Как найти наибольшее значение функции синус

Способы отбора корней в тригонометрических уравнениях

Класс: 10

Автор проекта:
Шелкова Полина,
Класс: 10

Руководитель:
Злобова Людмила Викторовна,
учитель математики

ВВЕДЕНИЕ

Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).

Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.

Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.

Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.

I РАЗДЕЛ (теоретический)

Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?

  • Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
  • Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
  • Тригонометрические уравнения включены в КИМы ЕГЭ по математике.

Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.

Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.

Задачи:

  • познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
  • изучить соответствующую литературу;
  • научиться решать тригонометрические уравнения;
  • найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
  • научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
  • подготовиться к ЕГЭ по математике.

Приёмы отбора корней тригонометрического уравнения на заданном промежутке.

При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.

Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.

Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.

Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.

Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.

II РАЗДЕЛ (практический)

Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:

sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]

sinx−(cos 2 x−sin 2 x)=0;

sinx−(1−sin 2 x−sin 2 x)=0;

Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим

Вернемся к замене:

б) Рассмотрим три способа отбора корней, попадающих в отрезок .

1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:

2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:

3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.

Нам останется только выбрать корни, которые попали в нужный нам отрезок.

ЗАКЛЮЧЕНИЕ

При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

  1. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
  2. Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
  3. С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
  4. Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.

Задача B15: Линейные выражения под знаком тригонометрической функции

Сегодня у нас заключительный урок на производные из ЕГЭ по математике. И как всегда по традиции последняя задача будет немножко нестандартной. Итак:

Задача B15. Найдите наибольшее значение функции на отрезке [0; π/3]:

y = 2sin 2 x + cos 4 x

Общая схема вычисления наибольшего значения функции

Перед тем, как мы начнем решать эту задачу, хотел бы напомнить вам общий универсальный алгоритм поиска наибольшего и наименьшего значения функции на отрезке. Он состоит из 4 шагов:

1. Первый шаг состоит в том, что нужно найти производную нашей функции: y ‘ = ?

2. Второй шаг — производную мы приравниваем к нулю в результате решения у нас получится один или несколько корней: x <1>, x <2>, .

3. Затем берем эти корни и оставляем только те из них, которые лежат на отрезке, указанном в условии задачи — в нашем случае речь идет об отрезке [0; π/3]. Другими словами, мы вычеркиваем все корни, которые не лежат на интересующем нас отрезке: x <1>, x <2>∈ [0; π/3].

4. Наконец, подставляем концы отрезка, а также оставшиеся корни в нашей исходное уравнение. Другими словами, мы находим y (0); y (π/3); y ( x 1); y ( x 2), т. е. значение функции в нулях производной.

Это стандартная схема, и мы применяли ее уже много раз.

Экстремумы функции на отрезке: пояснение

Естественно, при взгляде на этот алгоритм у многих учеников сразу возникают вопросы. Первый и самый распространенный: «Почему это мы подставляем в нашу функцию концы отрезка? Неужели недостаточно просто посчитать функцию в нулях производной?»

К сожалению, недостаточно. Взгляните вот на такую функцию:

На этом рисунке видно, что наибольшее значение функции достигается именно в правом верхнем конце отрезка — в точке b , а никак не в точке x 1, которая является точкой максимума и, соответственно, возникает при решении уравнения y ‘ = 0. То же самое и с наименьшим значением — оно достигается в точке a , но ни в коем случае не в точке x 2, которая также возникнет при решении y ‘ = 0.

Локальный и глобальный экстремум функции: в чем разница?

Вспомните определение производной и точки экстремума: в данном случае точка x 1 будет являться точкой локального максимума, т. е. на некотором интервале, достаточно небольшом, именно на этой точке будет приниматься наибольшее значение. То же самое касается и точки x 2. На некотором небольшом интервале, т. е. на определенном отступе от этой точки вправо или влево функция действительно будет принимать наименьшее значение именно в точке x 2.

Однако на глобальном отрезке никто этого не гарантировал. И часто случается так, что настоящее наибольшее или наименьшее значение функции достигается именно на концах рассматриваемого отрезка. Особенно это качается задач B15, которые любят давать на пробниках и разных демонстрационных ЕГЭ по математике.

Наибольшее или наименьшее значение функции совсем не обязательно достигается в нулях производной. Очень часто такие значения возникают на концах отрезка, где производная отлична от нуля.

В общем, чтобы подстраховаться и не допустить обидных ошибок на настоящем экзамене, настоятельно рекомендую вам считать значения функции не только в нулях производной, но и на концах отрезка, т. е. в нашем случае в точках х = 0 и х = π/3.

Решение задачи B15 с тригонометрией

С теорией разобрались, давайте решать нашу задачу. Для начала нам нужно посчитать производную функции:

y = 2sin 2 x + cos 4 x

Производная тригонометрической функции

y ‘ = (2sin 2 x + cos 4 x )’ = (2sin 2 x )’ + (cos 4 x )’

И вот тут возникает проблема в данной задаче: дело в том, что внутри синуса и косинуса стоит не переменная х, а выражение 2х и даже 4х.

Как поступать с такими конструкциями? Конечно, можно воспользоваться производной сложной функции, посчитать и в итоге получить правильное значение, но давайте не будем лезть в дебри, а вспомним замечательную формулу, которая рассматривалась не нескольких уроках, посвященным подготовке к ЕГЭ по математике. Формула следующая:

x → kx + b
( f ( x ))’ → k ( f ‘ ( kx + b ))

Другими словами, замена переменной функции не проходит для всей функции бесследно. В случае, если вместо х мы подставляем линейную функцию, то перед новой производной появляется коэффициент.

Линейная замена переменной приводит лишь к одному дополнительному множителю в производной. Никаких сложных формул при линейной замене применять не нужно!

Это частный случай производной сложной функции. Однако сложные функции в реальном ЕГЭ не встречаются. Поэтому вам достаточно будет знать упрощенную конструкцию, которую мы записали. Ее очень легко применять.

Производная функции при линейной замене

Давайте посчитаем производную sin 2 x . Для этого вспомним такое:

Тогда производная от sin 2 x будет выглядеть так:

(sin 2 x )’ = 2 · cos 2 x

Все, производная 2sin 2 x найдена. Аналогично давайте разберемся и с производной cos 4 x :

(cos 4 x )’ = 4 · (−sin 4 x ) = −4 sin 4 x

А теперь собираем это все в одну конструкцию и получаем:

y ‘ = 4 cos 2 x − 4 sin 4 x

Считаем нули производной — точки экстремума

Итак, первый шаг нашего алгоритма выполнен, мы нашли производную. Теперь приравниваем эту производную к нулю и решаем полученное уравнение:

2 cos 2 x − 4 sin 4 x = 0

Перед нами обычное тригонометрическое уравнение и все, что нам требуется сделать в нем — это свести все тригонометрические функции к одному и тому же аргументу. Как правило, в таких задачах следует стремиться к наименьшему аргументу. Поэтому вспомним формулу двойного угла:

sin 2λ = 2 sin λ cos λ

В нашем случае это будет выглядеть так:

sin 4 x = sin 2 · 2 x = 2 · sin 2 x · cos 2 x

Обратите внимание! Мы пишем именно 2х, потому что в исходной формуле, которую мы разложили, вместо переменной λ стоит именно 2х.

