r=omega v$, причем $v=const$. Поэтому уравнение движения:

$mfrac

=v_ <отн>frac
$ переходит в: $mvomega dt=-v_ <отн>dm$.

Так как $dalpha =omega dt$ есть угол поворота за время $dt$, интегрируя наше уравнение, получим:

Ответ: угол поворота вектора скорости равен: $alpha =frac > ln frac > $

Ракета перед стартом имеет массу $m_ <0>=250$кг. На какой высоте окажется ракета через $t=20$с после начала работы двигателей? Расход топлива равен $mu =4$кг/с и скорость истечения газов относительно ракеты $v_ <отн>$$=1500$м/с постоянны. Поле тяготения Земли считать однородным.

Дано: $m_ <0>=250$кг, $t=20$с, $mu =4$кг/с, $v_<отн>=1500$м/с.

Решение:

Запишем уравнение Мещерского в однородном поле тяготения Земли в виде:

где $m=m_ <0>-mu t$, а $v_ <0>$- скорость ракеты в момент времени $t$. Разделяя переменные получаем:

Решение данного уравнения, удовлетворяющего начальному условию $v_ <0>=0$ при $t=0$, имеет вид:

Учитывая что $H_ <0>=0$ при $t=0$ получим:

Подставляя начальные значения, получаем:

Ответ: через $20$с ракета окажется на высоте $H=3177,5$м.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 04 2021

Движение тела с переменной массой

Для начала сформулируем, что такое переменная масса.

Переменная масса – это масса тела, которая может меняться при медленных движениях из-за частичных приобретений или потерь составляющего вещества.

Уравнение движения материальной точки с переменной массой

Чтобы записать уравнение движения для тела с такой массой, возьмем для примера движение ракеты. В основе ее перемещений лежит очень простой принцип: она движется за счет выброса вещества с большой скоростью, а также сильного воздействия, оказываемого на это вещество. В свою очередь выбрасываемые газы также оказывают воздействие на ракету, придавая ей ускорение в противоположном направлении. Кроме того, ракета находится под действием внешних сил, таких, как гравитация Солнца и других планет, земная тяжесть, сопротивление среды, в которой она совершает движение.

Обозначим массу ракеты в какой-либо момент времени t как m ( t ) , а ее скорость как v ( t ) . То количество движения, которая она при этом совершает, будет равно m v . После того, как пройдет время d t , обе эти величины получат приращение (соответственно d m и d v , причем значение d m будет меньше 0 ). Тогда количество движения, совершаемого ракетой, станет равно:

( m + d m ) ( v + d v ) .

Нам необходимо учитывать тот момент, что за время d t также происходит движение газов. Это количество тоже нужно добавить в формулу. Оно будет равно d m г а з v г а з . Первый показатель означает массу газов, которые образуются за указанное время, а второй – их скорость.

Теперь нам нужно найти разность между суммарным количеством движения за время t + d t и количеством движения системы во время t . Так мы найдем приращение данной величины за время d t , которое будет равно F d t (буквой F обозначена геометрическая сумма всех тех внешних сил, которые действуют в это время на ракету).

В итоге мы можем записать следующее:

( m + d m ) ( v + d v ) + d m г а з + v г а з — m v = F d t .

Поскольку нам важны именно предельные значения d m d t , d v d t и их производные, приравняем эти показатели к нулю. Значит, после раскрытия скобок произведение d m · d v может быть отброшено. С учетом сохранения массы получим:

d m + d m г а з = 0 .

Теперь исключим массу газов d m г а з и получим скорость, с которой газы будут покидать ракету (скорость струи вещества), выражающаяся разностью v о т н = v г а з — v . Учитывая эти преобразования, можно переписать исходное уравнение в следующем виде:

d m v = v о т н d m + F d t .

Теперь разделим его на d t и получим:

m d v d t = v о т н d m d t + F .

Уравнение Мещерского

Форма полученного уравнения точно такая же, как у уравнения, выражающего второй закон Ньютона. Но, если там мы имеем дело с постоянной массой тела, то здесь из-за потери вещества она постепенно меняется. К тому же помимо внешней силы нужно учитывать так называемую реактивную силу. В примере с ракетой это будет сила выходящей из нее газовой струи.

Уравнение m d v d t = v о т н d m d t + F впервые вывел русский механик И.В. Мещерский, поэтому оно получило его имя. Также его называют уравнением движения тела с переменной массой.

Формула Циолковского

Попробуем исключить из уравнения движения ракеты внешние силы, воздействующие на нее. Предположим, что движение ракеты прямолинейно, а направление противоположно скорости газовой струи v о т н . Будем считать направление полета положительным, тогда проекция вектора v о т н является отрицательной. Она будет равна — v о т н . Переведем предыдущее уравнение в скалярную форму:

m d v = v о т н d m .

Тогда равенство примет вид:

d v d m = — v о т н m .

Газовая струя может выходить во время полета с переменной скоростью. Проще всего, разумеется, принять ее в качестве константы. Такой случай наиболее важен для нас, поскольку так уравнение решить намного проще.

