Как найти наибольший радиус кривизны траектории

Радиус кривизны траектории

В этой статье приведены две задачи, которые помогут вам научиться определять радиус кривизны траектории при движении тела под углом к горизонту. Каждая из  задач представляет собой целый набор, поэтому неясностей не должно остаться.

Задача 1.

Тело брошено со скоростью 10 м/с под углом Радиус кривизны траектории к горизонту. Найти радиусы кривизны траектории тела в начальный момент его движения, спустя время 0,5 с и в точке наивысшего подъема тела над поверхностью земли.
Как известно, радиус кривизны траектории связан с нормальным ускорением и скоростью формулой:
Радиус кривизны траектории
Откуда Радиус кривизны траектории:
Радиус кривизны траектории
То есть, чтобы найти радиус кривизны траектории в любой точке, необходимо лишь знать скорость и нормальное ускорение, то есть ускорение, перпендикулярное вектору скорости. Рассмотрим все заданные точки и определим в них скорости и нужные составляющие ускорения.

Под_углом_радиус

К задаче 1

Самое простое – это определение этих величин в точке наивысшего подъема. Действительно, вертикальная составляющая скорости здесь равна нулю, поэтому скорость тела в данной точке равна горизонтальной составляющей, а ускорение, нормальное к вектору этой скорости – это ускорение свободного падения, поэтому
Радиус кривизны траектории
Вторая по простоте расчета – точка начала движения. Скорость в ней нам уже известна, осталось с ускорением разобраться. Ускорение свободного падения разложим на две составляющие: Радиус кривизны траектории и Радиус кривизны траектории. Первая – перпендикулярна скорости, она-то нам и нужна. Определяем радиус:
Радиус кривизны траектории
Наконец, точка, в которой тело окажется через пол-секунды.
Наше тело будет лететь по горизонтали с постоянной скоростью, равной Радиус кривизны траектории. По вертикали тело будет двигаться равнозамедленно до середины траектории (наивысшей точки), а затем равноускоренно. Определим, успеет ли тело добраться до апогея:
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
Простой прикидочный расчет показывает, что нужная нам точка находится на первой половине траектории, где тело еще двигается вверх. Тогда его скорость по оси Радиус кривизны траектории:
Радиус кривизны траектории
Определим полную скорость тела в момент времени Радиус кривизны траектории:
Радиус кривизны траектории
Угол наклона вектора скорости к горизонту в этот момент равен:
Радиус кривизны траектории
А можно было сразу и косинус найти:
Радиус кривизны траектории
Тогда искомый радиус кривизны траектории равен:
Радиус кривизны траектории
Ответ: Радиус кривизны траектории м, Радиус кривизны траектории м, Радиус кривизны траектории м.

Задача 2.

Под каким углом Радиус кривизны траектории к горизонту нужно бросить шарик, чтобы а) радиус кривизны траектории в начальный момент времени был в 8 раз больше, чем в вершине; б) центр кривизны вершины траектории находился бы на поверхности земли?
Запишем условие задачи так: а) Радиус кривизны траектории, б)Радиус кривизны траектории.
а)Как и в предыдущей задаче, определяем радиус кривизны траектории в точке броска. Скорость нам известна, а нормальным ускорением будет проекция ускорения свободного падения: Радиус кривизны траектории
Определим теперь радиус кривизны в вершине:
Радиус кривизны траектории
По условию Радиус кривизны траектории:
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
б) Мы уже определили Радиус кривизны траектории, осталась максимальная высота подъема.
Радиус кривизны траектории
Время определяем из условия равенства нулю вертикальной составляющей скорости так же, как мы это делали в предыдущей задаче:
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
Приравниваем Радиус кривизны траектории и Радиус кривизны траектории:
Радиус кривизны траектории
Откуда Радиус кривизны траектории.
Радиус кривизны траектории
Радиус кривизны траектории
Радиус кривизны траектории
Ответ: а) Радиус кривизны траектории, б) Радиус кривизны траектории.

1) найти радиус кривизны траектории в наивысшей точке полета.

.

2)найти радийс кривизны траектории в начальной точке полета.

.

3) найти радиус траектории.

Центр масс твёрдого тела движется так же как двигалась бы материальная точка, масса которой равна массе тела, под действием внешних сил, приложенных к данному телу.