Итак, с синусом двойного угла мы разобрались, перепишем наше уравнение с учетом этого факта. Получим:

4 cos 2 x − 8 sin 2 x cos 2 x = 0
4 cos 2 x (1 − 2 sin 2 x · 1) = 0

Итак, мы разложили наше уравнение на множители. Теперь вспоминаем: произведение равно нулю, когда хотя бы один из множителей равен нулю. Запишем:

cos 2 x = 0
1 − 2 sin 2 x = 0

Первое уравнение решается элементарно:

2 x = π/2 + π n , n ∈ Z

А со вторым уравнением будет немного посложнее:

sin 2 x = 1/2
2 x = π/6 + 2π n
2 x = π − π/6 + 2π n

Напомню, что решение простейших тригонометрических уравнений, которые содержат синус, лучше записывать как совокупность из двух наборов корней.

Однако на этом решение уравнения еще не закончилось. Взгляните, мы нашли только 2х, а нужно найти просто х. Находим:

x = π/3 + π n /2;
x = π/12 + πn;
x = 5π/12 + π n .

Производная тригонометрической функции: отбор корней на отрезке

Уравнение решено. Переходим к третьему шагу: необходимо отобрать корны, которые лежат на отрезке [0; π/3].

Для этого нам сначала потребуется начертить радар, а потом отметить на мне все три набора корней. На этом же отрезке отмечаем концы отрезка. Получим:

На самом деле из всего этого многообразия нас интересуют лишь две точки: π/4 и π/12. Все, третий шаг выполнен. Мы отобрали корни на отрезке.

Вычисление наибольшего значения функции

А теперь возвращаемся к условию задачи и вспоминаем, что нам нужно найти наибольшее значение функции на отрезке. Т. е. нужно взять функцию

y = 2sin 2 x + cos 4 x

И подставить в нее следующие числа:

  1. Оба конца нашего отрезка — числа 0 и π/3
  2. А также два корня производной, которую мы нашли: π/4 и π/12

Затем из полученных четырех значений функции надо выбрать наибольшее.

Давайте решать. В первую очередь предлагаю подставить корни нашей производной, т. е. числа π/4 и π/12. Получим:

y (π/4) = 2 · sin 2 · π/4 + cos 4 · π/4 = 2 · sin π/2 + cos π = 2 · 1 − 1 = 1

Подставляем второе число — x = π/12:

y (π/12) = 2 · sin 2 · π/12 + cos 4 · π/12 = 2 · sin π/6 + cos π/3 = 2 · 1/2 + 1/2 = 1,5

Все, с корнями из производной мы разобрались, теперь считаем значение функции на концах отрезка:

y (0) = 2 · sin 0 + cos 0 = 2 · 0 + 1 = 1

Вычисление сложных значений тригонометрической функции

Теперь подставляем правый конец отрезка:

y (π/3) = 2 · sin 2 · π/3 + cos 4 · π/3 = 2 · sin 2π/3 + cos 4π/3

Оба аргумента и в синусе, и в косинусе являются нестандартными значениями (их нет в классической таблице значений тригонометрических функций), поэтому давайте отметим их на тригонометрическом круге:

С помощью полученных данных вычисляем значение функции:

Это иррациональное число, которое нельзя записать в ответ. Следовательно, оно не является ответом к задаче.

Итого нам на выбор осталось три числа: y = 1; y = 1,5; y = 1. Требуется найти наибольшее значение. Следовательно, ответом будет являться y = 1,5. Все, задача решена.

Ключевые моменты в задачах B15 на производную функции

В заключение хотел бы еще раз обратить ваше внимание на два ключевых факта в решении этой задачи. В первую очередь, речь идет о производной сложной функции. В реальных задачах из ЕГЭ по математике встречается лишь упрощенная версия формулы, которую мы записали в самом начале решения задачи.

Итак, запомните: если в табличной производной заменить переменную х на линейное выражение kx + b , то и в самой производной нужно везде вместо х подставить выражение kx + b . Кроме того, перед самой производной нужно добавить множитель k — тот саамый, который стоял перед х во время замены.

Это универсальное правило, и оно работает всегда. Давайте посмотрим. Например, у нас есть следующая функция:

Возьмем большую степень, чтобы у вас не возникало соблазна раскрывать ее по формулам сокращенного умножения. А теперь мы хотим посчитать производную:

Как это сделать? Очень просто. Вспоминаем: производная функции y = x 101 является табличной и легко считается:

Теперь, если вместо переменной х мы хотим подставить выражение kx + b , например, 5х + 7, то получим, что производная такой функции будет равна:

y ‘ = 101 · (5 x + 7) 101 · 5

Последний множитель «5» появился из-за того, что вместо переменной х мы подставили линейную функцию 5х + 7, т. е. выражение, которое при х содержит множитель 5. Если бы перед их стоял коэффициент k = 10, мы умножили бы производную на 10.

При этом второе слагаемое — число b = 7 — никак не влияет на результат. Т.е. на итоговую производную влияет только коэффициент при х. Запомните это.

Особенности записи корней тригонометрического уравнения

Второй важный момент касается отбора корней и решения тригонометрических уравнений, а конкретно — я бы хотел поговорить про решение тригонометрических уравнений, содержащих синус.

Как обычно нас учат записывать решение таких уравнений? Еще в школьных учебниках можно увидеть формулу:

sin x = a → x = (−1) n · arcsin a + π n , n ∈ Z

Естественно, многие ученики спросят: почему мы не используем эту формулу? Зачем разбивать эту формулу на какую-то совокупность, что-то там считать, усложняя себе задачу?

На самом деле такая запись имеет одно единственное преимущество — краткость. Во всем остальном работать с этой записью — сплошное мучение:

  1. Непонятно, что делать с множителем (−1) n . Как отмечать постоянно гуляющее то в плюс, то в минус число на тригонометрическом круге?
  2. Если вы захотите отбирать корни не с помощью тригонометрического круга, а с помощью двойного неравенства, опять же возникает проблема, потому что слагаемое (−1) n · arcsin a нужно будет вычитать из обеих частей неравенства. Затем полученную конструкцию нужно будет разделить на π, и вот тут возникает проблема: а что делать с множителем (−1) n ? Он снова будет мешать нам и служить источником многочисленных ошибок для большинства учеников.

Чтобы избежать этих многочисленных проблем, просто записывайте решение синуса в виде совокупности из двух уравнений, так, как мы и сделали сегодня при решении нашей задачи.