Исходя из начальных условий, определим, какое значение приобретет постоянная интегрирования С. Допустим, что в начале пути скорость ракеты будет равна 0 , а масса m 0 . Следовательно, из предыдущего уравнения можем вывести:

C = v о т н ln m 0 m .

Тогда мы получим соотношения следующего вида:

v = v о т н ln m 0 m или m 0 m = e v v о т н .

Это соотношение и является формулой Циолковского.

Она предназначена для расчета запаса топлива, с помощью которого ракета может набрать необходимую скорость. При этом время сгорания топлива не обусловливает величину максимальной скорости ракеты. Чтобы разогнаться до предела, нужно увеличить скорость истечения газов. Для достижения первой космической скорости следует изменить конструкцию ракеты. Она должна быть многоступенчатой, поскольку необходимо меньшее соотношение между требуемой массой топлива и массой ракеты.

Разберем несколько примеров применения данных построений на практике.

Условие: у нас есть космический корабль, скорость которого постоянна. Для изменения направления полета в ней нужно включить двигатель, который выбрасывает газовую струю со скоростью v о т н . Направление выброса перпендикулярно траектории корабля. Определите угол изменения вектора скорости при начальной массе корабля m 0 и конечной m .

Решение

Ускорение по абсолютной величине будет равно a = ω 2 r = ω v , причем v = c o n s t .

Значит, уравнение движения будет выглядеть так:

m d v d t = v о т н d m d t перейдет в m v ω d t = — v о т н d m .

Поскольку d a = ω d t является углом поворота за время d t , то после интеграции первоначального уравнения получим:

a = v о т н v ln m 0 m .

Ответ: искомый угол будет равен a = v о т н v ln m 0 m .

Условие: масса ракеты перед стартом равна 250 к г . Вычислите высоту, которую она наберет через 20 секунд после начала работы двигателя. Известно, что топливо расходуется со скоростью 4 к г / с , а скорость истечения газов постоянна и равна 1500 м / с . Поле тяготения Земли можно считать однородным.

Решение

Начнем с записи уравнения Мещерского. Оно будет иметь следующий вид:

m ∆ v 0 ∆ t = μ v о т н — m g .

Здесь m = m 0 — μ t и v 0 – скорость ракеты в заданный момент времени. Разделим переменные:

∆ v 0 = μ v о т н m 0 — μ t — g ∆ t .

Теперь решим полученное уравнение с учетом первоначальных условий:

v 0 = v о т н ln m 0 m 0 — μ t — g t .

С учетом того, что H 0 = 0 при t = 0 , у нас получится:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 .

Добавим заданные значения и найдем ответ:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 = 3177 , 5 м .

Ответ: через 20 секунд высота ракеты будет составлять 3177 , 5 м .

источники:

http://spravochnick.ru/fizika/dinamika/dvizhenie_tela_s_peremennoy_massoy_uravnenie_mescherskogo_formula_ciolkovskogo/

http://zaochnik.com/spravochnik/fizika/osnovy-dinamiki/dvizhenie-tela-s-peremennoj-massoj/

The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum.
It is credited to the Russian scientist Konstantin Tsiolkovsky (Константи́н Эдуа́рдович Циолко́вский) who independently derived it and published it in 1903,[1][2] although it had been independently derived and published by the British mathematician William Moore in 1810,[3] and later published in a separate book in 1813.[4] American Robert Goddard also developed it independently in 1912, and German Hermann Oberth derived it independently about 1920.

The maximum change of velocity of the vehicle, Delta v (with no external forces acting) is:

{displaystyle Delta v=v_{text{e}}ln {frac {m_{0}}{m_{f}}}=I_{text{sp}}g_{0}ln {frac {m_{0}}{m_{f}}},}

where:

Given the effective exhaust velocity determined by the rocket motor’s design, the desired delta-v (e.g. orbital speed or escape velocity), and a given dry mass m_{f}, the equation can be solved for the required propellant mass {displaystyle m_{0}-m_{f}}:

{displaystyle m_{0}=m_{f}e^{Delta v/v_{text{e}}}.}

The necessary wet mass grows exponentially with the desired delta-v.

History[edit]

The equation is named after Russian scientist Konstantin Tsiolkovsky who independently derived it and published it in his 1903 work.[5][2]

The equation had been derived earlier by the British mathematician William Moore in 1810,[3] and later published in a separate book in 1813.[4]

American Robert Goddard independently developed the equation in 1912 when he began his research to improve rocket engines for possible space flight. German engineer Hermann Oberth independently derived the equation about 1920 as he studied the feasibility of space travel.

While the derivation of the rocket equation is a straightforward calculus exercise, Tsiolkovsky is honored as being the first to apply it to the question of whether rockets could achieve speeds necessary for space travel.

Experiment of the Boat by Tsiolkovsky[edit]

Experiment of the Boat by Tsiolkovsky.

In order to understand the principle of rocket propulsion, Konstantin Tsiolkovsky proposed the famous experiment «of the boat». A person is in a boat away from the shore without oars. They want to reach this shore. They notice that the boat is loaded with a certain quantity of stones and have the idea of throwing, one by one and as quickly as possible, these stones in the opposite direction to the bank. Effectively, the quantity of movement of the stones thrown in one direction corresponds to an equal quantity of movement for the boat in the other direction.

