Как найти наибольший целый делитель

Понятие наибольшего общего делителя

Для начала разберемся, что такое общий делитель. У целого числа может быть несколько делителей. А сейчас нам особенно интересно, как обращаться с делителями сразу нескольких целых чисел.

Делитель натурального числа — это такое целое натуральное число, на которое делится данное число без остатка. Если у натурального числа больше двух делителей, его называют составным.

Общий делитель нескольких целых чисел — это такое число, которое может быть делителем каждого числа из указанного множества. Например, у чисел 12 и 8 общими делителями будут 4 и 1. Чтобы это проверить, напишем верные равенства: 8 = 4 * 2 и 12 = 3 * 4.

Любое число можно разделить на 1 и на само себя. Значит, у любого набора целых чисел будет как минимум два общих делителя.

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать вот так: НОД (a, b).

Например, для 4 и 16 НОД будет 4. Как мы к этому пришли:

  1. Зафиксируем все делители четырех: 4, 2, 1.
  2. А теперь все делители шестнадцати: 16, 8, 4 и 1.
  3. Выбираем общие: это 4, 2, 1. Самое большое общее число: 4. Вот и ответ.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Найдем наибольший общий делитель нескольких целых чисел: 12, 6, 42, 18. Он будет равен шести. Ответ можно записать так: НОД (12, 6, 42, 18) = 6. А чтобы проверить правильность ответа, нужно записать все делители и выбрать из них самые большие.

Взаимно простые числа — это натуральные числа, у которых только один общий делитель — единица. Их НОД равен 1.

Еще один пример. Рассчитаем НОД для 28 и 64.

Как находим:

 

  1. Распишем простые множители для каждого числа и подчеркнем одинаковые

    Д (28) = 2 * 2 * 7

    Д (64) = 2 * 2 * 2 * 2 * 2 * 2

  2. Найдем произведение одинаковых простых множителей и запишем ответ

    НОД (28; 64) = 2 * 2 = 4

Ответ: НОД (28; 64) = 4

Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Способы нахождения наибольшего общего делителя

Найти наибольший общий делитель можно двумя способами. Рассмотрим оба, чтобы при решении задач выбирать самую оптимальную последовательность действий.

1. Разложение на множители

Чтобы найти НОД нескольких чисел, достаточно разложить их на простые множители и перемножить между собой общие множители для всех чисел.

Пример 1. Найти НОД (84, 90).

Как решаем:

 

  1. Разложим числа 84 и 90 на простые множители:

    Пример разложения чисел 84 и 90

  2. Подчеркнем все общие множители и перемножим их между собой:

    2 * 3 = 6.

 

Ответ: НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Как решаем:

 

  1. Разложим 15 и 28 на простые множители:

    пример разложения чисел 15 и 28

  2. Числа 15 и 28 являются взаимно простыми, так как их наибольший общий делитель — единица.

 

Ответ: НОД (15, 28) = 1.

Пример 3. Найти НОД для 24 и 18.

Как решаем:

 

  1. Разложим оба числа на простые множители:

    Разложение чисел на простые множители

  2. Найдем общие множители чисел 24 и 18: 2 и 3. Для удобства общие множители можно подчеркнуть.

    Находим общие множители

  3. Перемножим общие множители:

    НОД (24, 18) =2 * 3 = 6

 

Ответ: НОД (24, 18) = 6

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

2. Алгоритм Евклида

Способ Евклида помогает найти НОД через последовательное деление. Сначала посмотрим, как работает этот способ с двумя числами, а затем применим его к трем и более.

Алгоритм Евклида заключается в следующем: если большее из двух чисел делится на меньшее — наименьшее число и будет их наибольшим общим делителем. Использовать метод Евклида можно легко по формуле нахождения наибольшего общего делителя.

Формула НОД: НОД (a, b) = НОД (b, с), где с — остаток от деления a на b.

Пример 1. Найти НОД для 24 и 8.

Как рассуждаем:

Так как 24 делится на 8 и 8 тоже делится на 8, значит, 8 — общий делитель этих чисел. Этот делитель является наибольшим, потому что 8 не может делиться ни на какое число, большее его самого. Поэтому: НОД (24, 8) = 8.