Вот и все замечания. Я специально детально рассказывал каждый шаг решения — настолько детально, что сам допустил ошибку при вычислении производной. Но ничего страшного, мы заметили ошибку вовремя, и поэтому итоговый ответ и все выкладки получись правильными.:)

Желаю вам удачи при решении сложных задач на ЕГЭ по математике, тренируйтесь в решении задач, смотрите видеоуроки и сдавайте ЕГЭ на «отлично». А у меня на этом все.

Тригонометрические уравнения

Тригонометрические уравнения. В составе экзамена по математике в первой части имеется задание связанное с решением уравнения — это простые уравнения, которые решаются за минуты, многие типы можно решить устно. Включают в себя: линейные, квадратные, рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения.

В этой статье мы рассмотрим тригонометрические уравнения. Их решение отличается и по объёму вычисления и по сложности от остальных задач этой части. Не пугайтесь, под словом «сложность», имеется виду их относительную сложность по сравнению с другими заданиями.

Кроме нахождения самих корней уравнения, необходимо определить наибольший отрицательный, либо наименьший положительный корень. Вероятность того, что вам на экзамене попадёт тригонометрическое уравнение, конечно же, мала.

Их в данной части ЕГЭ менее 7%. Но это не означает, что их нужно оставить без внимания. В части С тоже необходимо решить тригонометрическое уравнение, поэтому хорошо разобраться с методикой решения и понимать теорию просто необходимо.

Понимание раздела «Тригонометрия» в математике во многом определяет ваш успех при решении многих задач. Напоминаю, что ответом является целое число или конечная десятичная дробь. После того, как получите корни уравнения, ОБЯЗАТЕЛЬНО сделайте проверку. Много времени это не займёт, а вас избавит от ошибки.

В будущем мы также рассмотрим и другие уравнения, не пропустите! Вспомним формулы корней тригонометрических уравнений, их необходимо знать:

Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.

Алгоритм восстановления этих значений прост, он также приведён в теории, полученной вами во втором письме после подписки на рассылку. Если ещё не подписались, сделайте это! В будущем также рассмотрим, как эти значения можно определить по тригонометрической окружности. Не даром её называют «Золотое сердце тригонометрии».

Сразу поясню, во избежание путаницы, что в рассматриваемых ниже уравнениях даны определения арксинуса, арккосинуса, арктангенса с использованием угла х для соответствующих уравнений: cosx=a, sinx=a, tgx=a, где х может быть и выражением. В примерах ниже у нас аргумент задан именно выражением.

Итак, рассмотрим следующие задачи:

Найдите корень уравнения:

В ответе запишите наибольший отрицательный корень.

Решением уравнения cos x = a являются два корня:

Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.

Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.

Общая рекомендация для всех подобных задач: для начала берите диапазон n от – 2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: – 3 и 3, – 4 и 4 и так далее.

При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5

При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5

При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5

При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5

При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5

Получили, что наибольший отрицательный корень равен –1,5

В ответе напишите наименьший положительный корень.

Решением уравнения sin x = a являются два корня:

Либо (он объединяет оба указанные выше):

Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от – 90 о до 90 о синус которого равен a.

Выразим x (умножим обе части уравнения на 4 и разделим на Пи):

Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n мы получим отрицательные корни. Поэтому будем подставлять n = 0,1,2 …

При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4

При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6

При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12

Проверим при n = –1 х = (–1) –1 + 4∙(–1) + 3 = –2

Значит наименьший положительный корень равен 4.

В ответе напишите наименьший положительный корень.

Решением уравнения tg x = a является корень:

Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.

Выразим x (умножим обе части уравнения на 6 и разделим на Пи):

Найдём наименьший положительный корень. Подставим значения n = 1,2,3. Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:

Таким образом, наименьший положительный корень равен 0,25.

Определение котангенса: Арккотангенсом числа a (a – любое число) называется угол x принадлежащий интервалу (0;П), котангенс которого равен a.

Здесь хочу добавить, что в уравнениях в правой части может стоять отрицательное число, то есть тригонометрическая функция от аргумента может иметь отрицательное значение. Если в ходе решения вы не сможете определить угол, например, для

то данные формулы вам помогут:

Спасибо за внимание, учитесь с удовольствием!

источники:

http://www.berdov.com/ege/extremum/extremum-dvoynoy-ugol/

http://matematikalegko.ru/uravnenia/trigonometricheskie-uravneniya.html

Тригонометрические функции

Основная сложность тригонометрических функций состоит в том, что при решении уравнений возникает бесконечное множество корней. Например, уравнение имеет корни Ну и как отмечать их на координатной прямой, если таких чисел бесконечно много?

Ответ прост: надо подставлять конкретные значения n . Ведь в задачах B15 с тригонометрическими функциями всегда есть ограничение — Поэтому для начала берем а затем до тех пор, пока соответствующий корень не «вылезет» за пределы Аналогично, очень скоро получим корень, который меньше нижней границы.

Несложно показать, что никаких корней, кроме полученных в рассмотренном процессе, не существует. Рассмотрим теперь этот процесс на конкретных примерах.

Задача. Найдите точку максимума функции, принадлежащую

y = sin x − 5 x sin x − 5cos x + 1

y ’ = (sin x − 5 x sin x − 5cos x + 1)’ = . =

Затем решаем уравнение:

y ’ = 0;
(1 − 5 x ) cos x = 0;
.
x 1 = 0,2;
x 2 = π /2 + πn , n ∈ Z .

С корнем все понятно, а вот формула требует дополнительной обработки. Будем подставлять разные

Но π /2 > π /3, поэтому корень не входит в исходный отрезок. Кроме того, поэтому нет смысла рассматривать

Но − π /2 < − π /3 — этот корень тоже придется отбросить. А вместе с ним — и все корни

Получается, что на отрезке лежит только корень Отметим его вместе со знаками и границами на координатной прямой:

Знаки производной тригонометрической функции

Чтобы удостовериться, что справа производная действительно отрицательная, достаточно подставить в производную значение Мы же просто отметим, производная меняет знак с плюса на минус, а следовательно, это точка максимума.

Задача. Найдите наибольшее значение функции на отрезке

y = 4 tg x − 4 x + π − 5

y ’ = (4tg x − 4 x + π − 5)’ =

Затем решаем уравнение:

y ’ = 0 ⇒ 4/cos 2 x − 4 = 0 ⇒ . ⇒

Снова выделим из этой формулы корни, подставляя

n = 0 ⇒ x = 0. Этот корень нам подходит.
n = 1 ⇒ x = π . поэтому надо вычеркнуть.
n = −1 ⇒ x = − π . тоже вычеркиваем.

Из всего многообразия корней остался лишь один: Поэтому вычисляем значение функции для Имеем:

y (0) = 4tg 0 − 4 · 0 + π − 5 = π − 5;
y ( π /4) = 4tg π /4 − 4 · π /4 + π − 5 = 1;
y (− π /4) = 4tg (− π /4) − 4 · (− π /4) + π − 5 = . =

Теперь заметим, Получается одно положительное число и два отрицательных. Мы ищем наибольшее — очевидно,

Заметим, что в последней задаче можно было и не сравнивать числа между собой. Ведь из чисел в бланк ответов можно записать лишь единицу.

