Нахождение НОД и НОК чисел
Онлайн-калькулятор «Нахождение НОД и НОК чисел«. Наш калькулятор поможет вам найти наибольший общий делить (НОД) и наименьшее общее кратное (НОК) чисел. Особенностью данного калькулятора является то, что он может находить НОК и НОД не только двух чисел, но и трех или четырех чисел. Введите натуральные числа и нажмите кнопку «Вычислить» и наш калькулятор не просто выдаст ответ, но и представит подробное решение, где последовательно будет изложен порядок нахождения НОД и НОК чисел.
Выберите количество чисел, для которых требуется найти НОД и НОК:
2 числа
3 числа
4 числа
Первое число | Второе число |
Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое эти числа делятся без остатка. Наибольший общий делитель обозначается следующим образом: НОД (18; 48) = 6
Наименьшее общее кратно нескольких чисел – это самое меньшее число, которое делится на каждое из этих чисел без остатка. Например: НОК (18; 48) = 144
Это следует знать!
Как определить, что число делится на 3 без остатка? Очень просто – на 3 делятся только те числа, сумма цифр которых делится на 3. Например: число 795 делится на 3, так как сумма его цифр 7 + 9 + 5 = 21 делится на 3.
21 : 3 = 7
Наименьшее общее кратное: как найти
Содержание:
- Наименьшее общее кратное — что это такое
- Вычисление НОК, правила в математике
- Как найти НОК через НОД
- Как найти НОК через разложение чисел
- Нахождение НОК трех и большего количества чисел
Наименьшее общее кратное — что это такое
Определение
Число, которое можно без остатка разделить на выбранные числа, является их общим кратным. Наименьшее из таких чисел — наименьшее общее кратное или сокращенно «нок».
Действия с дробями, имеющими различный знаменатель, можно значительно облегчить, если найти наименьшее общее кратное (НОК). Это такое число, например, кратное числу а, которое можно разделить на это а целиком, без остатка.
Пример
К числам, кратным 8, относятся 16, 24, 32, 40 и т.п. Кратными 9-ти являются 9, 18, 27, 36 и т.п.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Существует бесчисленное множество чисел, делящихся на а без остатка, т.е. кратных ему. В то же время, этого нельзя сказать о числе делителей. Так, делителями для 9-ти являются 9, 3, 1.
Если для двух или более натуральных чисел существует число, делящееся на оба без остатка, то оно является наименьшим общим кратным. А то из, них, которое самое маленькое, является нок.
Вычисление НОК, правила в математике
Для нахождения нок в математике существует несколько правил или алгоритмов. Самый простой вариант — вычисление НОК для двух чисел-участников. Способ легкий, но приемлем для маленьких натуральных чисел.
Нужно составить ряды чисел, кратных каждому из выбранных значений.
Пример
К (4) — 4, 8, 12, 16, 20, 24;
К (6) — 6, 12, 18, 24, 30.
Из рядов видно, что в обоих рядах встречаются числа 12 и 24. Это общие кратные. Однако 12 из них — меньшее число.
Поэтому НОК (4, 6) — 12.
Как найти НОК через НОД
Определение НОК можно провести с использованием НОД (наибольшего общего делителя).
В этом блоке изложения материала следует уточнить некоторые понятия.
Определение
Простым называется такое натуральное число, которое целиком можно разделить только само на себя либо на единицу.
Наименьшим простым числом является двойка. Она же — единственное четное натуральное простое число. Все остальные — нечетные.
Множество чисел делятся не только на 1 и на себя, но и на другие целые натуральные числа:
8 делится на 1, 2, 4, 8;
36 — на 1, 2, 3, 4, 6, 8 и т.д.
Эти числа — делители восьми и тридцати шести (делимых). Именно они могут разделить 8 и 36 без остатка. В обоих приведенных примерах делимые (8, 36) являются составными числами, поскольку имеют более двух делителей.
В приведенных рядах существуют одинаковые делители. Это 1, 2, 4, 8.
Самое большое число — 8. Оно и является наибольшим общим делителем.
Определение
Наибольший общий делитель (НОД) — число, на которое без остатка делится выбранная пара (либо больше) чисел.