Тело состоит из нескольких элементов. Уравнение i-го элемента массой m записывается так:

Где Fi внешняя сила, а ∑Fik это сумма внутренних сил, действующих на i-ый элемент со стороны всех других элементов.

Сложим все аналогичные уравнения для всех элементов. Т.к. Fik = -Fki третьему закону Ньютона, то их сумма равна нулю.

После сложения получим:

Устойчивое равновесие — это равновесие, при котором, тело, выведенное из положения равновесия, вернётся в то же положение.

Неустойчивое равновесие — если тело, после смещения, не вернётся в это положение.

Скорость точки, движущейся по окружности ,часто называют Линейной скоростью ,чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен s/∆t

Точка A, движущаяся по окружности радиуса R,за время ∆t проходит путь равный дуге A1A2

S=A1A2=∆ϕR .Модуль линейной скорости движения v= s/∆t ==∆ϕR/∆t=ωR

Итак , модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности :

Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.

Модуль ускорения точки, движущейся по окружности, можно выразить через угловую скорость тела и радиус окружности. Так как a=v²/R и v= ωR

Центростремительное ускорение.

Центростремительное ускорение (нормальное ускорение) — ускорение, направленное перпендикулярно мгновенной скорости и изменяющее ее по направление.

За время t точка А совершиит перемещение АА1 = r . Рассмотрю треугольники ОАА1 и А1СВ (см. рисунок 1.82, а).Углы при вершинах этих равнобедренных треугольников равны( так как соответствующие стороны перпендикулярны ). => треугольники подобны. =>

Разделим обе части равенства на t, перейдем к пределу при стремлении интервала времени t 0:

Предел в левой части равенства есть модуль мгновенного ускорения, а предел в правой части равенства представляет собой модуль мгновенной скорости точки. Поэтому равенство примет вид:

Отсюда:

Очевидно, что модуль ускорения при равномерном движении точки по окружности есть постоянная величина, так как U и r не изменяются при движении

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9614 — | 7509 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

1.59. Радиус кривизны траектории в точке бросания: =

1.60. Радиус кривизны траектории в точке максимальной высоты А :

=

Замечание1: радиус кривизны …- сравнить …

Как будут двигаться от­но­­ситель­но друг друга два тела брошенные однов­ре­мен­­но под разными углами к горизонту?

1.61.

… —второе тело относительно первого тела будет двигаться равномерно и прямолинейно, и вектор перемещения, соединяющий тела, в любой момент времени будет параллелен вектору относительной скорости:

= =

Относительность ме­ха­­ни­ческого движения ­

§ 1.6.

1.63. Относительность ско­рос­ти.

= скрость пловца относительно воды(отно­си­тель­ная скорость);

= скорость течения отностительно берега (пере­носная скорость).

= скорость пловца отно­сительно берега (абсолют­ная скорость)

= + (1)

…- формула сложения скоростей

= + (2)

…- формула сложения перемещений.

Замечание: формулы (1) и (2) формулы преобразования Гали­лея.

Пойдем в обратном порядке.

gh=3/4*(2/3*(g*t)^2);
t=(3*h/*g)^0,5, где g – ускорение свободно падения;
t

0,3 c
А Митин Андрей, по-моему, проврался: в выражении t=2/(h*(8*g*h/5)^0.5) проблемы с размерностью.

2) Аппроксимируем движение точки равномерным движением по окружности.
v=w*R; a=w^2*R; m=p/v=p/(w*R);
F=m*a=(p*w^2*R)/(w*R)=p*w;
F=0,1*0,5*pi Н=0,05*pi Н, где pi – число пи.

1) Тут пока выкладки получаются громоздкие – утомительно писать в подобном окне. Может, потом чего-нибудь попроще придумаю. Но ответ такой: максимальны радиус в крайних точках траектории (начальной и конечной моменты движения), а минимальный – в точке, что делит траекторию пополам и в которой движение горизонтально.
Конечные соотношения:
R(t)=v(t)^3/(g*v(0)*cos(A)), где g – ускорение свободного падения.

Преподаватель который помогает студентам и школьникам в учёбе.