Действительно, как написать в бланке, скажем, А никак. Это важная особенность первой части ЕГЭ по математике, которая значительно упрощает решение многих задач. И работает она не только в B15.

Случай пустого множества решений

Иногда при исследовании функции возникают уравнения, у которых нет корней. В таком случае задача становится еще проще, поскольку остается рассмотреть лишь концы отрезка.

Однако будьте предельно внимательны, поскольку такие задачи встречаются в ЕГЭ крайне редко. Если в процессе решения выясняется, что корней нет, лучше еще раз проверить все выкладки. И только когда убедитесь, что ошибок нет, можно расслабиться: вам досталась легкая задача!

Задача. Найдите наименьшее значение функции

y = 7sin x − 8 x + 5

Сначала находим производную:

y ’ = (7sin x − 8 x + 5)’ =

Попробуем решить уравнение:

y ’ = 0 ⇒ 7cos x − 8 =

Но значения cos x всегда лежат Поэтому корней нет.

Если корней нет, то и вычеркивать ничего не надо. Переходим к последнему шагу — вычисляем значение функции:

y (−3 π /2) = 7sin (−3 π /2) − 8 · (−3 π /2) + 5 = . =
y(0) = 7sin 0 − 8 · 0 + 5 = 5.

Поскольку число 1 в бланк ответов не записать, остается лишь

    , часть 1

Наибольшее и наименьшее значения функции на отрезке

Наибольшее и наименьшее значения функции на множестве
(основные определения)

Пусть X – некоторое множество, входящее в область определения D ( f ) функции y = f (x) .

Определение 1. Значение f (x0) функции y = f (x) в точкеназывают наибольшим значением функции f (x) на множестве X , если для любой точки выполнено неравенство

Наибольшее значение функции f (x) на множестве X часто обозначают

Определение 2. Значение f (x0) функции y = f (x) в точке называют наименьшим значением функции f (x) на множестве X , если для любой точки выполнено неравенство

Наименьшее значение функции f (x) на множестве X часто обозначают

Определение 3. Наибольшее значение функции на множестве X часто называют максимальным значением функции f (x) на множестве X или максимумом функции f (x) на множестве X . Наименьшее значение функции на множестве X часто называют минимальным значением функции f (x) на множестве X или минимумом функции f (x) на множестве X .

Пример 1. Минимальным значением функции y = x 2 на множестве является число 0 (рис. 1).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Максимального значения функция y = x 2 на множестве не имеет.

Пример 2. Максимальным значением функции y = – x 2 на множестве является число 0 (рис. 2).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Минимального значения функция y = – x 2 на множестве не имеет.

Пример 3. Функция y = x на множестве не имеет ни максимального, ни минимального значений (рис. 3).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Пример 4. Функция y = arctg x на множестве не имеет ни максимального, ни минимального значений (рис. 4).

наибольшее значение функции на множестве наименьшее значение функции на множестве

Существование наибольшего и наименьшего значений функции на отрезке. Теорема Вейерштрасса

Как мы видели в примерах 1 — 4, даже такие хорошо известные функции, как

не имеют наибольших или наименьших значений на множестве. Однако, если бы в качестве множества X мы взяли произвольный отрезок, то ситуация стала бы принципиально иной, что вытекает из следующей теоремы.

Теорема Вейерштрасса. Если функция непрерывна на отрезке, то на этом отрезке существует точка, в которой функция принимает наибольшее значение, а также точка, в которой функция принимает наименьшее значение.

Доказательство теоремы Вейерштрасса выходит за рамки школьного курса математики и здесь не приводится.

Примеры решения задач

y = 2x 3 + 3x 2 – 36x + 30 (1)

Из формулы (2) получаем, что критическими точками функции (1) являются точки x = – 3 , x = 2, причем только точка x = 2 принадлежит отрезку [–2, 4] . Вычисляя значения функции (1) в критической точке x = 2, а также на концах отрезка x = – 2 и x = 4 , получим:

y (2) = – 14 ,
y (– 2) = 98 ,
y (4) = 62 .

Ответ. Наибольшее значение функции (1) на отрезке [–2, 4] равно 98 , а наменьшее значение функции (1) на отрезке [–2, 4] равно – 14 .

на отрезке [–1, 27] .

Решая уравнение y’ = 0 , получим

Заметим также, что производная (4) функции (3) не существует в точке x = 0 . Следовательно, у функции (3) есть три критические точки: x = 0, и , причем все эти точки лежат на отрезке [–1, 27] . Вычисляя значения функции (3) в критических точках x = 0, и , а также на концах отрезка x = – 1 и x = 27 , получим:

y (0) = 0 ,
y (– 1) = – 1 ,
y (27) = 99 .

Ответ. Наибольшее значение функции (3) на отрезке [–1, 27] равно 99 , а наменьшее значение функции (3) на отрезке [–1, 27] равно – 1 .

Решение. Для того, чтобы найти критические точки функции (5), перепишем правую часть формулы (5), используя определение модуля:

В точке x = 0 производная функции (5) не существует. Критическими точками являются точки

Все критические точки принадлежат отрезку [–1, 6] . Вычисляя значения функции (5) в критических точках x = 0, x = 3, x = 5, а также на концах отрезка x = – 1 и x = 6 , получим:

y (0) = – 4 ,
y (3) = – e 3 ,
y (5) = e 5 ,
y (– 1) = – 5e ,
y (6) = 2e 6 .

Ответ. Наибольшее значение функции (5) на отрезке [–1, 6] равно 2e 6 , а наменьшее значение функции (5) на отрезке [–1, 6] равно – e 3 .

y = (x – 27) e 28 – x (6)

на отрезке [23, 40] .

Решая уравнение y’ = 0 , получаем, что функция (6) имеет единственную критическую точку x = 28 , причем эта точка лежит на отрезке [23, 40] . При переходе через точку x = 28 производная функции (7) меняет знак с «+» на «–» , откуда вытекает, что точка x = 28 является точкой максимума функции (6) на множестве . Следовательно, точка x = 28 является точкой максимума функции (6) и на отрезке [23, 40] . Найдем значение функции (6) в точке x = 28 :

Задание 11 Профильного ЕГЭ по математике

Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.

Вот какие типы задач могут встретиться в этом задании:

Нахождение точек максимума и минимума функций

Исследование сложных функций

Нахождение наибольших и наименьших значений функций на отрезке

Нахождение точек максимума и минимума функций

1. Найдите точку максимума функции

Найдем производную функции.

Приравняем производную к нулю. Получим:

Исследуем знаки производной.

В точке производная меняет знак с «плюса» на «минус». Значит, — точка максимума функции

2. Найдите точку минимума функции

Найдем производную функции.

Приравняем производную к нулю.

Определим знаки производной.

В точке производная меняет знак с «минуса» на «плюс». Значит, — точка минимума функции

Исследование сложных функций

3. Найдите точку максимума функции

Перед нами сложная функция Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.