В остальных случаях для нахождения наибольшего общего делителя двух чисел нужно соблюдать такой порядок действий:

 

  1. Большее число поделить на меньшее.
  2. Меньшее число поделить на остаток, который получается после деления.
  3. Первый остаток поделить на второй остаток.
  4. Второй остаток поделить на третий и т. д.
  5. Деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель и есть наибольший общий делитель.

Пример 2. Найти наибольший общий делитель чисел 140 и 96:

Как решаем:

 

  1. 140 : 96 = 1 (остаток 44)
  2. 96 : 44 = 2 (остаток 8)
  3. 44 : 8 = 5 (остаток 4)
  4. 8 : 4 = 2

Последний делитель равен 4 — это значит: НОД (140, 96) = 4.

Ответ: НОД (140, 96) = 4

Пошаговое деление можно записать столбиком:

пошаговое деление солбиком

Чтобы найти наибольший общий делитель трех и более чисел, делаем в такой последовательности:

 

  1. Найти наибольший общий делитель любых двух чисел из данных.
  2. Найти НОД найденного делителя и третьего числа.
  3. Найти НОД последнего найденного делителя и четвёртого числа и т. д.

Свойства наибольшего общего делителя

У наибольшего общего делителя есть ряд определенных свойств. Опишем их в виде теорем и сразу приведем доказательства.

Важно! Все свойства НОД будем формулировать для положительных целых чисел, при этом будем рассматривать делители только больше нуля.

Свойство 1. Наибольший общий делитель чисел а и b равен наибольшему общему делителю чисел b и а, то есть НОД (a, b) = НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Доказывать свойство не имеет смысла, так как оно напрямую исходит из самого определения НОД.

Свойство 2. Если а делится на b, то множество общих делителей чисел а и b совпадает со множеством делителей числа b, поэтому НОД (a, b) = b.

Доказательство

 

Любой общий делитель чисел а и b является делителем каждого из этих чисел, в том числе и числа b. Так как а кратно b, то любой делитель числа b является делителем и числа а, благодаря свойствам делимости. Из этого следует, что любой делитель числа b является общим делителем чисел а и b.

 

Значит, если а делится на b, то совокупность делителей чисел а и b совпадает с совокупностью делителей одного числа b. А так как наибольшим делителем числа b является само число b, то наибольший общий делитель чисела и b также равен b, то есть НОД (а, b) = b.

 

В частности, если a = b, то НОД (a, b) = НОД (a, a) = НОД (b, b) = a = b.

  • Например, НОД (25, 25) = 25.

Доказанное свойство наибольшего делителя можно использовать, чтобы найти НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число.

  • Например, НОД (4, 40) = 4, так как 40 кратно 4.

Свойство 3. Если a = bq + c, где а, b, с и q — целые числа, то множество общих делителей чисел а и b совпадает со множеством общих делителей чисел b и с. Равенство НОД (a, b) = НОД (b, c) справедливо.

Доказательство

 

Существует равенство a = bq + c, значит всякий общий делитель чисел а и b делит также и с, исходя из свойств делимости. По этой же причине, всякий общий делитель чисел b и с делит а. Поэтому совокупность общих делителей чисел а и b совпадает с совокупностью общих делителей чисел b и c.

 

Поэтому должны совпадать и наибольшие из этих общих делителей, и равенство НОД (a, b) = НОД (b, c) можно считать справедливым.

Свойство 4. Если m — любое натуральное число, то НОД (mа, mb) = m * НОД(а, b).

Доказательство

Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД (mа, mb)= mr, где r — это НОД (а, b). На этом свойстве наибольшего общего делителя основан поиск НОД с помощью разложения на простые множители.

Свойство 5. Пусть р — любой общий делитель чисел а и b, тогда НОД (а : p, b : p) = НОД (а, b) : p. А именно, если p = НОД (a, b) имеем НОД (a : НОД (a, b), b: НОД (a, b)) = 1, то есть, числа a : НОД (a, b) и b : НОД (a, b) — взаимно простые.

Так как a = p(a : p) и b = p(b : p), и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД (a, b) = НОД (p(a : p), p(b : p)) = p * НОД (a : p, b : p), откуда и следует доказываемое равенство.