Пример
НОД (9, 45)=9
НОД (12, 48)=12
Бывают пары чисел, которые из общих делителей имеют только единицу. Тогда они называются взаимно простыми: НОД (9, 8)=1, НОД (12, 10)=1.
На следующем примере показаны пары чисел со значениями их НОД и НОК.
Решение задачи по нахождению НОК через НОД сводится к следующей формуле:
НОК чисел a,b равняется частному произведения a и b на наибольший общий делитель чисел a и b (по-другому НОД (a, b).
Исходя из этого заключения получается, что НОК и НОД взаимосвязаны друг с другом. Наименьшее общее кратное можно легко найти через наибольший общий делитель для двух или более натуральных чисел.
Как найти НОК через разложение чисел
Кроме составления рядов значений, кратных каждому из двух выбранных натуральных чисел, для правильного определения НОК пользуются методом разложения на множители.
Найденные простые множители первого разложения сравниваются с аналогичными из второго разложения, после чего они перемножаются.
Пример
После разложения числа 9 на простые множители получается ряд:
1, 3, 9.
После разложения 12-ти получается ряд:
1, 2, 3, 4, 6, 12.
После разложения на множители числа 9 получаем: 3*3. После разложения на множители 12-ти получаем: 2*2*3. Объединяя множители обеих вариантов, получаем произведение: 3*3*2*2=36.
Наименьшее общее кратное чисел 9 и 12 — 36.
В качестве проверки произведем действия:
- 36/12=3
- 9/3=3
На практике записывают: НОК (9, 12)=36.
Такими действиями можно найти НОК более сложных чисел.
Пример
Найти НОК чисел 50 и 180.
Число 50 делится на 1, 2, 5, 10, 25, 50.
Число 180 на: 1, 5, 15, 30, 45, 90, 180.
Разложив на множители 50, получаем: 2, 5, 5.
Разложив 180, получаем: 2, 2, 3, 3, 5.
Из первого разложения выписываем: 2*5*5. Сравнивая со вторым разложением, описываем одну двойку и две тройки. После перемножения полученного ряда получается произведение: 2*5*5*2*3*3=900. Это и есть наименьшее общее кратное чисел 50 и 180.
Следовательно, НОК (50, 180)=900.
Существует еще один быстрый способ находить НОК. Он приемлем для вариантов, когда одно число нацело делится на другое. Например: НОК (15, 30)=30, НОК (20, 80)=80, НОК (16, 48)=48.
Для случаев, когда у двух чисел не имеется общих делителей, их можно просто перемножить и получить НОК. Например, НОК (7, 8)=56, НОК (4, 9)=36, НОК (7, 9)=63.
Нахождение НОК трех и большего количества чисел
Если предстоит найти НОК для большего, чем 2, количества чисел, их нужно разложить на простые множители. Например,
32=2*2*2*2*2;
40=2*2*2*5;
80=2*2*2*2*5
Сравнивая множители в каждом случае разложения натуральных чисел и выстраивая их в один ряд для умножения, получаем, что НОК (32, 40, 80) = 2*2*2*2*2*5 = 160.
В математике принято для нахождения НОК трех и более чисел применять следующую теорему:
Если имеется ряд чисел (а1, а2, а3…аk), можно найти НОК mk этих чисел производя последовательные вычисления: m2=НОК (а1, а2), m3=НОК (а2, а3)… mk=НОК (mk-1, аk)
Пример
Дано задание вычислить НОК для чисел 140 (a1), 9 (a2), 54 (а3), 250 (а4).
Тогда m2=НОК (a1, a2)=НОК (140, 9).
Для нахождения НОК (140, 9) производим действия. 140=15*9+5; 9=5*1+4.
Последующее разложение: 5=4*1+1, 4=4*1.
Следовательно, НОД (140, 9)=1. НОК (140, 9)=140*9/НОД (140, 9)=140*9/1=1260.
Ответ: m2=1260
По аналогии вычисляем m3 (=3780) и m4 (=94500). Это и есть ответ решения задачи по нахождению НОК чисел 140, 9, 54, 250.
Как найти НОД и НОК
- Главная
- /
- Математика
- /
- Арифметика
- /
- Как найти НОД и НОК
Чтобы найти наименьшее общее кратное (НОК) и наибольший общий делитель (НОД) двух чисел воспользуйтесь нашим онлайн калькулятором:
Введите числа: и
НОК:
0
НОД:
0
Определить
Просто введите числа и получите результат.