Кинематический способ определения радиуса кривизны траектории в теоретической механике

Кинематический способ определения радиуса кривизны траектории:

При решении многих технических задач возникает необходимость знать радиус кривизны р (илиКинематический способ определения радиуса кривизны траектории в теоретической механике

Кинематический способ определения радиуса кривизны траектории в теоретической механике

Таким образом, если закон движения точки задан уравнениями Кинематический способ определения радиуса кривизны траектории в теоретической механике

то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1.    Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:

Кинематический способ определения радиуса кривизны траектории в теоретической механике

2.    Подставив в (б’) выражения Кинематический способ определения радиуса кривизны траектории в теоретической механикенайти Кинематический способ определения радиуса кривизны траектории в теоретической механике

3.    Продифференцировав по t уравнение (б), полученное непосредственно из (б’), найти касательное ускорение Кинематический способ определения радиуса кривизны траектории в теоретической механике а затем а?.

4.    Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения

Кинематический способ определения радиуса кривизны траектории в теоретической механике

5.    Подставив в (г) выражения Кинематический способ определения радиуса кривизны траектории в теоретической механике

6. Подставить в (в) значенияКинематический способ определения радиуса кривизны траектории в теоретической механике

7. Подставив в (а) найденные значения Кинематический способ определения радиуса кривизны траектории в теоретической механикеполучить радиус кривизны р.

Задача:

Движение точки задано уравнениями Кинематический способ определения радиуса кривизны траектории в теоретической механике

(х, у—в см, t — в сек). Определить радиус кривизны траектории в те моменты, когда она пересекает ось Ох.

Решение.

1.    В те моменты, когда траектория пересекает ось Ох, ордината у—0. Поэтому, подставив во второе уравнение движения значение у = 0, получим

Кинематический способ определения радиуса кривизны траектории в теоретической механике
Отсюда [решая уравнение относительно Кинематический способ определения радиуса кривизны траектории в теоретической механикеКинематический способ определения радиуса кривизны траектории в теоретической механикенаходим, что траектория пересекает ось Ох в моменты времениКинематический способ определения радиуса кривизны траектории в теоретической механике

2.    Находим выражения проекций скорости:

Кинематический способ определения радиуса кривизны траектории в теоретической механике

Как видно, проекция скорости на ось Ох — постоянная величина (не зависит от времени).

3.    Определяем значение этих проекций в моменты пересечения траекторией оси Ох:

Кинематический способ определения радиуса кривизны траектории в теоретической механике

4.    Числовое значение скорости точки в моменты пересечения траекторией оси Ох в данном случае одинаковы

Кинематический способ определения радиуса кривизны траектории в теоретической механике
5.    Находим касательное ускорение точки. Для этого получим общее выражение (уравнение) скорости, воспользовавшись зависимостью (б):

Кинематический способ определения радиуса кривизны траектории в теоретической механике
6.    Находим проекции полного ускорения точки:

Кинематический способ определения радиуса кривизны траектории в теоретической механике

Следовательно, в данном случае полное ускорение точки — постоянная величина. Причем

Кинематический способ определения радиуса кривизны траектории в теоретической механике

7.    Определяем нормальное ускорение точки. Как при Кинематический способ определения радиуса кривизны траектории в теоретической механике

так и при Кинематический способ определения радиуса кривизны траектории в теоретической механике

Кинематический способ определения радиуса кривизны траектории в теоретической механике

8.    Зная, что в моменты пересечения траекторией оси Кинематический способ определения радиуса кривизны траектории в теоретической механике5 см:сек и Кинематический способ определения радиуса кривизны траектории в теоретической механике находим радиусы кривизны траектории в этих точках:

Кинематический способ определения радиуса кривизны траектории в теоретической механике
Решение этой задачи рекомендуется самостоятельно иллюстрировать чертежом, изобразив на нем траекторию точки, векторы скорости Кинематический способ определения радиуса кривизны траектории в теоретической механикеи ускорения а в местах пересечения траектории с осью Ох (эти векторы легко построить при помощи найденных проекций), а также радиусы Кинематический способ определения радиуса кривизны траектории в теоретической механике

  • Равномерное вращательное движение
  • Равнопеременное вращательное движение
  • Неравномерное вращательное движение
  • Плоскопараллельное движение тела
  • Равномерное криволинейное движение точки
  • Равнопеременное движение точки
  • Неравномерное движение точки по любой траектории
  • Определение траектории, скорости и ускорения точки

Радиус кривизны траектории точки окружности

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО КИНЕМАТИКЕ

7.1. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.2. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.3. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки:

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.4. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.5. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки по осям :

,

,

Ускорения точки по осям:

,

,

.