Знакомство с темой наибольшего общего делителя начинается в 5 классе с теории и закрепляется в 6 классе на практике. В этой статье мы узнали все основные определения, свойства и их доказательства, а также как найти НОД.

Как найти НОД

  • Нахождение путём разложения на множители
  • Алгоритм Евклида

Рассмотрим два способа нахождения наибольшего общего делителя.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наибольшего общего делителя путём разложения данных чисел на простые множители.

Чтобы найти НОД нескольких чисел, достаточно, разложить их на простые множители и перемножить между собой те из них, которые являются общими для всех данных чисел.

Пример 1. Найти НОД (84, 90).

Решение: Раскладываем числа  84  и  90  на простые множители:

как найти наибольший общий делитель

Итак, мы подчеркнули все общие простые множители, осталось перемножить их между собой:

2 · 3 = 6.

Таким образом, НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Решение: Раскладываем  15  и  28  на простые множители:

наибольший общий делитель двух чисел

Числа  15  и  28  являются взаимно простыми, так как их наибольший общий делитель — единица.

НОД (15, 28) = 1.

Алгоритм Евклида

Второй способ (иначе его называют способом Евклида) заключается в нахождении НОД путём последовательного деления.

Сначала мы рассмотрим этот способ в применении только к двум данным числам, а затем разберёмся в том, как его применять к трём и более числам.

Если большее из двух данных чисел делится на меньшее, то число, которое меньше и будет их наибольшим общим делителем.

Пример 1. Возьмём два числа  27  и  9.  Так как  27  делится на  9  и  9  делится на  9,  значит,  9  является общим делителем чисел  27  и  9.  Этот делитель является в тоже время и наибольшим, потому что  9  не может делиться ни на какое число, большее  9.  Следовательно:

НОД (27, 9) = 9.

В остальных случаях, чтобы найти наибольший общий делитель двух чисел используется следующий порядок действий:

  1. Из двух данных чисел большее число делят на меньшее.
  2. Затем, меньшее число делят на остаток, получившийся от деления большего числа на меньшее.
  3. Далее, первый остаток делят на второй остаток, который получился от деления меньшего числа на первый остаток.
  4. Второй остаток делят на третий, который получился от деления первого остатка на второй и т. д.
  5. Таким образом деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель как раз и будет наибольшим общим делителем.

Пример 2. Найдём наибольший общий делитель чисел  140  и  96:

1) 140 : 96 = 1 (остаток 44)

2) 96 : 44 = 2 (остаток 8)

3) 44 : 8 = 5 (остаток 4)

4) 8 : 4 = 2

Последний делитель равен  4  — это значит:

НОД (140, 96) = 4.

Последовательное деление так же можно записывать столбиком:

как найти нод чисел

Чтобы найти наибольший общий делитель трёх и более данных чисел, используем следующий порядок действий:

  1. Сперва находим наибольший общий делитель любых двух чисел из нескольких данных.
  2. Затем находим НОД найденного делителя и какого-нибудь третьего данного числа.
  3. Затем находим НОД последнего найденного делителя и четвёртого данного числа и так далее.

Пример 3. Найдём наибольший общий делитель чисел  140,  96  и  48.  НОД чисел  140  и  96  мы уже нашли в предыдущем примере (это число  4).  Осталось найти наибольший общий делитель числа  4  и третьего данного числа —  48:

48 : 4 = 12

48  делится на  4  без остатка. Таким образом:

НОД (140, 96, 48) = 4.

Онлайн калькулятор НОД и НОК двух чисел

Наибольший общий делитель (НОД)

Определение НОД

НОД двух или более целых чисел — это наибольшее целое число, которое является делителем каждого из этих чисел.

Если натуральное число a делится на натуральное число bb, то bb называют делителем числа aa, а число aa называют кратным числа bb. aa и bb являются натуральными числами. Число gg называют общим делителем и для aa и для bb. Множество общих делителей чисел aa и bb конечно, так как ни один из этих делителей не может быть больше, чем aa. Значит, среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел aa и bb и для его обозначения используют записи: НОД (a;b)(a;b) или D(a;b)(a;b)

Пример
Наибольший общий делитель (НОД) чисел 1818 и 2424 — это 66.

