Как найти наибольшее значение функции cosx

  1. Развертка абсциссы движения точки по числовой окружности в функцию от угла
  2. Свойства функции y=cos⁡x
  3. Примеры

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

Развертка абсциссы движения точки по числовой окружности в функцию от угла (см. §2 данного справочника).

Рассмотрим, как изменяется косинус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=cosx на этом отрезке.

Развертка ординаты движения точки по числовой окружности в функцию от угла

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривая продолжится влево.

В результате получаем график y=cosx для любого (xinmathbb{R}).
Косинусоида

График y=cosx называют косинусоидой.
Часть косинусоиды для –π≤x≤π называют волной косинусоиды.
Часть косинусоиды для (-fracpi2leq xleqfracpi2) называют полуволной или аркой косинусоиды.

Заметим, что термин «косинусоида» используется достаточно редко. Обычно, и в случае косинуса, говорят о «синусоиде».

п.2. Свойства функции y=cosx

1. Область определения (xinmathbb{R}) — множество действительных чисел.

2. Функция ограничена сверху и снизу $$ -1leq cosxleq 1 $$ Область значений (yin[-1;1])

3. Функция чётная $$ cos(-x)=cosx $$

4. Функция периодическая с периодом 2π $$ cos(x+2pi k)=cosx $$

5. Максимальные значения (y_{max}=1) достигаются в точках $$ x=2pi k $$ Минимальные значения (y_{min}=-1) достигаются в точках $$ x=pi+2pi k $$ Нули функции (y_{0}=cosx_0=0) достигаются в точках (x=fracpi2 +pi k)

6. Функция возрастает на отрезках $$ -pi+2pi kleq xleq 2pi k $$ Функция убывает на отрезках $$ 2pi kleq xleqpi+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1.Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:
Пример 1
a) (left[fracpi6; frac{3pi}{4}right]) $$ y_{min}=cosleft(frac{3pi}{4}right)=-frac{sqrt{2}}{2}, y_{max}=cosleft(fracpi6right)=frac{sqrt{3}}{2} $$ б) (left[frac{5pi}{6}; frac{5pi}{3}right]) $$ y_{min}=cos(pi)=-1, y_{max}=cosleft(frac{5pi}{3}right)=frac12 $$

Пример 2. Решите уравнение графически:
a) (cosx=fracpi2-x)
Пример 2a
Один корень: (x=fracpi2)

б) (cosx-x=1)
(cosx=x+1)
Пример 2б
Один корень: x = 0

в) (cosx-x^2=1)
(cosx=x^2+1)
Пример 2в
Один корень: x = 0

г*) (cosx-x^2+frac{pi^2}{4}=0)
(cosx=x^2-frac{pi^2}{4})
(y=x^2-frac{pi^2}{4}) – парабола ветками вверх, с осью симметрии (x_0=0) (ось OY) и вершиной (left(0; -frac{pi^2}{4}right)) (см. §29 справочника для 8 класса)
Пример 2г
Два корня: (x_{1,2}=pmfracpi2)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx, y=-cosx, y=2cosx, y=cosx-2 $$
Пример 3
(y=-cosx) – отражение исходной функции (y=cosx) относительно оси OX. Область значений (yin[-1;1]).
(y=2cosx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=cosx-2) — исходная функция опускается вниз на 2. Область значений (yin[-3;-1]).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx, y=cos2x, y=cosfrac{x}{2} $$
Пример 4
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под косинусом изменяет период колебаний.
(y=cosx) – главная арка косинуса соответствует отрезку (-fracpi2leq xleqfracpi2)
(y=cos2x) — период уменьшается в 2 раза, главная арка укладывается в отрезок (-fracpi4leq xleqfracpi4).
(y=cosfrac{x}{2}) — период увеличивается в 2 раза, главная арка растягивается в отрезок (-pi leq xleq pi).

Функция

y=cosx

 определена на всей числовой прямой, и множеством её значений является отрезок

−1;1

.

Поэтому её график не выходит за границы полосы между прямыми

y=−1

 и

y=1

.

Используя свойство периодичности функции

y=cosx

, можно построить её график на промежутке

−π≤x≤π

 длиной

 и повторить несколько периодов с такими же значениями.

Функция

y=cosx

 — чётная. Её график симметричен относительно оси (Oy).

Построим график функции на промежутке

−π≤x≤π

. Так как функция

y=cosx

 является чётной, можно построить график на промежутке 

0≤x≤π

, а потом симметрично отобразить относительно оси (Oy).

Значения функции в удобных точках на этом отрезке

0≤x≤π

 равны: 

cos0=1;cosπ6=32;cosπ4=22;cosπ3=12;cosπ2=0;cosπ=−1

.

Учитывая периодичность функции 

y=cosx

, нарисуем её график.

cosx1.png

1. Область определения — все действительные числа (множество

).

2. Множество значений — промежуток

−1;1

.