Так как функция монотонно возрастает, точка максимума функции .будет при том же , что и точка максимума функции А ее найти легко.

при . В точке производная меняет знак с «плюса» на «минус». Значит, — точка максимума функции .

Заметим, что точку максимума функции можно найти и без производной.

Графиком функции является парабола ветвями вниз, и наибольшее значение достигается в вершине параболы, то есть при

4. Найдите абсциссу точки максимума функции

Напомним, что абсцисса — это координата по

Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.

Так как функция монотонно возрастает, точка максимума функции является и точкой максимума функции

Это вершина квадратичной параболы

Нахождение наибольших и наименьших значений функций на отрезке

5. Найдите наибольшее значение функции на отрезке

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.

Будем искать точку максимума функции с помощью производной. Найдем производную и приравняем ее к нулю.

Найдем знаки производной.

В точке производная равна нулю и меняет знак с «+» на «-«. Значит, x = — 2 — точка максимума функции . Поскольку при функция убывает, В этой задаче значение функции на концах отрезка искать не нужно.

6. Найдите наименьшее значение функции на отрезке

Найдем производную функции и приравняем ее к нулю.

Найдем знаки производной.

Точка — точка минимума функции . Точка не лежит на отрезке Поэтому

и Значит, наименьшее значение функции на отрезке достигается при Найдем это значение.

7. Найдите наименьшее значение функции на отрезке

Иногда перед тем, как взять производную, формулу функции полезно упростить.

Мы применили формулу для логарифма произведения. при

Если то Если , то

Значит, — точка минимума функции . В этой точке и достигается наименьшее значение функции на отрезке

8. Найдите наибольшее значение функции на отрезке

Найдем производную функции

Приравняем производную к нулю:

Найдем знаки производной на отрезке

При знак производной меняется с «плюса» на «минус». Значит, — точка максимума функции

Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при и

Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.

9. Найдите наименьшее значение функции на отрезке [0;2].

Снова сложная функция. Запишем полезные формулы:

Найдем производную функции

При знак производной меняется с «минуса» на «плюс». Значит, — точка минимума функции

10. Найдите наибольшее значение функции на отрезке

Как всегда, возьмем производную функции и приравняем ее к нулю.

По условию, . На этом отрезке условие выполняется только для Найдем знаки производной слева и справа от точки

В точке производная функции меняет знак с «плюса» на «минус». Значит, точка — точка максимума функции . Других точек экстремума на отрезке функция не имеет, и наибольшее значение функции на отрезке достигается при

11.Найдите наименьшее значение функции на отрезке

Найдем производную функции и приравняем ее к нулю. — нет решений.

Что это значит? Производная функции не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.

Поскольку , получим, что для всех , и функция монотонно возрастает при

Значит, наименьшее свое значение функция принимает в левом конце отрезка , то есть при

  1. Развертка ординаты движения точки по числовой окружности в функцию от угла
  2. Свойства функции y=sinx
  3. Примеры

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

При движении точки по числовой окружности её ордината является синусом соответствующего угла (см. §2 данного справочника).

Рассмотрим, как изменяется синус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=sinx на этом отрезке.

Развертка ординаты движения точки по числовой окружности в функцию от угла

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривая продолжится влево.

В результате получаем график y=sinx для любого (xinmathbb{R}).
Синусоида

График y=sinx называют синусоидой.
Часть синусоиды для 0≤x≤2π называют волной синусоиды.
Часть синусоиды для 0≤x≤π называют полуволной или аркой синусоиды.

п.2. Свойства функции y=sinx

1. Область определения (xinmathbb{R}) — множество действительных чисел.

2. Функция ограничена сверху и снизу

$$ -1leq sinxleq 1 $$

Область значений (yin[-1;1])

3. Функция нечётная

$$ sin(-x)=-sinx $$

4. Функция периодическая с периодом 2π

$$ sin(x+2pi k)=sinx $$

5. Максимальные значения (y_{max}=1) достигаются в точках

$$ x=fracpi2+2pi k $$

Минимальные значения (y_{min}=-1) достигаются в точках

$$ x=-fracpi2+2pi k $$

Нули функции (y_{0}=sinx_0=0) достигаются в точках (x_0=pi k)

6. Функция возрастает на отрезках

$$ -fracpi2+2pi kleq xleqfracpi2+2pi k $$

Функция убывает на отрезках

$$ fracpi2+2pi kleq xleqfrac{3pi}{2}+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1.Найдите наименьшее и наибольшее значение функции y=sinx на отрезке:
Пример 1
a) (left[fracpi6; frac{3pi}{4}right]) $$ y_{min}=sinleft(fracpi6right)=frac12, y_{max}=sinleft(fracpi2right)=1 $$ б) (left[frac{5pi}{6}; frac{5pi}{3}right]) $$ y_{min}=sinleft(frac{3pi}{2}right)=-1, y_{max}=sinleft(frac{5pi}{6}right)=frac12 $$

Пример 2. Решите уравнение графически:
a) (sinx=3x)
Пример 2a
Один корень: x = 0

б) (sinx=2x-2pi)
Пример 2б
Один корень: x = π

в) (sinx-sqrt{x-pi}=0)
(sinx=sqrt{x-pi})
Пример 2в
Один корень: x = π

г*) (sinx=left(x-fracpi2right)^2-frac{pi^2}{4})
(y=left(x-fracpi2right)^2-frac{pi^2}{4}) – парабола ветками вверх, с осью симметрии (x_0=fracpi2) и вершиной (left(fracpi2; -frac{pi^2}{4}right)) (см. §29 справочника для 8 класса)
Пример 2г
Два корня: (x_1=0, x_2=pi)

Пример 3. Постройте в одной системе координат графики функций $$ y=sinx, y=-sinx, y=2sinx, y=sinx+2 $$
Пример 3
(y=-sinx) – отражение исходной функции (y=sinx) относительно оси OX. Область значений (yin[-1;1]).
(y=2sinx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=sinx+2) — исходная функция поднимается вверх на 2. Область значений (yin[1;3]).

Пример 4. Постройте в одной системе координат графики функций $$ y=sinx, y=sin2x, y=sinfrac{x}{2} $$
Пример 4
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под синусом изменяет период колебаний.
(y=sin2x) — период уменьшается в 2 раза, полная волна укладывается в отрезок (0leq xleq pi).
(y=sinfrac{x}{2}) — период увеличивается в 2 раза, полная волна укладывается в отрезок (0leq xleq 4pi).