Как найти наибольший общий делитель (НОД)

Существует несколько способов нахождения наибольшего общего делителя (НОД) двух или более целых чисел:

  • Алгоритм Евклида: НОД(a,b)=(a, b) = НОД (b,a(b, a mod b)b), где «mod» — это операция взятия остатка от деления большего числа на меньшее. Этот алгоритм можно продолжать до тех пор, пока одно из чисел не станет равно нулю. В этом случае НОД равен ненулевому числу.

Пример
НОД(18,24)=НОД(24,18)=НОД(18,6)=НОД(6,0)=6НОД(18, 24) = НОД(24, 18) = НОД(18, 6) = НОД(6, 0) = 6

  • Разложение на простые множители: Найти все простые множители каждого из чисел и их степени. НОД будет равен произведению всех общих простых множителей в минимальной степени.

Пример
НОД(60,84)=22⋅31=12(60, 84) = 2^{2} cdot 3^{1} = 12, так как общие простые множители −2- 2 и 33, их минимальные степени −2- 2 и 11 соответственно.

  • Таблица делителей: Составить таблицы всех делителей каждого числа и найти наибольшее общее число, которое является делителем обоих чисел. Этот метод не рекомендуется для больших чисел, так как он требует много времени и усилий.

Наименьшее общее кратное (НОК)

Определение НОК

НОК двух или более целых чисел — это наименьшее число, которое делится на каждое из этих чисел без остатка.

Общими кратными чисел называются числа которые делятся на исходные без остатка. Например для чисел 2525 и 5050 общими кратными будут числа 50,100,150,20050,100,150,200 и т.д Наименьшее из общих кратных будет называться НОК и обозначается НОК(a;b)(a;b) или K(a;b).(a;b).

Пример
Наименьшее общее кратное чисел 88 и 1212 – это 2424. Т.е. НОК (8,12)=24(8, 12) = 24.

Как найти наименьшее общее кратное (НОК)

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители;
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого;
  3. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наименьшим общим кратным.

Пример
Рассмотрим два числа: 88 и 1212. Найдем их НОКНОК:

  • Разложим 88 и 1212 на простые множители: 8=23,12=22⋅38 = 2^3, 12 = 2^2 cdot 3.
  • Выпишем все простые множители: 23⋅32^3 cdot 3.
  • Для каждого простого множителя выберем наибольшую кратность: 232^3 и 33.
  • Умножим выбранные простые множители между собой: 23⋅3=242^3 cdot 3 = 24.

Таким образом, НОК чисел 88 и 1212 равен 2424.

Свойства НОД и НОК

  • Любое общее кратное чисел aa и bb делится на K(a;b)(a;b);
  • Если a⋮bavdots b , то К(a;b)=a(a;b)=a;
  • Если К(a;b)=k(a;b)=k и mm-натуральное число, то К(am;bm)=km(am;bm)=km. Если dd-общий делитель для aa и bb,то К(ad;bdfrac{a}{d};frac{b}{d})= kd frac{k}{d}
  • Если a⋮cavdots c и b⋮cbvdots c ,то abcfrac{ab}{c} — общее кратное чисел aa и bb;
  • Для любых натуральных чисел aa и bb выполняется равенство D(a;b)⋅К(a;b)=abD(a;b)cdot К(a;b)=ab;
  • Любой общий делитель чисел aa и bb является делителем числа D(a;b)D(a;b).


Загрузить PDF


Загрузить PDF

Нахождение наибольшего общего делителя (НОД) для определенного количества чисел может быть легкой задачей, если вы умеете это делать.

  1. Изображение с названием Find the Greatest Common Factor Step 1

    1

    Найдите делители чисел. Начните с поиска всех делителей первого и второго числа.

  2. Изображение с названием Find the Greatest Common Factor Step 2

    2

    Сравните делители обоих чисел и найдите самое большое число, которое есть в списке делителей как первого, так и второго числа. Это число равно НОД.

    Реклама

  1. Изображение с названием Find the Greatest Common Factor Step 3

    1

    Разложите каждое число на простые множители. Простое число — это число, большее 1 и которое делится только на 1 и на само себя. Примеры простых чисел: 5, 17, 97, 331.