3. Функция

y=cosx

имеет период

.

4. Функция

y=cosx

 является чётной.

5. Нули функции:

x=π2+πn,n∈ℤ;

наибольшее значение равно (1) при

x=2πn,n∈ℤ

;

наименьшее значение равно (-1) при 

x=π+2πn,n∈ℤ

;

значения функции положительны на интервале

−π2;π2

, с учётом периодичности функции на интервалах

−π2+2πn;π2+2πn,n∈ℤ

;

значения функции отрицательны на интервале

π2;3π2

, с учётом периодичности функции на интервалах

π2+2πn;3π2+2πn,n∈ℤ

.

— возрастает на отрезке

π;2π

, с учётом периодичности функции на отрезках 

π+2πn;2π+2πn,n∈ℤ

;

— убывает на отрезке

0;π

, с учётом периодичности функции на отрезках

2πn;π+2πn,n∈ℤ

.

hote
4 года назад

Светило науки — 2975 ответов — 40394 помощи

Для нахождения max или min нужно воспользоваться производной

y= cos x

y`= — sin x

y`=0; -sin x=0; x=πn; n∈Z

точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)

определим знаки производной учитывая наш отрезок

______ 0 ____ (п/4) ______ п_______(5п/3) ______ 2п

                          y`<0                                y`>0

                    функция убывает          функция возрастает

Значит х=п, точка минимума функции

cos (п) = -1

Определим точки максимума на отрезке

т.к. максимумы функции бубт точки х=0 и х= 2п

то проверим значение функции вточках х=п/4 и х=5п/3 и сравним

cos (п/4)=√2/2; cos (5п/3)=1/2

Значит наименьшее значение функции в точке х=п и равно -1

наибольшее значение функции в точке х= п/4 и равно √2/2

14. Свойства функций синуса, косинуса, тангенса

и котангенса и их графики

14.1. СВОЙСТВА ФУНКЦИИ y = sin x И ЕЕ ГРАФИК

Т а б л и ц а 21

График функции y = sin x (синусоида)

Свойства функции y = sin x

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики:

1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями

координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания * ;8) наибольшее и наименьшее

З а м е ч а н и е. Абсциссы точек пересечения графика функции с осью Ох

(то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордина-

та соответствующей точки единичной окружности

(рис. 79). Поскольку ординату можно найти для

любой точки единичной окружности (в силу того,

что через любую точку окружности всегда можно

провести единственную прямую, перпендикуляр-

ную оси ординат), то область определения функции

y = sin x — все действительные числа. Это можно за-

писать так: D (sin x) = R.

Для точек единичной окружности ординаты нахо-

дятся в промежутке [–1; 1] и принимают все значения

от –1 до 1, поскольку через любую точку отрезка [–1; 1]

оси ординат (который является диаметром единичной

окружности) всегда можно провести прямую, перпендикулярную оси орди-

нат, и получить точку окружности, которая имеет рассматриваемую орди-

нату. Таким образом, для функции y = sin x область значений: y ∈ [–1; 1].

Это можно записать так: E (sin x) = [–1; 1].

Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окружности является точка A, то есть при

Наименьшее значение функции sin x равно минус единице. Это значение

достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть

при

Как было показано в § 13, синус — нечетная функция: sin(-x)= — sin x,

поэтому ее график симметричен относительно начала координат.

В § 13 было обосновано также, что синус — периодическая функция с наименьшим положительным периодом

T = 2π: sin (x + 2π) = sin x , таким образом, через промежутки длиной вид графика функции sin x повторя-

ется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной 2 π , а

потом полученную линию парал лельно перенести вправо и влево вдоль оси Ox на расстояние kT = 2πk , где

k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат,

напомним, что на оси Oy значение x = 0. Тогда соответствующее значение

y = sin 0 = 0, то есть график функции y = sin x проходит через начало координат.

На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при

которых sin x, то есть ордината соответствующей точки единичной окруж­

ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж-

ности будут выбраны точки C или D, то есть при x = πk, k ∈ Z (см. рис. 79).

Промежутки знакопостоянства . Как было обосновано в § 13, значения

функции синус положительны (то есть ордината соответствующей точки

единичной окружности положительна) в I и II четвертях (рис. 80). Таким

образом, sin x > 0 при всех x ∈ (0; π), а также, учитывая период, при всех

x ∈ (2πk; π + 2πk), k ∈ Z.