Derivation[edit]

Most popular derivation[edit]

Consider the following system:

Var mass system.svg

In the following derivation, «the rocket» is taken to mean «the rocket and all of its unexpended propellant».

Newton’s second law of motion relates external forces (F_{i}) to the change in linear momentum of the whole system (including rocket and exhaust) as follows:

{displaystyle sum _{i}F_{i}=lim _{Delta tto 0}{frac {P_{2}-P_{1}}{Delta t}}}

where P_{1} is the momentum of the rocket at time t=0:

{displaystyle P_{1}=left({m+Delta m}right)V}

and P_{2} is the momentum of the rocket and exhausted mass at time {displaystyle t=Delta t}:

{displaystyle P_{2}=mleft(V+Delta Vright)+Delta mV_{text{e}}}

and where, with respect to the observer:

The velocity of the exhaust {displaystyle V_{text{e}}} in the observer frame is related to the velocity of the exhaust in the rocket frame v_{text{e}} by (since exhaust velocity is in the negative direction)

{displaystyle V_{text{e}}=V-v_{text{e}}}

Solving this yields:

{displaystyle P_{2}-P_{1}=mDelta V-v_{text{e}}Delta m}

and, using {displaystyle dm=-Delta m}, since ejecting a positive Delta m results in a decrease in mass in time,

{displaystyle sum _{i}F_{i}=m{frac {dV}{dt}}+v_{text{e}}{frac {dm}{dt}}}

If there are no external forces then {textstyle sum _{i}F_{i}=0} (conservation of linear momentum) and

{displaystyle -m{frac {dV}{dt}}=v_{text{e}}{frac {dm}{dt}}}

Assuming that v_{text{e}} is constant (known as Tsiolkovsky’s hypothesis[2]), so it is not subject to integration, then the above equation may be integrated as follows:

{displaystyle -int _{V}^{V+Delta V},dV={v_{e}}int _{m_{0}}^{m_{f}}{frac {dm}{m}}}

This then yields

{displaystyle Delta V=v_{text{e}}ln {frac {m_{0}}{m_{f}}}}

or equivalently

{displaystyle m_{f}=m_{0}e^{-Delta V /v_{text{e}}}}

or

{displaystyle m_{0}=m_{f}e^{Delta V/v_{text{e}}}}

or

{displaystyle m_{0}-m_{f}=m_{f}left(e^{Delta V/v_{text{e}}}-1right)}

where m_{0} is the initial total mass including propellant, m_{f} the final mass, and v_{text{e}} the velocity of the rocket exhaust with respect to the rocket (the specific impulse, or, if measured in time, that multiplied by gravity-on-Earth acceleration). If v_{text{e}} is NOT constant, we might not have rocket equations that are as simple as the above forms. Many rocket dynamics researches were based on the Tsiolkovsky’s constant v_{text{e}} hypothesis.

The value {displaystyle m_{0}-m_{f}} is the total working mass of propellant expended.

Delta V (delta v) is the integration over time of the magnitude of the acceleration produced by using the rocket engine (what would be the actual acceleration if external forces were absent). In free space, for the case of acceleration in the direction of the velocity, this is the increase of the speed. In the case of an acceleration in opposite direction (deceleration) it is the decrease of the speed. Of course gravity and drag also accelerate the vehicle, and they can add or subtract to the change in velocity experienced by the vehicle. Hence delta-v may not always be the actual change in speed or velocity of the vehicle.

Other derivations[edit]

Impulse-based[edit]

The equation can also be derived from the basic integral of acceleration in the form of force (thrust) over mass.
By representing the delta-v equation as the following:

{displaystyle Delta v=int _{t_{0}}^{t_{f}}{frac {|T|}{{m_{0}}-{t}Delta {m}}}~dt}

where T is thrust, m_{0} is the initial (wet) mass and Delta m is the initial mass minus the final (dry) mass,

and realising that the integral of a resultant force over time is total impulse, assuming thrust is the only force involved,

{displaystyle int _{t_{0}}^{t_{f}}F~dt=J}

The integral is found to be:

{displaystyle J~{frac {ln({m_{0}})-ln({m_{f}})}{Delta m}}}

Realising that impulse over the change in mass is equivalent to force over propellant mass flow rate (p), which is itself equivalent to exhaust velocity,

{displaystyle {frac {J}{Delta m}}={frac {F}{p}}=V_{text{exh}}}

the integral can be equated to

{displaystyle Delta v=V_{text{exh}}~ln left({frac {m_{0}}{m_{f}}}right)}

Acceleration-based[edit]

Imagine a rocket at rest in space with no forces exerted on it (Newton’s First Law of Motion). From the moment its engine is started (clock set to 0) the rocket expels gas mass at a constant mass flow rate R (kg/s) and at exhaust velocity relative to the rocket ve (m/s). This creates a constant force F propelling the rocket that is equal to R × ve. The rocket is subject to a constant force, but its total mass is decreasing steadily because it is expelling gas. According to Newton’s Second Law of Motion, its acceleration at any time t is its propelling force F divided by its current mass m:

{displaystyle ~a={frac {dv}{dt}}=-{frac {F}{m(t)}}=-{frac {Rv_{text{e}}}{m(t)}}}

Now, the mass of fuel the rocket initially has on board is equal to m0mf. For the constant mass flow rate R it will therefore take a time T = (m0 – mf)/R to burn all this fuel. Integrating both sides of the equation with respect to time from 0 to T (and noting that R = dm/dt allows a substitution on the right) obtains:

{displaystyle ~Delta v=v_{f}-v_{0}=-v_{text{e}}left[ln m_{f}-ln m_{0}right]=~v_{text{e}}ln left({frac {m_{0}}{m_{f}}}right).}

Limit of finite mass «pellet» expulsion[edit]

The rocket equation can also be derived as the limiting case of the speed change for a rocket that expels its fuel in the form of N pellets consecutively, as Nto infty , with an effective exhaust speed {displaystyle v_{text{eff}}} such that the mechanical energy gained per unit fuel mass is given by {textstyle {tfrac {1}{2}}v_{text{eff}}^{2}}.

In the rocket’s center-of-mass frame, if a pellet of mass m_p is ejected at speed u and the remaining mass of the rocket is m, the amount of energy converted to increase the rocket’s and pellet’s kinetic energy is

{displaystyle {tfrac {1}{2}}m_{p}v_{text{eff}}^{2}={tfrac {1}{2}}m_{p}u^{2}+{tfrac {1}{2}}m(Delta v)^{2}.}

Using momentum conservation in the rocket’s frame just prior to ejection, {textstyle u=Delta v{tfrac {m}{m_{p}}}}, from which we find

{displaystyle Delta v=v_{text{eff}}{frac {m_{p}}{sqrt {m(m+m_{p})}}}.}

Let phi be the initial fuel mass fraction on board and {displaystyle m_{0}} the initial fueled-up mass of the rocket. Divide the total mass of fuel {displaystyle phi m_{0}} into N discrete pellets each of mass {displaystyle m_{p}=phi m_{0}/N}. The remaining mass of the rocket after ejecting j pellets is then {displaystyle m=m_{0}(1-jphi /N)}. The overall speed change after ejecting j pellets is the sum
[6]

{displaystyle Delta v=v_{text{eff}}sum _{j=1}^{j=N}{frac {phi /N}{sqrt {(1-jphi /N)(1-jphi /N+phi /N)}}}}

Notice that for large N the last term in the denominator {displaystyle phi /Nll 1} and can be neglected to give

{displaystyle Delta vapprox v_{text{eff}}sum _{j=1}^{j=N}{frac {phi /N}{1-jphi /N}}=v_{text{eff}}sum _{j=1}^{j=N}{frac {Delta x}{1-x_{j}}}}

where {textstyle Delta x={frac {phi }{N}}} and {textstyle x_{j}={frac {jphi }{N}}}.

As {displaystyle Nrightarrow infty } this Riemann sum becomes the definite integral

{displaystyle lim _{Nto infty }Delta v=v_{text{eff}}int _{0}^{phi }{frac {dx}{1-x}}=v_{text{eff}}ln {frac {1}{1-phi }}=v_{text{eff}}ln {frac {m_{0}}{m_{f}}},}

since the final remaining mass of the rocket is {displaystyle m_{f}=m_{0}(1-phi )}.

Special relativity[edit]

If special relativity is taken into account, the following equation can be derived for a relativistic rocket,[7] with Delta v again standing for the rocket’s final velocity (after expelling all its reaction mass and being reduced to a rest mass of m_{1}) in the inertial frame of reference where the rocket started at rest (with the rest mass including fuel being m_{0} initially), and c standing for the speed of light in vacuum:

{displaystyle {frac {m_{0}}{m_{1}}}=left[{frac {1+{frac {Delta v}{c}}}{1-{frac {Delta v}{c}}}}right]^{frac {c}{2v_{text{e}}}}}

Writing {textstyle {frac {m_{0}}{m_{1}}}} as R allows this equation to be rearranged as

{displaystyle {frac {Delta v}{c}}={frac {R^{frac {2v_{text{e}}}{c}}-1}{R^{frac {2v_{text{e}}}{c}}+1}}}

Then, using the identity {textstyle R^{frac {2v_{text{e}}}{c}}=exp left[{frac {2v_{text{e}}}{c}}ln Rright]} (here «exp» denotes the exponential function; see also Natural logarithm as well as the «power» identity at Logarithmic identities) and the identity {textstyle tanh x={frac {e^{2x}-1}{e^{2x}+1}}} (see Hyperbolic function), this is equivalent to

{displaystyle Delta v=ctanh left({frac {v_{text{e}}}{c}}ln {frac {m_{0}}{m_{1}}}right)}

Terms of the equation[edit]

Delta-v[edit]

Delta-v (literally «change in velocity»), symbolised as Δv and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse that is needed to perform a maneuver such as launching from, or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of the vehicle.

Delta-v is produced by reaction engines, such as rocket engines and is proportional to the thrust per unit mass, and burn time, and is used to determine the mass of propellant required for the given manoeuvre through the rocket equation.

For multiple manoeuvres, delta-v sums linearly.