  2. Изображение с названием Find the Greatest Common Factor Step 4

    2

    Найдите общие простые множители. Общий простой множитель может быть только один, или их может быть несколько.

  3. Изображение с названием Find the Greatest Common Factor Step 5

    3

    Если у двух чисел есть только один общий простой множитель, то он равен НОД. Если у двух чисел есть несколько общих простых множителей, то их произведение равно НОД.

  4. Изображение с названием Find the Greatest Common Factor Step 6

    4

    Изучите пример. Чтобы продемонстрировать этот метод, изучите пример, приведенный на рисунке.

    Реклама

Советы

  • Простое число — это число, которое делится только на 1 и на само себя.
  • Знаете ли вы, что в третьем веке до н.э. математик Евклид создал алгоритм для вычисления наибольшего общего делителя двух натуральных чисел и двух многочленов?

Реклама

Об этой статье

Эту страницу просматривали 7409 раз.

Была ли эта статья полезной?

Определение наибольшего общего делителя и наименьшего общего кратного

Понятие НОД

Определение, что такое НОД в математике, звучит следующим образом: наибольший делитель, общий для чисел a и b, есть такое наибольшее число, на которое описанные значения смогут разделиться без остатка.

Для наилучшего понимания того, как найти НОД двух чисел, вместо указанных переменных достаточно подставлять простые числа, например, 12 и 9. То есть самым наименьшим делимым числом для 12 и 9 является то, которое позволяет найти решение без остатка.

Задача по нахождению НОД может решаться тремя способами. Каждый из них применяется в зависимости от того, насколько быстро требуется найти необходимый показатель:

Способы нахождения НОК и НОД

  1. Первый метод схож с алгоритмом Евклида для нахождения НОД. Он достаточно трудоемкий и канонический. Необходимо искать все возможные делители, а через них — наибольший делитель, являющийся общим для значений. Если выписывать все показатели, на которые поделятся 12 и 9, наибольшим окажется 3.
  2. Второй способ предполагает разложение пары чисел на простые множители и перемножение наибольших из них между собой.
  3. Суть следующего способа: компоненты, которые подлежат поиску наибольшего общего делителя, начинают раскладывать на простые множители. Это значит, что из разложения первого нужно вычеркнуть множители, какие не попадают во второе значение. Остальные показатели в первом разложении перемножаются и оказываются НОД.

Лучше всего рассматривать применение указанных методов через определенный класс задач, которые помогают при дальнейшем изучении теорем, касающихся дробей. Формулы для указанной темы очень доступны для понимания ученикам и учителям.

Метод разложения

Суть второй методики заключается в разложении на простые множители и перемножении общих из них. В качестве примера можно рассмотреть представление НОД для показателей 18 и 24:

Алгоритм Евклида для нахождения наибольшего общего делителя

  1. Оба параметра раскладываются на множители — 24 на 1, 2, 3, 4, 6, 8, 12, 24, а 18 на 1, 2, 3, 6, 9, 18. Происходит поиск общих значений.
  2. Необходимо перемножать между собой общие множители. Если есть риск запутаться, то стоит подчеркивать общие значения.
  3. В результате поиска соотношений выделяют в качестве общих значений 2 и 3. После перемножения они дают число 6. Именно это линейное число и считается наибольшим объединенным делителем.

Способ является достаточно простым. Однако из-за некоторого объема операций можно оказаться в сложной ситуации с поиском общих делителей, поэтому следует рассмотреть еще один способ.

Вычеркивание показателей

Для третьей методики характерно вычеркивание из разложения тех показателей, которые не проходят во второе число. Есть такие виды НОД, которые могут сильно отличаться, но все равно позволяют найти нужный показатель. Например, нужно найти наибольший делитель для значений 28 и 16:

  1. Сначала раскладывают оба параметра на простые множители. Для 28 таковыми считаются 1, 2, 4, 7, 14, 28, для 16 это 1, 2, 4, 8,16.
  2. Из разложения первого объекта по формуле следует вычеркнуть показатель 7, так как он не входит в группу делителей второго.
  3. После перемножения наибольшим делителем оказывается 4. Проверка в виде деления на него 28 и 16 показывает, что именно он и является нужным НОДом.