Значения функции синус отрицательны (то есть ордината соответствую-

щей точки единичной окружности отрицательна) в III и IV четвертях, поэто-

Промежутки возрастания и убывания

Учитывая периодичность функции sin x с периодом T = 2π, достаточно

исследовать ее на возрастание и убывание на любом промежутке длиной

2π, например на промежутке

то при увеличении аргумента x (x 2 > x 1 ) ордината соответствующей точки единичной окружности увеличивается (то есть

sin x 2 > sin x 1 ), следовательно, на этом промежутке функция sin x возрастает. Учитывая периодичность функции sin x,

делаем вывод, что она такж е возрастает на каждом из промежутков

Если x ∈ (рис. 81, б), то при увеличении аргумента x (x 2 > x 1 ) ордината соответствующей точки единичной

окружности уменьшается (то есть sin x 2 1 ), таким образом, на этом промежутке функция sin x убывает. Учитывая

периодичность функции sin x, делаем вывод, что она также убывает на каждом из промежутков

Проведенное исследование позволяет обоснованно построить график функции y = sin x. Учитывая периодичность этой

функции (с периодом 2π), д о статочно сначала построить график на любом промежутке длиной 2π, на пример на

промежутке [–π; π]. Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината

соответствующей точки единичной окружности. На рисунке 82 показано построение графика функции y = sin x на

промежутке [0; π]. Учитывая нечетность функции sin x (ее график симметричен относительно начала координат), для

построения графика на промежутке [–π; 0] отображаем полученную кривую симметрич но относительно начала координат

Поскольку мы построили график на

промежутке длиной 2π, то, учитывая

периодичность синуса (с периодом 2π),

повторяем вид графика на каждом про-

межутке длиной 2π (то есть переносим па-

раллельно график вдоль оси Ох на 2πk,

где k — целое число).

Получаем график, который называется

З а м е ч а н и е. Тригонометрические функции широко применяются в ма тематике, физике и технике. Например,

множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п.,

описываются функцией, которая задается формулой y = A sin (ωх + φ). Та кие процессы называют гармоническими

колебаниями. График функции y = A sin (ωx + φ) можно получить из синусоиды y = sin х сжатием или растяжением ее вдоль

координатных осей и параллельным пере носом вдоль оси Ох. Чаще всего гармоническое колебание является функцией

времени t. Тогда оно задается формулой y = A sin (ωt + φ), где А — амплитуда колебания, ω — частота, φ — начальная

фаза,

14.2. СВОЙСТВА ФУНКЦИИ y = cos x И ЕЕ ГРАФИК

Объяснение и обоснование

Напомним, что значение косинуса — это абсцис-

са соответствующей точки единичной окружности

(рис. 85). Поскольку абсциссу можно найти для лю-

бой точки единичной окружности (в силу того, что

через любую точку окружности, всегда можно про-

вести единственную прямую, перпендикулярную оси

абсцисс), то область определения функции y = cos x —

все действительные числа. Это можно записать так:

D (cos x) = R.

Для точек единичной окружности абсциссы нахо-

дятся в промежутке [–1; 1] и принимают все значе-

ния от –1 до 1, поскольку через любую точку отрезка [–1; 1] оси абсцисс (который является диаметром единичной

всегда можно провести прямую, перпендикулярную оси абсцисс, и получить

точку окружности, которая имеет рассматриваемую абсциссу. Следователь но, область значений функции y = cos x:

y ∈ [–1; 1]. Это можно записать так: E (cos x) = [–1; 1]. Как видим, наибольшее значение функции cos x равно единице. Это

зна чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при

x = 2πk, k ∈ Z. Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окруж ности является точка B, то есть при x = π + 2πk, k ∈ Z.

Как было показано в § 13, косинус — четная функция : cos (–x) = cos x, поэтому ее график симметричен относительно оси

Оу. В § 13 было обосновано также, что косинус — периодическая функция с наименьшим положительным периодом

T = 2π: cos (x + 2π) = cos x. Таким об разом, через промежутки длиной 2π вид графика функции cos x повторяется.

Чтобы найти точки пересечения графика функции с осями координат , напомним, что на оси Oy значение x = 0. Тогда

соответствующее значение y = cos 0 = 1. На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при

которых cos x, то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только

тогда, когда на единичной окружности будут выбраны точки C или D, то есть при

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции косинус положительны (то есть абсцисса соответствующей точки

единичной окружности положительна) в I и IV четвертях (рис. 86). Следова-

тельно, cos x > 0 при x ∈ (-П/2; П/2) а также, учитывая период, при всех

Значения функции косинус отрицательны (то есть абсцисса соответству-

ющей точки единичной окружности отрицательна) во ІІ и ІІІ четвертях,

поэтому cos x

Промежутки возрастания и убывания

Учитывая периодичность функции cos x (T = 2π), достаточно исследовать

ее на возрастание и убывание на любом промежутке длиной 2π, например

на промежутке [0; 2π].

Если x ∈ [0; π] (рис. 87, а), то при увеличении аргумента x (x 2 > x 1 ) абсцисса соответствующей точки единичной

окружности уменьшается (то есть cos x 2 1 ), следовательно, на этом промежутке функция cos x убывает. Учитывая

периодичность функции cos x, делаем вывод, что она также убывает на каждом из промежутков [2πk; π + 2πk], k ∈ Z.