For interplanetary missions delta-v is often plotted on a porkchop plot which displays the required mission delta-v as a function of launch date.

Mass fraction[edit]

In aerospace engineering, the propellant mass fraction is the portion of a vehicle’s mass which does not reach the destination, usually used as a measure of the vehicle’s performance. In other words, the propellant mass fraction is the ratio between the propellant mass and the initial mass of the vehicle. In a spacecraft, the destination is usually an orbit, while for aircraft it is their landing location. A higher mass fraction represents less weight in a design. Another related measure is the payload fraction, which is the fraction of initial weight that is payload.

Effective exhaust velocity[edit]

The effective exhaust velocity is often specified as a specific impulse and they are related to each other by:

{displaystyle v_{text{e}}=g_{0}I_{text{sp}},}

where

Applicability[edit]

The rocket equation captures the essentials of rocket flight physics in a single short equation. It also holds true for rocket-like reaction vehicles whenever the effective exhaust velocity is constant, and can be summed or integrated when the effective exhaust velocity varies. The rocket equation only accounts for the reaction force from the rocket engine; it does not include other forces that may act on a rocket, such as aerodynamic or gravitational forces. As such, when using it to calculate the propellant requirement for launch from (or powered descent to) a planet with an atmosphere, the effects of these forces must be included in the delta-V requirement (see Examples below). In what has been called «the tyranny of the rocket equation», there is a limit to the amount of payload that the rocket can carry, as higher amounts of propellant increment the overall weight, and thus also increase the fuel consumption.[8] The equation does not apply to non-rocket systems such as aerobraking, gun launches, space elevators, launch loops, tether propulsion or light sails.

The rocket equation can be applied to orbital maneuvers in order to determine how much propellant is needed to change to a particular new orbit, or to find the new orbit as the result of a particular propellant burn. When applying to orbital maneuvers, one assumes an impulsive maneuver, in which the propellant is discharged and delta-v applied instantaneously. This assumption is relatively accurate for short-duration burns such as for mid-course corrections and orbital insertion maneuvers. As the burn duration increases, the result is less accurate due to the effect of gravity on the vehicle over the duration of the maneuver. For low-thrust, long duration propulsion, such as electric propulsion, more complicated analysis based on the propagation of the spacecraft’s state vector and the integration of thrust are used to predict orbital motion.

Examples[edit]

Assume an exhaust velocity of 4,500 meters per second (15,000 ft/s) and a Delta v of 9,700 meters per second (32,000 ft/s) (Earth to LEO, including Delta v to overcome gravity and aerodynamic drag).

  • Single-stage-to-orbit rocket: 1-e^{{-9.7/4.5}} = 0.884, therefore 88.4% of the initial total mass has to be propellant. The remaining 11.6% is for the engines, the tank, and the payload.
  • Two-stage-to-orbit: suppose that the first stage should provide a Delta v of 5,000 meters per second (16,000 ft/s); 1-e^{{-5.0/4.5}} = 0.671, therefore 67.1% of the initial total mass has to be propellant to the first stage. The remaining mass is 32.9%. After disposing of the first stage, a mass remains equal to this 32.9%, minus the mass of the tank and engines of the first stage. Assume that this is 8% of the initial total mass, then 24.9% remains. The second stage should provide a Delta v of 4,700 meters per second (15,000 ft/s); 1-e^{{-4.7/4.5}} = 0.648, therefore 64.8% of the remaining mass has to be propellant, which is 16.2% of the original total mass, and 8.7% remains for the tank and engines of the second stage, the payload, and in the case of a space shuttle, also the orbiter. Thus together 16.7% of the original launch mass is available for all engines, the tanks, and payload.

Stages[edit]

In the case of sequentially thrusting rocket stages, the equation applies for each stage, where for each stage the initial mass in the equation is the total mass of the rocket after discarding the previous stage, and the final mass in the equation is the total mass of the rocket just before discarding the stage concerned. For each stage the specific impulse may be different.

For example, if 80% of the mass of a rocket is the fuel of the first stage, and 10% is the dry mass of the first stage, and 10% is the remaining rocket, then

{begin{aligned}Delta v &=v_{{text{e}}}ln {100 over 100-80}\&=v_{{text{e}}}ln 5\&=1.61v_{{text{e}}}.\end{aligned}}

With three similar, subsequently smaller stages with the same v_{text{e}} for each stage, gives:

Delta v =3v_{{text{e}}}ln 5 =4.83v_{{text{e}}}

and the payload is 10% × 10% × 10% = 0.1% of the initial mass.

A comparable SSTO rocket, also with a 0.1% payload, could have a mass of 11.1% for fuel tanks and engines, and 88.8% for fuel. This would give

Delta v =v_{{text{e}}}ln(100/11.2) =2.19v_{{text{e}}}.

If the motor of a new stage is ignited before the previous stage has been discarded and the simultaneously working motors have a different specific impulse (as is often the case with solid rocket boosters and a liquid-fuel stage), the situation is more complicated.