Содержание:

Рассматривая произвольное действительное число Функция y=sin x и её свойства и график с примерами решений

Таким образом, мы установим соответствие между множеством действительных чисел и множеством значений синусов углов. Каждому действительному числу соответствует единственное значение синуса. Такое соответствие определяет тригонометрическую функцию Функция y=sin x и её свойства и график с примерами решений

Определение функция y=sin x

Определение:

Зависимость, при которой каждому действительному числу Функция y=sin x и её свойства и график с примерами решений соответствует значение Функция y=sin x и её свойства и график с примерами решений называется функцией Функция y=sin x и её свойства и график с примерами решений

Рассмотрим свойства функции Функция y=sin x и её свойства и график с примерами решений и построим ее график:

Область определения функции y=sin x

Областью определения функции Функция y=sin x и её свойства и график с примерами решений является множество всех действительных чисел, так как для любого Функция y=sin x и её свойства и график с примерами решений существует Функция y=sin x и её свойства и график с примерами решений

Графически это означает, что для любой абсциссы найдется точка графика функции Функция y=sin x и её свойства и график с примерами решений

Множеством значений функции y=sin x

Множеством значений функции Функция y=sin x и её свойства и график с примерами решений является промежуток Функция y=sin x и её свойства и график с примерами решений так как ординаты точек единичной окружности (значения синусов чисел) изменяются от -1 до 1.

Графически это означает, что график функции Функция y=sin x и её свойства и график с примерами решений расположен в полосе между прямыми Функция y=sin x и её свойства и график с примерами решений (рис. 74).

Функция y=sin x и её свойства и график с примерами решений Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Периодичность функции y=sin x

Периодичность функции Функция y=sin x и её свойства и график с примерами решенийТочки единичной окружности Функция y=sin x и её свойства и график с примерами решенийФункция y=sin x и её свойства и график с примерами решений совпадают для любого Функция y=sin x и её свойства и график с примерами решений (рис. 75), значит, значения синусов этих углов также совпадают, т. е. Функция y=sin x и её свойства и график с примерами решений

Говорят, что число Функция y=sin x и её свойства и график с примерами решений является периодом функции Функция y=sin x и её свойства и график с примерами решений

Определение:

Функция Функция y=sin x и её свойства и график с примерами решений называется периодической функцией с периодом Функция y=sin x и её свойства и график с примерами решений если для любого значения Функция y=sin x и её свойства и график с примерами решений из области определения функции числа Функция y=sin x и её свойства и график с примерами решений также принадлежат области определения и при этом верно равенство

Функция y=sin x и её свойства и график с примерами решений

Чтобы определить, является ли функция периодической с периодом Функция y=sin x и её свойства и график с примерами решений необходимо проверить:

  1. принадлежат ли области определения функции числа Функция y=sin x и её свойства и график с примерами решений если Функция y=sin x и её свойства и график с примерами решений принадлежит области определения функции;
  2. выполняется ли равенство Функция y=sin x и её свойства и график с примерами решений

Определим, верно ли, что число Функция y=sin x и её свойства и график с примерами решений является периодом функции Функция y=sin x и её свойства и график с примерами решений

  1. Числа Функция y=sin x и её свойства и график с примерами решений принадлежат области определения функции, так как Функция y=sin x и её свойства и график с примерами решений
  2. Проверим, выполняется ли равенство Функция y=sin x и её свойства и график с примерами решений для всех Функция y=sin x и её свойства и график с примерами решений

Пусть Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Значит, число Функция y=sin x и её свойства и график с примерами решений не является периодом функции Функция y=sin x и её свойства и график с примерами решений

Периодом функции Функция y=sin x и её свойства и график с примерами решений являются числа вида Функция y=sin x и её свойства и график с примерами решений Число Функция y=sin x и её свойства и график с примерами решений является наименьшим положительным периодом функции Функция y=sin x и её свойства и график с примерами решений

Функция Функция y=sin x и её свойства и график с примерами решений является периодической с наименьшим положительным периодом Функция y=sin x и её свойства и график с примерами решений (рис. 76). Это означает, что ее график состоит из повторяющихся частей, поэтому достаточно его построить на отрезке длиной Функция y=sin x и её свойства и график с примерами решений (например, Функция y=sin x и её свойства и график с примерами решений а затем повторить построение на каждом следующем отрезке длиной Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Четность (нечетность) функции y=sin x

Четность (нечетность) функции y=sin x Функция y=sin x и её свойства и график с примерами решений — симметрична относительно нуля. Так как точки Функция y=sin x и её свойства и график с примерами решений единичной окружности симметричны относительно оси абсцисс для любого Функция y=sin x и её свойства и график с примерами решений то ординаты этих точек противоположны, т. е. Функция y=sin x и её свойства и график с примерами решенийФункция y=sin x и её свойства и график с примерами решений (рис. 77). Значит, функция Функция y=sin x и её свойства и график с примерами решений нечетная.

Функция y=sin x и её свойства и график с примерами решений
Функция y=sin x и её свойства и график с примерами решений

Для построения ее графика достаточно построить его часть для неотрицательных значений аргумента и отобразить эту часть симметрично относительно начала координат.

Нули функции y=sin x

Нули функции. Ординаты точек Функция y=sin x и её свойства и график с примерами решений и Функция y=sin x и её свойства и график с примерами решений равны нулю. Значит, Функция y=sin x и её свойства и график с примерами решений в точка Функция y=sin x и её свойства и график с примерами решений (рис. 78), т. е. график функции пересекает ось абсцисс в точках с абсциссами Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Промежутки знакопостоянства функции y=sin x

На промежутках Функция y=sin x и её свойства и график с примерами решений функция Функция y=sin x и её свойства и график с примерами решений принимает положительные значения, так как ординаты точек единичной окружности положительны в первой и во второй четвертях (рис. 79, а).

На промежутках Функция y=sin x и её свойства и график с примерами решений функция Функция y=sin x и её свойства и график с примерами решений принимает отрицательные значения, так как ординаты точек единичной окружности отрицательны в третьей и четвертой четвертях (рис. 79, б).

Функция y=sin x и её свойства и график с примерами решенийФункция y=sin x и её свойства и график с примерами решений

Монотонность функции y=sin x

Монотонность функции. Так как ординаты точек единичной окружности увеличиваются от -1 до 1 при изменении угла от Функция y=sin x и её свойства и график с примерами решений (рис. 80, а) и уменьшаются от 1 до -1 при изменении угла от Функция y=sin x и её свойства и график с примерами решений (рис. 80, б), то с учетом периодичности определим промежутки возрастания функции Функция y=sin x и её свойства и график с примерами решений и промежутки убывания функции Функция y=sin x и её свойства и график с примерами решений
Функция y=sin x и её свойства и график с примерами решений

Функции Функция y=sin x и её свойства и график с примерами решений возрастает на промежутках Функция y=sin x и её свойства и график с примерами решений и убывает на промежутках Функция y=sin x и её свойства и график с примерами решений
Наибольшее значение функции Функция y=sin x и её свойства и график с примерами решений равно 1 и достигается в точках Функция y=sin x и её свойства и график с примерами решений

Наименьшее значение функции Функция y=sin x и её свойства и график с примерами решений равно Функция y=sin x и её свойства и график с примерами решений и достигается в точках Функция y=sin x и её свойства и график с примерами решений

На основании проведенного исследования построим график функции Функция y=sin x и её свойства и график с примерами решений на отрезке от Функция y=sin x и её свойства и график с примерами решений длина которого равна Функция y=sin x и её свойства и график с примерами решений т. е. длине периода функции Функция y=sin x и её свойства и график с примерами решений

На этом периоде функция Функция y=sin x и её свойства и график с примерами решений

На рисунке 81 изображена часть графика функции Функция y=sin x и её свойства и график с примерами решений на промежутке от Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Перенесем эту часть на другие периоды и получим график функции Функция y=sin x и её свойства и график с примерами решений(рис. 82). График функции Функция y=sin x и её свойства и график с примерами решений называется синусоидой.