Если x ∈ [π; 2π] (рис. 87, б), то при увеличении аргумента x (x 2 > x 1 ) аб-

сцисса соответствующей точки единичной окружности увеличивается (то

есть cos x 2 >cos x 1 ), таким образом, на этом промежутке функция cos x

возрастает. Учитывая периодичность функции cos x, делаем вывод, что

она возрастает также на каждом из промежутков [π + 2πk; 2π + 2πk], k ∈ Z.

Проведенное исследование позволяет построить график функции y = cos x

аналогично тому, как был построен график функ-

ции y = sin x. Но график функции у = cos x можно

также получить с помощью геометрических преоб-

разований графика функции у = sin х, используя

Эту формулу можно обосновать, например, так.

Рассмотрим единичную окружность (рис. 88), отметим на ней точки

Функция y = cos x, её свойства и график

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

Рассмотрим, как изменяется косинус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=cosx на этом отрезке.

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x косинусоидой .
Часть косинусоиды для –π≤x≤π называют волной косинусоиды .
Часть косинусоиды для (-fracpi2leq xleqfracpi2) называют полуволной или аркой косинусоиды .

Заметим, что термин «косинусоида» используется достаточно редко. Обычно, и в случае косинуса, говорят о «синусоиде».

п.2. Свойства функции y=cosx

1. Область определения (xinmathbb) — множество действительных чисел.

2. Функция ограничена сверху и снизу $$ -1leq cosxleq 1 $$ Область значений (yin[-1;1])

3. Функция чётная $$ cos(-x)=cosx $$

4. Функция периодическая с периодом 2π $$ cos(x+2pi k)=cosx $$

5. Максимальные значения (y_=1) достигаются в точках $$ x=2pi k $$ Минимальные значения (y_=-1) достигаются в точках $$ x=pi+2pi k $$ Нули функции (y_<0>=cosx_0=0) достигаются в точках (x=fracpi2 +pi k)

6. Функция возрастает на отрезках $$ -pi+2pi kleq xleq 2pi k $$ Функция убывает на отрезках $$ 2pi kleq xleqpi+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:

a) (left[fracpi6; frac<3pi><4>right]) $$ y_=cosleft(frac<3pi><4>right)=-frac<sqrt<2>><2>, y_=cosleft(fracpi6right)=frac<sqrt<3>> <2>$$ б) (left[frac<5pi><6>; frac<5pi><3>right]) $$ y_=cos(pi)=-1, y_=cosleft(frac<5pi><3>right)=frac12 $$

Пример 2. Решите уравнение графически:
a) (cosx=fracpi2-x)

Один корень: (x=fracpi2)

б) (cosx-x=1)
(cosx=x+1)

Один корень: x = 0

в) (cosx-x^2=1)
(cosx=x^2+1)

Один корень: x = 0

г*) (cosx-x^2+frac<pi^2><4>=0)
(cosx=x^2-frac<pi^2><4>)
(y=x^2-frac<pi^2><4>) – парабола ветками вверх, с осью симметрии (x_0=0) (ось OY) и вершиной (left(0; -frac<pi^2><4>right)) (см. §29 справочника для 8 класса)

Два корня: (x_<1,2>=pmfracpi2)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx, y=-cosx, y=2cosx, y=cosx-2 $$

(y=-cosx) – отражение исходной функции (y=cosx) относительно оси OX. Область значений (yin[-1;1]).
(y=2cosx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=cosx-2) — исходная функция опускается вниз на 2. Область значений (yin[-3;-1]).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx, y=cos2x, y=cosfrac <2>$$

Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под косинусом изменяет период колебаний.
(y=cosx) – главная арка косинуса соответствует отрезку (-fracpi2leq xleqfracpi2)
(y=cos2x) — период уменьшается в 2 раза, главная арка укладывается в отрезок (-fracpi4leq xleqfracpi4).
(y=cosfrac<2>) — период увеличивается в 2 раза, главная арка растягивается в отрезок (-pi leq xleq pi).

Синус (sin x) и косинус (cos x) – свойства, графики, формулы

Геометрическое определение синуса и косинуса

α — угол, выраженный в радианах.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла — это абсцисса точки. Синус угла — это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки ; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол . На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

источники:

http://reshator.com/sprav/algebra/10-11-klass/funkciya-y-cosx-svojstva-i-grafik/

http://calcsbox.com/post/sinus-sin-x-i-kosinus-cos-x-svojstva-grafiki-formuly.html

Тема 11.

Исследование функций с помощью производной

11

.

11

Поиск наибольшего/наименьшего значения у функций с тригонометрией

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами — ЛЕГКО!

Подтемы раздела

исследование функций с помощью производной

Решаем задачи

Найдите наибольшее значение функции y = 5sinx − 6x +3  на отрезке [  π]
 0;2  .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ.  Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

y′ =5 cosx − 6

Найдем нули производной:

                 6
y′ = 0 ⇒   cosx= 5   ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Так как нулей у производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив
x = 0,  мы понимаем, что  ′
y(x)< 0  для всех x.