Common misconceptions[edit]

When viewed as a variable-mass system, a rocket cannot be directly analyzed with Newton’s second law of motion because the law is valid for constant-mass systems only.[9][10][11] It can cause confusion that the Tsiolkovsky rocket equation looks similar to the relativistic force equation F=dp/dt=m;dv/dt+v;dm/dt. Using this formula with m(t) as the varying mass of the rocket seems to derive the Tsiolkovsky rocket equation, but this derivation is not correct. Notice that the effective exhaust velocity v_{text{e}} does not even appear in this formula.

See also[edit]

  • Delta-v budget
  • Jeep problem
  • Mass ratio
  • Oberth effect applying delta-v in a gravity well increases the final velocity
  • Relativistic rocket
  • Reversibility of orbits
  • Robert H. Goddard added terms for gravity and drag in vertical flight
  • Spacecraft propulsion
  • Stigler’s law of eponymy

References[edit]

  1. ^ К. Ціолковскій, Изслѣдованіе мировыхъ пространствъ реактивными приборами, 1903 (available online here Archived 2011-08-15 at the Wayback Machine in a RARed PDF)
  2. ^ a b c Tsiolkovsky, K. «Reactive Flying Machines» (PDF).{{cite web}}: CS1 maint: url-status (link)
  3. ^ a b Moore, William (1810). «On the Motion of Rockets both in Nonresisting and Resisting Mediums». Journal of Natural Philosophy, Chemistry & the Arts. 27: 276–285.
  4. ^ a b Moore, William (1813). A Treatise on the Motion of Rockets: to which is added, an Essay on Naval Gunnery, in theory and practice, etc. G. & S. Robinson.
  5. ^ К. Ціолковскій, Изслѣдованіе мировыхъ пространствъ реактивными приборами, 1903 (available online here Archived 2011-08-15 at the Wayback Machine in a RARed PDF)
  6. ^ Blanco, Philip (November 2019). «A discrete, energetic approach to rocket propulsion». Physics Education. 54 (6): 065001. Bibcode:2019PhyEd..54f5001B. doi:10.1088/1361-6552/ab315b. S2CID 202130640.
  7. ^ Forward, Robert L. «A Transparent Derivation of the Relativistic Rocket Equation» (see the right side of equation 15 on the last page, with R as the ratio of initial to final mass and w as the exhaust velocity, corresponding to ve in the notation of this article)
  8. ^ «The Tyranny of the Rocket Equation». NASA.gov. Retrieved 2016-04-18.
  9. ^ Plastino, Angel R.; Muzzio, Juan C. (1992). «On the use and abuse of Newton’s second law for variable mass problems». Celestial Mechanics and Dynamical Astronomy. Netherlands: Kluwer Academic Publishers. 53 (3): 227–232. Bibcode:1992CeMDA..53..227P. doi:10.1007/BF00052611. ISSN 0923-2958. S2CID 122212239. «We may conclude emphasizing that Newton’s second law is valid for constant mass only. When the mass varies due to accretion or ablation, [an alternate equation explicitly accounting for the changing mass] should be used.»
  10. ^ Halliday; Resnick (1977). Physics. Vol. 1. p. 199. ISBN 0-471-03710-9. It is important to note that we cannot derive a general expression for Newton’s second law for variable mass systems by treating the mass in F = dP/dt = d(Mv) as a variable. […] We can use F = dP/dt to analyze variable mass systems only if we apply it to an entire system of constant mass having parts among which there is an interchange of mass. [Emphasis as in the original]
  11. ^
    Kleppner, Daniel; Robert Kolenkow (1973). An Introduction to Mechanics. McGraw-Hill. pp. 133–134. ISBN 0-07-035048-5. Recall that F = dP/dt was established for a system composed of a certain set of particles[. … I]t is essential to deal with the same set of particles throughout the time interval[. …] Consequently, the mass of the system can not change during the time of interest.

External links[edit]

  • How to derive the rocket equation
  • Relativity Calculator – Learn Tsiolkovsky’s rocket equations
  • Tsiolkovsky’s rocket equations plot and calculator in WolframAlpha

Формула Циолковского определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической.

V = I cdot ln left( frac{M_{1}}{M_{2}} right),

где:

V — конечная (после выработки всего топлива) скорость летательного аппарата;
I — удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);
M_{1} — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);
M_{2} — конечная масса летательного аппарата (полезная нагрузка + конструкция).

Эта формула была выведена К. Э. Циолковским в рукописи «Ракета» 10 мая 1897 года (22 мая по григорианскому календарю).[1]

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета соответственно в 1810—1811 гг. и в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы:

m cdot frac {dvec{V}}{dt}- vec{u} cdot frac {dm}{dt}=0 ,

в котором m — масса точки;
V — скорость точки;
u — относительная скорость, с которой движется отделяющаяся от точки часть её массы. Для ракетного двигателя эта величина и составляет его удельный импульс I[2]

Для многоступенчатой ракеты конечная скорость рассчитывается как сумма скоростей, полученных по формуле Циолковского отдельно для каждой ступени, причем при расчёте характеристической скорости каждой ступени к её начальной и конечной массе добавляется суммарная начальная масса всех последующих ступеней.

Введем обозначения:

M1_{i} — масса заправленной i-ой ступени ракеты;
M2_{i} — масса i-ой ступени без топлива;
I_{i} — удельный импульс двигателя i-ой ступени;
M_{0} — масса полезной нагрузки;
N — число ступеней ракеты.