Функция y=sin x и её свойства и график с примерами решений

Примеры заданий и их решения

Пример №1

Определите, принадлежит ли графику функции Функция y=sin x и её свойства и график с примерами решений точка: 

Функция y=sin x и её свойства и график с примерами решений

Решение:

а) Подставим в формулу Функция y=sin x и её свойства и график с примерами решений значение аргумента Функция y=sin x и её свойства и график с примерами решений найдем соответствующее значение функции Функция y=sin x и её свойства и график с примерами решений

Полученное значение функции равно ординате точки Функция y=sin x и её свойства и график с примерами решений значит, точка Функция y=sin x и её свойства и график с примерами решений принадлежит графику функции Функция y=sin x и её свойства и график с примерами решений

б)    При Функция y=sin x и её свойства и график с примерами решений получим Функция y=sin x и её свойства и график с примерами решений Точка Функция y=sin x и её свойства и график с примерами решений не принадлежит графику функции Функция y=sin x и её свойства и график с примерами решений

в)    При Функция y=sin x и её свойства и график с примерами решений получим Функция y=sin x и её свойства и график с примерами решений Точка Функция y=sin x и её свойства и график с примерами решений принадлежит графику функции Функция y=sin x и её свойства и график с примерами решений

г)    При Функция y=sin x и её свойства и график с примерами решений получим Функция y=sin x и её свойства и график с примерами решений Точка Функция y=sin x и её свойства и график с примерами решений не принадлежит графику функции Функция y=sin x и её свойства и график с примерами решений

Пример №2

Найдите область определения и множество значений функции:

Функция y=sin x и её свойства и график с примерами решений

Решение:

а) Так как область определения функции Функция y=sin x и её свойства и график с примерами решений все действительные числа, т.еФункция y=sin x и её свойства и график с примерами решений значит, Функция y=sin x и её свойства и график с примерами решений   Таким образом, Функция y=sin x и её свойства и график с примерами решений

Множеством значений функции Функция y=sin x и её свойства и график с примерами решений является отрезок Функция y=sin x и её свойства и график с примерами решений значит, Функция y=sin x и её свойства и график с примерами решений Тогда по свойству неравенств Функция y=sin x и её свойства и график с примерами решений Таким образом, Функция y=sin x и её свойства и график с примерами решений

б) Функция y=sin x и её свойства и график с примерами решений Поскольку Функция y=sin x и её свойства и график с примерами решений то по свойству неравенств

Функция y=sin x и её свойства и график с примерами решений т.е. Функция y=sin x и её свойства и график с примерами решений

Пример №3

Найдите наибольшее значение функции Функция y=sin x и её свойства и график с примерами решений

Решение:

Так как Функция y=sin x и её свойства и график с примерами решений значит, Функция y=sin x и её свойства и график с примерами решений тогда Функция y=sin x и её свойства и график с примерами решений Таким образом, имеем: Функция y=sin x и её свойства и график с примерами решений Наибольшее значение функции Функция y=sin x и её свойства и график с примерами решений равно 7.

  • Заказать решение задач по высшей математике

Пример №4

Найдите значение выражения, используя свойство периодичности функции Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Решение:

Так как число Функция y=sin x и её свойства и график с примерами решений является наименьшим положительным периодом функции Функция y=sin x и её свойства и график с примерами решений Тогда:

Функция y=sin x и её свойства и график с примерами решений

Пример №5

Найдите значение выражения, используя свойство нечетности функции Функция y=sin x и её свойства и график с примерами решений

Функция y=sin x и её свойства и график с примерами решений

Решение:

Так как функция Функция y=sin x и её свойства и график с примерами решений нечетная, то Функция y=sin x и её свойства и график с примерами решений

 Тогда:

Функция y=sin x и её свойства и график с примерами решений

Пример №6

Исследуйте функцию на четность (нечетность):

Функция y=sin x и её свойства и график с примерами решений

Решение:

a) Функция y=sin x и её свойства и график с примерами решений — область определения симметрична относительно нуля;

Функция y=sin x и её свойства и график с примерами решений значит, функция является нечетной.

Функция y=sin x и её свойства и график с примерами решений область определения симметрична относительно нуля; 

Функция y=sin x и её свойства и график с примерами решенийФункция y=sin x и её свойства и график с примерами решенийзначит, функция является четной.

Пример №7

Найдите нули функции:

Функция y=sin x и её свойства и график с примерами решений

Решение:

а) Пусть Функция y=sin x и её свойства и график с примерами решений Нулями функции Функция y=sin x и её свойства и график с примерами решений являются числаФункция y=sin x и её свойства и график с примерами решений Тогда Функция y=sin x и её свойства и график с примерами решений значит, Функция y=sin x и её свойства и график с примерами решений Таким тобразом, числа Функция y=sin x и её свойства и график с примерами решений являются нулями функции Функция y=sin x и её свойства и график с примерами решений

б) Пусть  Функция y=sin x и её свойства и график с примерами решений  Нулями функции Функция y=sin x и её свойства и график с примерами решений являются числа Функция y=sin x и её свойства и график с примерами решений Тогда Функция y=sin x и её свойства и график с примерами решений значит, Функция y=sin x и её свойства и график с примерами решений

Таким образом, числа Функция y=sin x и её свойства и график с примерами решений являются нулями функции Функция y=sin x и её свойства и график с примерами решений

Пример №8

Определите знак произведения Функция y=sin x и её свойства и график с примерами решений

Решение:

Так как Функция y=sin x и её свойства и график с примерами решений то Функция y=sin x и её свойства и график с примерами решений т. е. угол 4 радиана принадлежит промежутку Функция y=sin x и её свойства и график с примерами решений на котором функция Функция y=sin x и её свойства и график с примерами решений принимает отрицательные значения, значит, Функция y=sin x и её свойства и график с примерами решений

Углы 2 радиана и 1 радиан принадлежат промежутку Функция y=sin x и её свойства и график с примерами решений на котором функция Функция y=sin x и её свойства и график с примерами решений принимает положительные значения, т. е. Функция y=sin x и её свойства и график с примерами решений Значит, Функция y=sin x и её свойства и график с примерами решений

Пример №9

Что больше: Функция y=sin x и её свойства и график с примерами решений или Функция y=sin x и её свойства и график с примерами решений

Решение. Так как функция Функция y=sin x и её свойства и график с примерами решений возрастает на промежуткеФункция y=sin x и её свойства и график с примерами решений то из того, что Функция y=sin x и её свойства и график с примерами решенийследует, что Функция y=sin x и её свойства и график с примерами решений

Пример №10

Постройте график функции:

Функция y=sin x и её свойства и график с примерами решений

Решение:

а) График функции Функция y=sin x и её свойства и график с примерами решений получаем из графика функции Функция y=sin x и её свойства и график с примерами решений сдвигом его вдоль оси абсцисс на Функция y=sin x и её свойства и график с примерами решений влево (рис. 84).