Следовательно, функция y = y(x)  убывает на всем ℝ,  значит, принимает наибольшее значение в начале отрезка, то есть в
точке x = 0:

y(0)= 5sin 0+ 3= 3

Найдите наибольшее значение функции

y = 4cosx− 20x+ 7

на отрезке [  3π]
 0; 2  .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ.  Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

y′ =− 4sinx − 20

Найдем нули производной:

y′ =0  ⇒   sinx =− 5  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Так как нулей у производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив
x = 0,  мы понимаем, что y′(x)< 0  для всех x.

Следовательно, функция y = y(x)  убывает на всем ℝ,  значит, принимает наибольшее значение в левом конце отрезка, то
есть в точке x= 0:

y(0) = 4cos0 +7 = 11

Найдите наибольшее значение функции y = 7cosx+ 16x− 2  на отрезке [− 3π;0] .
  2

Показать ответ и решение

Функция y =y(x)  определена при всех x∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого найдем ее
производную:

 ′
y = −7sinx +16

Найдем нули производной:

 ′             16
y =0  ⇒   sinx = 7  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Так как нулей у
производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив x= 0  , мы понимаем, что  ′
y(x)>0  для всех
x.

Следовательно, функция y = y(x)  возрастает на всем ℝ  , значит, принимает наибольшее значение в конце отрезка, то есть в x =0  , и
оно равно

y(0)= 7cos0 − 2= 5.

Найдите наибольшее значение функции y = 15x− 3sinx +5  на отрезке [− π;0]
   2 .

Показать ответ и решение

Функция y =y(x)  определена при всех x∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого найдем ее
производную:

′
y= 15− 3cosx =3(5− cosx)

Найдем нули производной:

 ′
y =0  ⇔   3(5 − cosx)=0 ⇔   cosx =5  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Производная не
имеет нулей, следовательно, принимает значения одного знака. Так как cosx ∈[−1;1]  , то 5− cosx∈ [4;6]  , следовательно, y′ >0  при всех
x ∈ℝ  . Следовательно, функция y = y(x)  возрастает на всей своей области определения, значит, на любом отрезке наибольшее
значение функция принимет в конце этого отрезка. Следовательно, наибольшее значение функции на указанном отрезке
равно

y(0)= 15⋅0− 3sin0+ 5= 5.

Найдите наименьшее значение функции y = 13x − 9sinx +9  на отрезке [  π]
 0;2  .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ.  Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

y′ = 13− 9cosx

Найдем нули производной:

                 13
y′ = 0 ⇒   cosx = 9-  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Так как нулей у производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив
x = 0,  мы понимаем, что  ′
y(x)> 0  для всех x.

Следовательно, функция y = y(x)  возрастает на всем ℝ,  значит, принимает наименьшее значение в начале отрезка, то есть
в x= 0,  и оно равно

y(0)= − 9sin0 +9 = 9

Найдите наибольшее значение функции             √ -   √-
y = 12 sinx− 6  3x +  3π+ 6  на отрезке [  π]
 0;2 .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ.  Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

             √-
y′ = 12cosx− 6 3

Найдем нули производной:

                 √3-           π
y′ = 0 ⇒   cosx= -2-  ⇔   x = ±6-+ 2πn,n ∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Из точек, где производная равна нулю или не существует, на отрезок [0; π]
   2 попадает только нуль производной
    π
x = 6.

PICT

При    [  π)
x∈  0;6 производная положительна (для проверки можно подставить в производную точку из этого промежутка
x = 0  ), при    (   ]
x∈  π6; π2 производная отрицательна (подставляем x = π2  ). Следовательно, функция y = y(x)  принимает
наибольшее значение в x = π6,  и оно равно

  ( )
y  π- = 6− √3π+ √3π + 6= 12
   6

Найдите наибольшее значение функции

y = − 2tgx+ 4x− π− 3

на отрезке [  π-π]
 − 3;3 .

Показать ответ и решение

Функция y = y(x)  определена при всех     π
x ⁄= 2 + πk,k ∈ℤ  . Определим участки, на которых функция возрастает или убывает.
Для этого найдем ее производную:

        2         2cos2x− 1     cos2x
y′ = − cos2x-+ 4= 2⋅-cos2x-- =2 ⋅cos2x-

Найдем нули производной:

y′ =0  ⇒   cos2x =0   ⇔   x= π-+ πn,n ∈ℤ
                            4   2

Найдем точки, где производная не существует:

                 π-
cosx⁄= 0  ⇔   x ⁄= 2 + πk,k ∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Тогда из точек, где производная равна нулю или не существует, на отрезок [− π3; π3] попадают нули производной
x = − π; π
     4 4  .