Тогда формула Циолковского для многоступенчатой ракеты может быть записана в следующем виде:

V = sum_{i=1}^{N} I_{i} cdot ln left( frac{M_{0}+{sum_{j=i}^{N}} M1_{j}}{M_{0}+M2_{i}+{sum_{j=i+1}^{N}}M1_{j}}right)

Содержание

  • 1 Отличие реальной скорости ракеты от характеристической
  • 2 Использование формулы Циолковского при проектировании ракет
    • 2.1 Пример расчёта массы ракеты
  • 3 См. также
  • 4 Примечания

[править] Отличие реальной скорости ракеты от характеристической

Поскольку в условиях реального полёта на ракету кроме тяги двигателей действуют и другие силы, скорость, развиваемая ракетами в этих условиях, как правило, ниже характеристической из-за потерь, вызываемых силами гравитации, сопротивления среды и др.

В таблице 1 приведён баланс скоростей ракеты Сатурн V при выводе корабля Аполлон на траекторию полёта к Луне.

Таблица 1[3]

Ступень Характеристическая
скорость, м/c
Гравитационные
потери, м/c
Аэродинамические
потери, м/c
Потери на
управление, м/c
Фактическая
скорость, м/c
Первая (S-IC) 3660 1220 46 0 2394
Вторая (S-II) 4725 335 0 183 4207
Третья (S-IVB) 4120 122 0 4,5 3993,5
В сумме 12505 1677 46 187,5 10594,5[4]

Как видно из таблицы 1, гравитационная составляющая является наибольшей в общей величине потерь. Гравитационные потери возникают из-за того, что ракета, стартуя вертикально, не только разгоняется, но и набирает высоту, преодолевая тяготение Земли, и на это также расходуется топливо. Величина этих потерь вычисляется по формуле:[5]

Delta v_{g} = intlimits_{0}^{t} g(t)cdot cos(gamma (t)),dt,

где  g(t) и  gamma (t) — местное ускорение гравитации и угол между вектором силы тяги двигателя и местным вектором гравитации, соответственно, являющиеся функциями времени по программе полёта. Как видно из таблицы 1, наибольшая часть этих потерь приходится на участок полёта первой ступени. Это объясняется тем, что на этом участке траектория отклоняется от вертикали в меньшей степени, чем на участках последующих ступеней, и значение ,cos(gamma (t)) близко к максимальному значению — 1.

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Delta v_{a} = intlimits_{0}^{t} frac {A(t)}{m(t)} ,dt,

где  A(t)  — сила лобового аэродинамического сопротивления, а  m(t)  — текущая масса ракеты. Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты Сатурн V, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Delta v_{u} = intlimits_{0}^{t} frac {F(t)}{m(t)} cdot(1 - cos(alpha (t))) ,dt,

где  F(t)  — текущая сила тяги двигателя,  m(t)  — текущая масса ракеты, а  alpha (t)  — угол между векторами тяги и скорости ракеты. Наибольшая часть потерь на управление ракеты Сатурн V приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

[править] Использование формулы Циолковского при проектировании ракет

Выведенная в конце XIХ века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Путём несложных преобразований формулы получаем следующее уравнение:

frac {M_{1}} {M_{2}} = e^{V/I}    (1)

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса. Введём следующие обозначения:

M_{0} — масса полезного груза;
M_{k} — масса конструкции ракеты;
M_{t} — масса топлива.

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

 M_{k}=frac {M_{t}} {k},    (2)

где ,k — коэффициент, показывающий, какое количество топлива приходится на единицу массы конструкции. При рациональном конструировании этот коэффициент в первую очередь зависит от характеристик (плотности и прочности) конструкционных материалов, используемых в производстве ракеты. Чем прочнее и легче используемые материалы, тем выше значение коэффициента ,k. Этот коэффициент зависит также от усреднённой плотности топлива (для менее плотного топлива требуются ёмкости бо́льшего размера и массы, что ведёт к снижению значения ,k).

Уравнение (1) может быть записано в виде:

frac {M_{0}+ M_{t}+M_{t}/k} {M_{0}+M_{t}/k}=e^{V/I},

что путём элементарных преобразований приводится к виду:

 M_{t}=frac {M_{0} cdot k cdot (e^{V/I}-1)}{k+1- e^{V/I}}    (3)

Эта форма уравнения Циолковского позволяет рассчитать массу топлива, необходимого для достижения одноступенчатой ракетой заданной характеристической скорости, при заданных массе полезного груза, значении удельного импульса и значении коэффициента ,k.

Разумеется, эта формула имеет смысл, только когда значение, получающееся при подстановке исходных данных, положительно. Поскольку экспонента для положительного аргумента всегда больше 1, числитель формулы всегда положителен, следовательно, положительным должен быть знаменатель этой формулы:

,!k+1- e^{V/I}>0  , иначе говоря,   ,k+1>e^{V/I}    (4)

Это неравенство является критерием достижимости одноступенчатой ракетой заданной скорости ,V при заданных значениях удельного импульса ,I и коэффициента ,k. Если неравенство не выполняется, заданная скорость не может быть достигнута ни при каких затратах топлива: с увеличением количества топлива будет возрастать и масса конструкции ракеты и отношение начальной массы ракеты к конечной никогда не достигнет значения, требуемого формулой Циолковского для достижения заданной скорости.