Модуль касательного ускорения точки:

, а модуль нормального ускорения .

Нормальное ускорение и радиус кривизны траектории связаны соотношением .

7.6. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки по осям :

,

,

Ускорения точки по осям:

,

,

.

Модуль касательного ускорения точки:

,

а модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением .

7.7. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.8. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.9. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , , .

Решение: Скорости точки :

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.10. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.11. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.12. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.13. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.14. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Найти: , , .

Решение: Скорости точки по осям :

,

,

,

Ускорения точки по осям:

,

,

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.15. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.16. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.17. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.18. Дан закон движения точки по окружности радиусом r . Определить:

1) скорость и ускорение точки при и ;

2) моменты остановки точки;

3) путь, пройденный точкой за 10секунд.

Дано: , , , .

Найти: , , , , , , П.

Решение: 1. На траектории отметим точку О – начало отсчета координаты s и укажем положительное направление отсчета этой координаты. Отметим положение точки в заданные моменты времени: При :

;

При :

.

Проведем из этих точек естественные оси координат.

Определим проекцию скорости на касательную:

.

При : ;

При : .

Векторы и совпадают со своими проекциями. Определим проекции ускорения на естественнее оси координат :

; , Полное ускорение точки .

При :

,

и

.

При :

,

и

.

2. Чтобы найти время остановки надо найти время, когда скорость точки равна нулю:

, получим и .

3. Поскольку за 10 секунд точка сделала две остановки, пройденный ею путь за 10с можно найти как сумму пути, пройденного от начала до первой остановки, от первой до второй остановки и от второй до момента времени :

,

; ; ; .

Путь пройденный точкой за 10 секунд:

.

7.19. Определить скорость, касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , (1)

( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) для t = t 1 положение точки на траектории;

3) .

Решение: 1) Уравнение движения (1) можно рассматривать как параметрические уравнения траектории точки. Чтобы получить уравнения траектории в координатной форме, исключаем время t из уравнений (1).

Возводя обе части равенств в квадрат, а затем складывая равенства, получаем , т.е. траекторией точки М является окружность радиуса 2, показанная на рис.1.

2) Определяем положение точки М в заданный момент времени t =1 с :

Вектор скорости точки

. (2)

(3)

Здесь – орты осей и ; – проекции скорости и ускорения точки на оси координат.

Найдем их, дифференцируя по времени уравнения движения (1):

По найденным проекциям определяем модуль скорости:

, (4)

,

,

и модуль ускорения точки:

, (5)

Модуль касательного ускорения точки

, (6)

; (7)

выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направление и совпадают; знак «–» – что движение замедленное.

Вычисляем модуль касательного ускорения для заданного момента времени

Модуль нормального ускорения точки

. (8)

Если радиус кривизны траектории в рассматриваемой точке неизвестен, то нормальное ускорение можно определить по формуле

. (9)

При движении точки в плоскости формула (9) принимает вид

.

Модуль нормального ускорения можно определить и следующим образом:

. (10)

Воспользуемся в нашем случае формулой (10)

Радиус кривизны траектории в рассматриваемой точке определим из выражения:

. (11)

Тогда

На рис. 1 показано положение точки М в заданный момент времени. Вектор строим по составляющим и , причем этот вектор должен по направлению совпадать с касательной к траектории. Вектор строим по составляющим и и затем раскладываем на составляющие и . Совпадение величин и , найденных из чертежа, с их значениями, полученными аналитически, служит контролем правильности решения.

7.20. Определить скорость, касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) .

Указания. Задача — относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются скорость, касательное и нормальное ускорения точки при естественном способе задания ее движения. В задаче все искомые величины нужно определить только для момента времени t 1 = 1 с .