PICT

Тогда функция y = y(x)  убывает на [− π3;− π4) , затем возрастает на (− π4; π4) , затем снова убывает на (π4; π3] ,
следовательно, наибольшее значение принимает в одной из точек      π
x= − 3  или     π
x = 4  . Найдем значение функции в этих точках
и сравним:

 ( π )   √ -  4π         √ -     7π
y −-3 = 2  3− 3-− π − 3 = 2 3− 3−-3
 ( )
y π- = −2+ π − π − 3= −5
  4

Очевидно, что y =− 5  больше.

Найдите наибольшее значение функции y = 14x − 7 tgx − 3,5π +11  на отрезке [  π-π]
 − 3;3 .

Показать ответ и решение

Функция y = y(x)  определена при всех     π
x ⁄= 2 + πk,  k ∈ ℤ.  Определим участки, на которых функция возрастает или убывает.
Для этого найдем ее производную:

         7       2cos2x− 1     cos2x
y′ =14 − cos2x-= 7⋅-cos2-x--= 7 ⋅cos2x-

Найдем нули производной:

y′ =0  ⇒   cos2x =0   ⇔   x= π-+ πn,n ∈ℤ
                            4   2

Найдем точки, где производная не существует:

                 π-
cosx⁄= 0  ⇔   x ⁄= 2 + πk,k ∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Тогда из точек, где производная равна нулю или не существует, на отрезок [− π3; π3] попадают нули производной
x = − π; π.
     4 4

PICT

Тогда функция y = y(x)  убывает на [− π3;− π4),  затем возрастает на (− π4; π4),  затем снова убывает на (π4; π3],
следовательно, наибольшее значение принимает в одной из точек      π
x= − 3  или     π
x = 4.  Найдем значение функции в этих точках
и сравним:

 ( π )    14π    √-  7π            √-  49π
y −3- = − -3-+ 7 3 −-2 + 11= 11+ 7 3− -6-
 ( )
y π- = 7π − 7 − 7π-+ 11= 4
  4    2       2

Очевидно, что y =4  больше.

Найдите наибольшее значение функции y = 3x − 3tg x− 5  на отрезке [  π]
 0;4 .

Показать ответ и решение

Функция y = y(x)  определена при всех     π
x ⁄= 2 + πk,k ∈ℤ.  Определим участки, на которых функция возрастает или убывает.
Для этого найдем ее производную:

         3        1− cos2x
y′ = 3− cos2x-= −3⋅-cos2-x--

Найдем нули производной:

y′ = 0 ⇔   1− cos2x = 0  ⇔   cosx= ±1  ⇔   x = πn,n∈ ℤ

Найдем точки, где производная не существует:

cosx⁄= 0  ⇔   x ⁄= π+ πk,k ∈ ℤ
                 2

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Тогда из точек, где производная равна нулю или не существует, на отрезок [ π]
0;4 попадает только нуль
производной x =0.

PICT

При    [   ]
x∈  0; π4 производная отрицательна (подставляем x= π4  ). Следовательно, функция y =y(x)  убывает на всем отрезке
[    ]
− π4;0 ,  значит, наибольшее значение принимает в начале отрезка, и оно равно

y (0)= 0− 3tg0− 5 =− 5

Найдите наибольшее значение функции y = 16tgx− 16x+ 4π − 5  на отрезке [− π;π].
   4 4

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

 ′   16          1 − cos2x
y = cos2x-− 16 =16⋅--cos2x-

Найдем нули производной:

y′ = 0 ⇔  1− cos2x =0  ⇔   cosx =±1  ⇔   x =πn,n∈ ℤ

Найдем точки, где производная не существует:

               π
cosx ⁄=0  ⇔   x⁄= 2 + πk,k∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Тогда из
точек, где производная равна нулю или не существует, на отрезок [    ]
 − π4;π4 попадает только нуль производной x = 0  .

PICT

При    [ π  )
x∈  −4;0 производная положительна (для проверки можно подставить в производную точку из этого промежутка     π
x= −-6  ), при
   (  π]
x ∈ 0;4 производная также положительна (подставляем    π
x= 6  ). Следовательно, функция y = y(x)  возрастает на всем отрезке
[    ]
− π4;π4 , значит, наибольшее значение принимает в конце отрезка, и оно равно

 (  )     (  )
y π  = 16tg  π − 16⋅ π+ 4π− 5= 16 − 4π+ 4π− 5= 11.
   4        4      4

Найдите наибольшее значение функции y = 3tgx − 3x+ 5  на отрезке [− π;0].
  4

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

 ′    3         1− cos2 x
y = cos2x-− 3 =3⋅-cos2x--

Найдем нули производной:

y′ = 0 ⇒  1− cos2x =0  ⇔   cosx =±1  ⇔   x =πn,n∈ ℤ

Найдем точки, где производная не существует:

               π
cosx ⁄=0  ⇔   x⁄= 2 + πk,k∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Из
точек, где производная равна нулю или не существует, на отрезок [    ]
 − π4;0 попадает только нуль производной x= 0  .