Как найти НОК двух чисел
Наименьшее общее кратное (НОК) двух или нескольких чисел – это самое маленькое число, которое можно разделить на каждое из этих чисел без остатка.
Для того чтобы найти наименьшее общее кратное (НОК) двух чисел можно воспользоваться следующим алгоритмом (5 класс):
- Оба числа разложим на простые множители (сначала наибольшее число).
- Сравним множители большего числа с множителями меньшего. Выделим все множители меньшего числа, которых нет у большего.
- Добавим выделенные множители меньшего числа к множителям большего.
- Найдём НОК, перемножив ряд множителей, полученных в пункте 3.
Пример
Для примера определим НОК чисел 8 и 22.
1) Раскладываем на простые множители:
22 = 2⋅11
8 = 2⋅2⋅2
2) Выделим все множители 8-ми, которых нет у 22-х:
8 = 2⋅2⋅2
3) Добавим выделенные множители 8-ми к множителям 22-х:
НОК (8; 22) = 2 · 11 · 2 · 2
4) Вычисляем НОК:
НОК (8; 22) = 2 · 11 · 2 · 2 = 88
Как найти НОД двух чисел
Наибольший общий делитель (НОД) двух или нескольких чисел – это наибольшее натуральное целое число, на которое эти числа можно разделить без остатка.
Чтобы найти наибольший общий делитель (НОД) двух чисел, для начала необходимо разложить их на простые множители. Затем нужно выделить общие множители, которые имеются и у первого числа и у второго. Перемножаем их – это и будет НОД. Чтобы лучше понять алгоритм рассмотрим пример:
Пример
Для примера определим НОД чисел 20 и 30.
20 = 2⋅2⋅5
30 = 2⋅3⋅5
НОД(20,30) = 2⋅5 = 10
Если одно или несколько из рассматриваемых чисел являются простыми, то НОД этих чисел будет равен 1.
См. также
Калькулятор онлайн.
Нахождение (вычисление) НОД и НОК
Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей.
Пример: для чисел 6 и 9 наибольший общий делитель равен 3.
Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.
В школьной программе обозначается так: НОД(m, n)
Понятие наибольшего общего делителя (НОД) распространяется на любой набор из более чем двух целых чисел.
Чаще всего НОД используется для сокращения дроби — если найти НОД числителя и знаменателя, то на это число можно сократить
числитель и знаменатель данной дроби.
Наименьшее общее кратное (НОК) двух целых чисел m и n это наименьшее натуральное число, которое делится на m и n без остатка.
В школьной программе обозначается так: НОК(m, n)
Пример: НОК(16, 20) = 80
Одно из наиболее частых применений НОК — приведение дробей к общему знаменателю.
С помощью данной математической программы вы можете найти (вычислить) НОД и НОК двух целых чисел.
Программа нахождения НОД и НОК не только выводит ответ задачи, но и отображает процесс вычисления НОД и НОК двух чисел.
Вводить можно только целые положительные числа.
Наши игры, головоломки, эмуляторы:
Немного теории.
Наибольший общий делитель (НОД). Взаимно простые числа
Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют
наибольшим общим делителем (НОД) этих чисел.
Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель — число 1. Такие числа называют взаимно простыми.
Определение. Натуральные числа называют взаимно простыми, если их наибольший общий делитель (НОД) равен 1.
Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.
Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа
(т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36.
Так же находят наибольший общий делитель трёх и более чисел.
Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.
Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.
Наименьшее общее кратное (НОК)
Определение. Наименьшим общим кратным (НОК) натуральных чисел а и b называют наименьшее натуральное число,
которое кратно и a и b.
Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на
простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения
второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.
Так же находят наименьшее общее кратное для трёх и более чисел.
Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.
Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных
чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.
Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа),
они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные
числа — 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое — 8128 — стало известно в I в. н. э.
Пятое — 33 550 336 — было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли
нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде
произведения простых чисел, т. е. простые числа — это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно — в одних частях ряда их больше,
в других — меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует
ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на
протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом
есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа
от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через
одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее
вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались
невычеркнутыми только простые числа.