[править] Пример расчёта массы ракеты

Требуется вывести искусственный спутник Земли массой ,M_{0}=10 т на круговую орбиту высотой 250 км. Располагаемый двигатель имеет удельный импульс ,I=2900 м/c. Коэффициент ,k=9 — это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массу ракеты-носителя.

Первая космическая скорость для выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь — вдвое ниже), характеристическая скорость, таким образом, составит ,V=8359,4 м/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина ,e^{V/I}=17,86. Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Расчёт для двуступенчатой ракеты.
Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двуступенчатой ракеты. ,V=4179,7 м/c. На этот раз ,e^{V/I}=4,23, что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения,
для 2-й ступени получаем:

 M_{t2}=frac {10 cdot 9 cdot (4,23-1)}{9+1- 4,23}=50,3 т;
 M_{k2}=frac {50,3} {9}=5,6 т;
полная масса 2-й ступени составляет ,55,9 т.
Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем:

 M_{t1}=frac {(10+55,9) cdot 9 cdot (4,23-1)}{9+1- 4,23}=331,3 т;
 M_{k1}=frac {331,3} {9}=36,8 т;
полная масса 1-й ступени составляет ,368,1 т;
общая масса двуступенчатой ракеты с полезным грузом составит ,10+55,9+368,1=434 т.
Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем:
Стартовая масса трёхступенчатой ракеты составит ,323,1 т.
Четырёхступенчатой — ,294,2 т.
Пятиступенчатой — ,281 т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении — при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты ,k остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это — сильное упрощение. Ступени соединяются между собой специальными секциями — переходниками — несущими конструкциями, каждая из которых должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента ,k, а, вместе с ним, и положительного эффекта многоступенчатости. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Такого рода расчёты выполняются не только на первом этапе проектирования — при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке, и т. д., чтобы контролировать достижение ракетой заданной скорости.

[править] См. также

  • Уравнение Мещерского
  • Ракетодинамика

[править] Примечания

  1. Архив Российской академии наук (АРАН). Ф.555. Оп.1. Д.32. ЛЛ. 1, 2, 5, 11, 20
  2. Для теплового ракетного двигателя это справедливо при равенстве давлений на срезе сопла и в окружающей среде. Формула Циолковского, впрочем, сохраняет свою справедливость, независимо от соблюдения этого условия.
  3. Пилотируемые полёты на Луну, конструкция и характеристики SATURN V APOLLO. Реферат ВИНИТИ М 1973.
  4. К этой величине добавляется скорость вращения Земли на широте мыса Канаверал, с которого производились пуски по программе «Аполлон» — 406 м/с. Таким образом корабль Аполлон стартовал к Луне со скоростью 11 000 м/с. На высоте 500 км, (апогей околоземной орбиты, с которой корабль переходил на траекторию полёта к Луне) вторая космическая скорость составляет 10 772 м/c.
  5. Феодосьев В., Синярев Г. Введение в ракетную технику. 2 — изд., перераб. и дополн. М Оборонгиз 1961 г.
 Просмотр этого шаблона Небесная механика
Законы и задачи Законы Ньютона • Закон всемирного тяготения • Законы Кеплера • Задача двух тел • Задача трёх тел • Гравитационная задача N тел • Задача Бертрана • Уравнение Кеплера
Небесная сфера Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая • Международная небесная система координат • Сферическая система координат • Ось мира • Небесный экватор • Прямое восхождение • Склонение • Эклиптика • Равноденствие • Солнцестояние • Фундаментальная плоскость
Параметры орбит Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра • Апоцентр и перицентр • Орбитальная скорость • Узел орбиты • Эпоха
Движение
небесных тел
Движение Солнца и планет по небесной сфере • Эфемериды
Конфигурации планет: противостояние • соединение • квадратура • элонгация • парад планет
Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл • Покрытие • Прохождение
Кульминация • Сидерический период • Синодический период • Период вращения • Орбитальный резонанс • Предварение равноденствий • Сближение • Либрация • Эффект Козаи • Эффект Ярковского • Эффект Джанибекова
Астродинамика
Космический полёт Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая
Формула Циолковского • Гравитационный манёвр • Гомановская траектория • Метод оскулирующих элементов • Приливное ускорение • Изменение наклонения орбиты • Стыковка • Точки Лагранжа • Эффект «Пионера»
Орбиты КА Геостационарная орбита • Гелиоцентрическая орбита • Геосинхронная орбита • Геоцентрическая орбита • Геопереходная орбита • Низкая опорная орбита • Полярная орбита • Тундра-орбита • Солнечно-синхронная орбита • Молния-орбита • Оскулирующая орбита

Понравилась статья? Поделить с друзьями:
  • Как найти игру мортал комбат
  • Как найти дом в тамбове
  • Компьютер запускается только через f1 как исправить
  • Как найти объем прямой шестиугольной призмы
  • Как найти блину дуги