PICT

При    [ π  ]
x∈  −4;0 производная положительна (подставляем     π
x= −4  ). Следовательно, функция y = y(x)  возрастает на всем отрезке
[ π ]
− 4;0 , значит, наибольшее значение принимает в конце отрезка, и оно равно

y(0) =3tg0+ 5= 5.

Найдите наибольшее значение функции

           18
y = 2cosx − π-x+ 4

на отрезке [  2π  ]
 − 3-;0 .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

             18
y′ = − 2sinx − π

Найдем нули производной:

y′ = 0 ⇒   sin x= − 9- ⇔   x ∈∅
                   π

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Так как нулей у производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив
x = 0  , мы понимаем, что y′(x)< 0  для всех x.

Следовательно, функция y = y(x)  убывает на всем ℝ  , значит, принимает наибольшее значение в начале отрезка, то есть в
x = − 2π
      3  , и оно равно

 (    )       (    )
    2π           2π-   18  2π
y − 3   = 2cos − 3  +  π ⋅3 + 4 =15

Найдите наибольшее значение функции            36
y = 10 sinx−  π x + 7  на отрезке [ 5π  ]
 − 6 ;0 .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ.  Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

           36
y′ =10cosx−-π

Найдем нули производной:

y′ = 0 ⇒   cosx= -36   ⇔   x∈ ∅
                 10π

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков. Так как нулей у производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив
x = 0,  мы понимаем, что y′(x)< 0  для всех x.

Следовательно, функция y = y(x)  убывает на всем ℝ,  значит, принимает наибольшее значение в начале отрезка, то есть в
x = − 5π,
      6  и оно равно

 (    )       (    )
    5π           5π    36 5π
y − 6   =10 sin − 6   + π ⋅ 6 + 7= 32

Найдите наибольшее значение функции

            √ -     √ -
y = 12cosx + 6 3⋅x− 2  3π + 6

на отрезке [  π]
 0;2 .

Показать ответ и решение

Функция y =y(x)  определена при всех x ∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

              √-      (      √3-)
y′ = −12sin x+ 6 3 = −12 sin x−-2-

Найдем нули производной:

              (      √ -)                √-
y′ = 0 ⇔   −12 sinx− --3  =0   ⇔   sinx = -3-
                      2                  2

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на
каждом из которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких
промежутков:

PICT

На отрезке [ π]
0;2 содержится одна точка     π
x = 3  , в которой производная равна нулю. При    [  π)
x∈  0;3 функция y = y(x)
возрастает, так как       √-
sinx < 23  , следовательно, y′ > 0  , а при    (   ]
x∈  π3; π2 функция убывает.

Следовательно, x=  π3  — точка максимума функции на отрезке [0; π2] и в ней функция принимает наибольшее значение,
равное

y( π)= 12cos π-+ 6√3⋅ π-− 2√3π+ 6 =12 ⋅ 1+ 6= 12
   3        3       3                2

Найдите наименьшее значение функции y = 4x− 4 tgx +12  на отрезке [− π;0].
  4

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

′       4       1− cos2x
y= 4− cos2x-= −4⋅--cos2x-

Найдем нули производной:

y′ = 0 ⇔  1− cos2x =0  ⇔   cosx =±1  ⇔   x =πn,n∈ ℤ

Найдем точки, где производная не существует:

               π
cosx ⁄=0  ⇔   x⁄= 2 + πk,k∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Тогда из
точек, где производная равна нулю или не существует, на отрезок [    ]
 − π4;0 попадает только нуль производной x= 0  .

PICT

При    [ π  ]
x∈  −4;0 производная отрицательна (подставляем      π
x= − 4  ). Следовательно, функция y = y(x)  убывает на всем отрезке
[ π ]
− 4;0 , значит, наименьшее значение принимает в конце отрезка, и оно равно

y(0)= 0− 4tg0+12= 12.

Найдите наименьшее значение функции y = −14x+ 7tgx + 7π +11
               2  на отрезке [− π;π].
   3 3

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

 ′        7      1− 2cos2x      cos2x
y= −14+ cos2-x = 7⋅-cos2x---=− 7⋅cos2x-

Найдем нули производной:

                          π   π
y′ = 0 ⇒  cos2x= 0 ⇔   x =-4 + 2n,n∈ ℤ

Найдем точки, где производная не существует:

cosx ⁄=0  ⇔   x⁄= π + πk,k∈ ℤ
               2

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Тогда из
точек, где производная равна нулю или не существует, на отрезок [− π3;π3] попадают нули производной x = − π4;π4  .