Аналогично можно отыскать для других значений, например, 100 и 40. После разложения из первого перечеркивается лишняя пятерка. Перемножение дает 20, который после поверки оказывается наибольшим делителем.

Несколько значений

Основные особенности и нюансы в случае нескольких значений.

Несмотря на кажущуюся сложность, доказать, что возможно найти НОД для нескольких чисел без помощи онлайн-калькуляторов, вполне реально. Значения, подлежащие поиску, необходимо разложить на множители. После чего ищется произведение общих простейших множителей.

Есть такие числа как 18, 24 и 36. Разложение 18 дает такие коэффициенты как 1, 2, 3, 6, 9 и 18. Затем 24 и 36 необходимо править по аналогичному методу. Если составить таблицу, то можно найти следующие общие показатели в виде 2 и 3. Они считаются общими для всех трех чисел.

Перемножив между собой, получается делимое число 6. Оно также подходит под разложение 18, 24 и 36, а также считается наибольшим общим делителем для всех трех параметров. Аналогичный принцип срабатывает и для четырех и более чисел, когда потребуется найти делитель на любом уровне сложности вплоть до максимального.

Наименьшее общее кратное

Помимо НОД, существует еще и наименьшее общее кратное, или НОК. Если сказать по-другому, то таковым свойством можно считать число, которое без остатка будет разделяться на число a и число b.

Способы нахождения наибольшего общего делителя

Как и для НОД, поиск НОК может осуществляться тремя похожими с предшествующими способами. Каждым из них можно воспользоваться в зависимости от ситуации и удобства решения задания:

  • Первый метод достаточно простой и распространенный. Необходимо записать кратные первых чисел, после чего подобрать такое число, чтобы оно являлось общим для всех и наименьшим.
  • Также возможно раскладывать кратные на простые натуральные множители. В этом случае переписываются множители из первого разложения и прибавляются недостающие во второе. Получаемые значения перемножают между собой и получают НОК.
  • Особняком стоит третий метод, который работает при соблюдении определенных условий. Одним из них является то, что НОК ищут для двух чисел, и на предыдущих этапах был найден наибольший общий делитель.

На последнем методе стоит остановиться несколько подробнее. Он является не только сравнительно менее громоздким, но и обладает определенным преимуществом в виде уже найденного НОД и более простого алгоритма решения.

Совмещение делителей

Такая методика характерна для тех примеров, в которых требуется единовременное нахождение НОД и НОК двух чисел. Например, необходимо отыскать для чисел 24 и 12 НОК и НОК. Действовать нужно в следующем порядке:

  • Первым делом нужно найти НОД. Для этого надлежит раскладывать оба числа, отыскать общий показатель 12.
  • После этого 24 и 12 перемножаются между собой. Результатом становится 288.
  • Полученное число требуется разделять на НОД от 24 и 12. Полученный ответ 24 говорит о том, что именно оно является наименьшим общим кратным для 24 и 12.

Наибольший общий делитель

Сходный механизм действует и при поиске НОК и НОД исходя из другой пары чисел. В каждом примере необходимо сначала отыскать наибольший делитель, перемножить два числа и получить наименьшее кратное.

Что касается решения с помощью интернет-ресурсов, то на сегодняшний день имеется много онлайн-калькуляторов и программ, которые дают возможность сравнительно быстро найти НОД и НОК и подсказать грамотные пути решения.

Нахождение наибольшего делителя и НОК является не только распространенной, но и сравнительно трудной задачей для учеников средней школы. Ведь если не рассмотреть подробно такую тему, то дальнейшее изучение дробей, которые включают в себя числитель и знаменатель, окажется практически невозможным.

Важно грамотно использовать ресурсы на специальных математических сайтах, где могут подробно и понятно объяснить разложение дробей и нахождение общих делителей. Бояться ошибиться в такой теме не стоит, поскольку при правильном подходе она пройдет достаточно быстро, а вычисление различных по уровню сложности примеров не составит особых сложностей.

Понравилась статья? Поделить с друзьями:
  • Как составить предложение со словом километр
  • Как составить план питания для сушки
  • Как найти назарет в майнкрафте
  • Как найти все документы на жестком диске
  • Как найти номер двигателя киа соренто