б)    График функции Функция y=sin x и её свойства и график с примерами решений получаем из графика функции Функция y=sin x и её свойства и график с примерами решений сдвигом его вдоль оси ординат на 2 единицы вверх (рис. 85).

Функция y=sin x и её свойства и график с примерами решений

  • Функция y=cos x и её свойства и график
  • Функции y=tg x и y=ctg x — их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа
  • Тригонометрические уравнения
  • Единичная окружность — в тригонометрии
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)

Тригонометрические функции

6 августа 2012

Основная сложность тригонометрических функций состоит в том, что при решении уравнений возникает бесконечное множество корней. Например, уравнение sin x = 0 имеет корни x = πn, nZ. Ну и как отмечать их на координатной прямой, если таких чисел бесконечно много?

Ответ прост: надо подставлять конкретные значения n. Ведь в задачах B15 с тригонометрическими функциями всегда есть ограничение — отрезок [a; b]. Поэтому для начала берем n = 0, а затем увеличиваем n до тех пор, пока соответствующий корень не «вылезет» за пределы отрезка [a; b]. Аналогично, уменьшая n, очень скоро получим корень, который меньше нижней границы.

Несложно показать, что никаких корней, кроме полученных в рассмотренном процессе, на отрезке [a; b] не существует. Рассмотрим теперь этот процесс на конкретных примерах.

Задача. Найдите точку максимума функции, принадлежащую отрезку [−π/3; π/3]:

y = sin x − 5x sin x − 5cos x + 1

Вычисляем производную:

y’ = (sin x − 5x sin x − 5cos x + 1)’ = … = cos x − 5x cos x = (1 − 5x) cos x

Затем решаем уравнение:

y’ = 0;
(1 − 5x) cos x = 0;

x1 = 0,2;
x2 = π/2 + πn, nZ.

С корнем x = 0,2 все понятно, а вот формула x = π/2 + πn требует дополнительной обработки. Будем подставлять разные значения n, начиная с n = 0.

n = 0 ⇒ x = π/2

Но π/2 > π/3, поэтому корень x = π/2 не входит в исходный отрезок. Кроме того, чем больше n, тем больше x, поэтому нет смысла рассматривать n > 0.

n = −1 ⇒ x = − π/2

Но −π/2 < −π/3 — этот корень тоже придется отбросить. А вместе с ним — и все корни для n < −1.

Получается, что на отрезке [−π/3; π/3] лежит только корень x = 0,2. Отметим его вместе со знаками и границами на координатной прямой:

Знаки производной тригонометрической функции

Чтобы удостовериться, что справа от x = 0,2 производная действительно отрицательная, достаточно подставить в производную значение x = π/4. Мы же просто отметим, что в точке x = 0,2 производная меняет знак с плюса на минус, а следовательно, это точка максимума.

Задача. Найдите наибольшее значение функции на отрезке [−π/4; π/4]:

y = 4 tg x − 4x + π − 5

Вычисляем производную:

y’ = (4tg x − 4x + π − 5)’ = 4/cos 2x − 4.

Затем решаем уравнение:

y’ = 0 ⇒ 4/cos 2x − 4 = 0 ⇒ … ⇒ x = πn, nZ.

Снова выделим из этой формулы корни, подставляя конкретные n, начиная с n = 0:

n = 0 ⇒ x = 0. Этот корень нам подходит.
n = 1 ⇒ x = π. Но π > π/4, поэтому корень x = π и значения n > 1 надо вычеркнуть.
n = −1 ⇒ x = −π. Но −π < −π/4, поэтому x = −π и n < −1 тоже вычеркиваем.

Из всего многообразия корней остался лишь один: x = 0. Поэтому вычисляем значение функции для x = 0, x = π/4 и x = −π/4. Имеем:

y(0) = 4tg 0 − 4 · 0 + π − 5 = π − 5;
y(π/4) = 4tg π/4 − 4 · π/4 + π − 5 = 1;
y(−π/4) = 4tg (−π/4) − 4 · (−π/4) + π − 5 = … = 2π − 9.

Теперь заметим, что π = 3,14… < 4, поэтому π − 5 < 4 − 5 < 0 и 2π − 9 < 8 − 9 < 0. Получается одно положительное число и два отрицательных. Мы ищем наибольшее — очевидно, это y = 1.

Заметим, что в последней задаче можно было и не сравнивать числа между собой. Ведь из чисел π − 5, 1 и 2π − 9 в бланк ответов можно записать лишь единицу.

Действительно, как написать в бланке, скажем, число π? А никак. Это важная особенность первой части ЕГЭ по математике, которая значительно упрощает решение многих задач. И работает она не только в B15.

Случай пустого множества решений

Иногда при исследовании функции возникают уравнения, у которых нет корней. В таком случае задача становится еще проще, поскольку остается рассмотреть лишь концы отрезка.

Однако будьте предельно внимательны, поскольку такие задачи встречаются в ЕГЭ крайне редко. Если в процессе решения выясняется, что корней нет, лучше еще раз проверить все выкладки. И только когда убедитесь, что ошибок нет, можно расслабиться: вам досталась легкая задача!

Задача. Найдите наименьшее значение функции на отрезке [−3π/2; 0]:

y = 7sin x − 8x + 5

Сначала находим производную:

y’ = (7sin x − 8x + 5)’ = 7cos x − 8

Попробуем решить уравнение:

y’ = 0 ⇒ 7cos x − 8 = 0 ⇒ cos x = 8/7

Но значения cos x всегда лежат на отрезке [−1; 1], а 8/7 > 1. Поэтому корней нет.

Если корней нет, то и вычеркивать ничего не надо. Переходим к последнему шагу — вычисляем значение функции:

y(−3π/2) = 7sin (−3π/2) − 8 · (−3π/2) + 5 = … = 12π + 12;
y(0) = 7sin 0 − 8 · 0 + 5 = 5.

Поскольку число 12π + 12 в бланк ответов не записать, остается лишь y = 5.

Смотрите также:

  1. Задача B15: Линейные выражения под знаком тригонометрической функции
  2. Сложные задачи B15: комбинация тригонометрии и многочленов
  3. Тест к уроку «Что такое числовая дробь» (средний)
  4. Метод коэффициентов, часть 1
  5. Задача B5: вычисление площади методом обводки
  6. Углы и отрезки в стереометрии — 2

Понравилась статья? Поделить с друзьями:
  • Как найти стихи картинки
  • Как проще всего найти человека
  • Как можно найти хороших друзей
  • Не выключаются габариты ваз 2110 как исправить
  • Как найти келлога в форте хаген