PICT

Тогда функция y = y(x)  возрастает на [  π  π)
 − 3;− 4 , затем убывает на ( π π)
− 4;4 , затем снова возрастает на (π π]
 4;3 ,
следовательно, наименьшее значение принимает в одной из точек     π
x= −3  или     π
x = 4  . Найдем значение функции в этих точках и
сравним:

  (  )          (   )                   √ -
y  − π = 14π-+7 tg − π + 7π+ 11= 49π+ 11− 7 3
    3     3        3    2       6
y (π)= − 7π-+ 7tg π+ 7π+ 11= 18
   4     2      4   2

Очевидно, что y = 18  меньше.

Найдите наименьшее значение функции y = 2tg x− 4x +π− 3  на отрезке [− π ;π].
   3 3

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

 ′   2         1− 2cos2x      cos2x
y =cos2x − 4= 2⋅-cos2x---=− 2⋅cos2x-

Найдем нули производной:

                          π   π
y′ = 0 ⇒  cos2x= 0 ⇔   x =-4 + 2n,n∈ ℤ

Найдем точки, где производная не существует:

cosx ⁄=0  ⇔   x⁄= π + πk,k∈ ℤ
               2

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Тогда из
точек, где производная равна нулю или не существует, на отрезок [− π3;π3] попадают нули производной x = − π4;π4  .

PICT

Тогда функция y = y(x)  возрастает на [  π  π)
 − 3;− 4 , затем убывает на ( π π)
− 4;4 , затем снова возрастает на (π π]
 4;3 ,
следовательно, наименьшее значение принимает в одной из точек     π
x= −3  или     π
x = 4  . Найдем значение функции в этих точках и
сравним:

  (  )    √ -
y  − π =− 2 3+ 4π+ π− 3
    3          3
y (π)= 2− π+ π− 3= −1
   4

Очевидно, что y = −1  меньше.

Найдите наименьшее значение функции y = 5tg x− 5x +6  на отрезке [0;π].
   4

Показать ответ и решение

Функция y =y(x)  определена при всех x⁄= π+ πk,k∈ ℤ
   2  . Определим участки, на которых функция возрастает или убывает. Для этого
найдем ее производную:

 ′    5         1− cos2 x
y = cos2x-− 5 =5⋅-cos2x--

Найдем нули производной:

y′ = 0 ⇒  1− cos2x =0  ⇔   cosx =±1  ⇔   x =πn,n∈ ℤ

Найдем точки, где производная не существует:

               π
cosx ⁄=0  ⇔   x⁄= 2 + πk,k∈ ℤ

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков.
Из точек, где производная равна нулю или не существует, на отрезок [   ]
 0;π4 попадает только нуль производной x =0  .

PICT

При    [ π ]
x∈  0;-4 производная положительна (подставляем     π
x = 4  ). Следовательно, функция y = y(x)  возрастает на всем отрезке
[ π]
0;4 , значит, наименьшее значение принимает в начале отрезка, и оно равно

y(0) =5tg0+ 6= 6.

Найдите наименьшее значение функции y = 5sinx+ 24x+ 6
          π  на отрезке [− 5π;0].
   6

Показать ответ и решение

Функция y =y(x)  определена при всех x∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого найдем ее
производную:

 ′         24
y = 5cosx+ π-

Найдем нули производной:

                 24
y′ = 0 ⇒  cosx= −5π  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Так как нулей у
производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив x= 0  , мы понимаем, что y′(x)>0  для всех
x.

Следовательно, функция y = y(x)  возрастает на всем ℝ  , значит, принимает наименьшее значение в начале отрезка, то есть в x= − 5π6-  ,
и оно равно

 (   )      (    )
y − 5π = 5sin − 5π − 24⋅ 5π +6 =− 16,5.
    6          6     π  6

Найдите наименьшее значение функции y = 6cosx + 24x +5
          π  на отрезке [− 2π-;0].
   3

Показать ответ и решение

Функция y =y(x)  определена при всех x∈ ℝ  . Определим участки, на которых функция возрастает или убывает. Для этого найдем ее
производную:

 ′         24
y =− 6sinx+ π-

Найдем нули производной:

                4
y′ = 0 ⇒  sinx = π  ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из
которых она непрерывна и принимает значения одного знака. Найдем знаки производной на каждом из таких промежутков. Так как нулей у
производной не существует, то на всем ℝ  она принимает значения одного знака. Подставив x= 0  , мы понимаем, что y′(x)>0  для всех
x.

Следовательно, функция y = y(x)  возрастает на всем ℝ  , значит, принимает наименьшее значение в начале отрезка, то есть в x= − 2π3-  ,
и оно равно

 (    )      (    )
y  − 2π =6 cos − 2π- − 24⋅ 2π +5 =− 14.
     3          3    π   3

Понравилась статья? Поделить с друзьями:
  • В ворде текст печатается справа налево как исправить
  • Как найти долю от нескольких чисел
  • Как составить пропорцию в рисунке
  • Пропал один наушники airpods как найти
  • Как найти смайлики для инстаграм