Онлайн калькулятор НОД и НОК двух чисел
Наибольший общий делитель (НОД)
НОД двух или более целых чисел — это наибольшее целое число, которое является делителем каждого из этих чисел.
Если натуральное число a делится на натуральное число bb, то bb называют делителем числа aa, а число aa называют кратным числа bb. aa и bb являются натуральными числами. Число gg называют общим делителем и для aa и для bb. Множество общих делителей чисел aa и bb конечно, так как ни один из этих делителей не может быть больше, чем aa. Значит, среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел aa и bb и для его обозначения используют записи: НОД (a;b)(a;b) или D(a;b)(a;b)
Пример
Наибольший общий делитель (НОД) чисел 1818 и 2424 — это 66.
Как найти наибольший общий делитель (НОД)
Существует несколько способов нахождения наибольшего общего делителя (НОД) двух или более целых чисел:
- Алгоритм Евклида: НОД(a,b)=(a, b) = НОД (b,a(b, a mod b)b), где «mod» — это операция взятия остатка от деления большего числа на меньшее. Этот алгоритм можно продолжать до тех пор, пока одно из чисел не станет равно нулю. В этом случае НОД равен ненулевому числу.
Пример
НОД(18,24)=НОД(24,18)=НОД(18,6)=НОД(6,0)=6НОД(18, 24) = НОД(24, 18) = НОД(18, 6) = НОД(6, 0) = 6
- Разложение на простые множители: Найти все простые множители каждого из чисел и их степени. НОД будет равен произведению всех общих простых множителей в минимальной степени.
Пример
НОД(60,84)=22⋅31=12(60, 84) = 2^{2} cdot 3^{1} = 12, так как общие простые множители −2- 2 и 33, их минимальные степени −2- 2 и 11 соответственно.
- Таблица делителей: Составить таблицы всех делителей каждого числа и найти наибольшее общее число, которое является делителем обоих чисел. Этот метод не рекомендуется для больших чисел, так как он требует много времени и усилий.
Наименьшее общее кратное (НОК)
НОК двух или более целых чисел — это наименьшее число, которое делится на каждое из этих чисел без остатка.
Общими кратными чисел называются числа которые делятся на исходные без остатка. Например для чисел 2525 и 5050 общими кратными будут числа 50,100,150,20050,100,150,200 и т.д Наименьшее из общих кратных будет называться НОК и обозначается НОК(a;b)(a;b) или K(a;b).(a;b).
Пример
Наименьшее общее кратное чисел 88 и 1212 – это 2424. Т.е. НОК (8,12)=24(8, 12) = 24.
Как найти наименьшее общее кратное (НОК)
Чтобы найти НОК двух чисел, необходимо:
- Разложить числа на простые множители;
- Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого;
- Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наименьшим общим кратным.
Пример
Рассмотрим два числа: 88 и 1212. Найдем их НОКНОК:
- Разложим 88 и 1212 на простые множители: 8=23,12=22⋅38 = 2^3, 12 = 2^2 cdot 3.
- Выпишем все простые множители: 23⋅32^3 cdot 3.
- Для каждого простого множителя выберем наибольшую кратность: 232^3 и 33.
- Умножим выбранные простые множители между собой: 23⋅3=242^3 cdot 3 = 24.
Таким образом, НОК чисел 88 и 1212 равен 2424.
Свойства НОД и НОК
- Любое общее кратное чисел aa и bb делится на K(a;b)(a;b);
- Если a⋮bavdots b , то К(a;b)=a(a;b)=a;
- Если К(a;b)=k(a;b)=k и mm-натуральное число, то К(am;bm)=km(am;bm)=km. Если dd-общий делитель для aa и bb,то К(ad;bdfrac{a}{d};frac{b}{d})= kd frac{k}{d}
- Если a⋮cavdots c и b⋮cbvdots c ,то abcfrac{ab}{c} — общее кратное чисел aa и bb;
- Для любых натуральных чисел aa и bb выполняется равенство D(a;b)⋅К(a;b)=abD(a;b)cdot К(a;b)=ab;
- Любой общий делитель чисел aa и bb является делителем числа D(a;b)D(a;b).