1. Для определения уравнения траектории точки исключим из заданных уравнений движения время t :

Отсюда окончательно находим уравнение траектории точки (параболы, см. рисунок):

2. Скорость точки найдем по ее проекциям на координатные оси:

V = и при t 1 = 1 с,

3. Аналогично найдем ускорение точки:

а =

4. Касательное ускорение найдем, дифференцируя по времени равенство:

. (3)

ч исловые значения всех величин, входящих в правую часть выражения (3), определены и даются равенствами (1) и (2).

Подставив в (3) эти числа, найдем сразу, что при t 1 = 1 с

=7,49 см/с 2 .

5. Нормальное ускорение точки:

a n = .

Подставляя сюда найденные числовые значения a 1 и a 1 τ , получим, что при t 1= 1 с

6. Радиус кривизны траектории ρ = V 2 / a n .

Подставляя сюда числовые значения V 1 и a 1 n , найдем, что при t 1 = 1 с

Ответ: V 1= 8 ,54 см/с, а 1 =8 см/с 2 , =7,49 см/с 2 , a 1 n =2,81 см/с 2 , ρ1 =25,95 см.

7.21. Точка движется по дуге окружности радиуса R =1 м по закону ( s – в метрах, t – в секундах), где s = AM (см. рисунок).

Найти: скорость и ускорение точки в момент времени t 1 =1 с .

Определяем скорость точки:

V = ds / dt = .

При t 1 =1 с получим = -1,26 м/ с .

Ускорение находим по его касательной и нормальной составляющим:

,

п ри t 1 = 1 с получим , учтя, что R = 1 м

,

тогда ускорение точки при t 1 =1 с будет:

=1,59 м/с 2 .

Изобразим на рисунке векторы , , учитывая знак V 1 и считая положительным направление от А к М.

7.22. По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t 1(с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.

Дано: , , t 1=1 сек ( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) .

1) Найдём траекторию движения:

Для этого исключим параметр t .

Возведём во вторую степень, получившиеся уравнения, а затем сложим, таким образом, исключится t . Получим:

Это окружность с центром в точке с координатами (-1;0) и радиусом

2) Найдём положение точки на траектории в момент времени t = t 1:

3) Определим скорость токи:

Для нахождения вектора полной скорости необходимо сложить 2 вектора:

Найдём модуль полной скорости:

для момента времени t 1:

4) Определим ускорение точки:

для момента времени t 1:

для момента времени t 1:

Найдём полное ускорение:

Найдём модуль полного ускорения:

для момента времени t 1:

Определим касательное ускорение :

или,

для момента времени t :

Определим нормальное ускорение an :

для момента времени t 1:

5) Из полученных результатов можно найти радиус кривизны траектории , в момент времени t 1:

Действительно, этот радиус совпадает с радиусом окружности (траектории).

7.23. Точка М движется согласно уравнений ; ; ( x , y — в метрах, t — в секундах). Определить уравнение траектории точки, для момента времени t =1с, найти положение точки, а также скорость, полное, касательное, нормальное ускорения точки и радиус кривизны траектории.

1) Найдем уравнение траектории точки. Для определения уравнения траектории исключим из уравнений движения время . Из первого уравнения движения точки найдем

Из второго уравнения движения найдем

Возведя полученные значения ( правую и левую стороны уравнения ) в квадрат и складывая их находим:

.

Следовательно, траекторией точки является эллипс с центром в точке с координатами (3;1).

Вид траектории показан на рисунке.

2) Найдем положение точки в момент времени t =1с

; .

Положение точки М 1 показано на рисунке.

3) Найдем скорость точки М

,

Где , или в момент времени t1=1c

, или в момент времени t1=1c

4) Найдём ускорение точки.

,

где , или ,

, или

5) Найдем касательное ускорение точки M,

6) Найдём нормальное ускорение точки M ,

7) Найдем радиус кривизны траектории точки М,

,

Направление векторов показано на рисунке.

Ответ: =7.85м/ c ; = 4.93 м/ c 2 ; =0; = 4.93 м/ c 2 ; м

7.24. Пусть точка М движется в плоскости xOy в соответствии с уравнениями . Для момента времени = 0,5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Решение: Заданный закон движения точки в координатной форме можно рассматривать как параметрические уравнения траектории точки. Исключим время t из уравнений движения и получим уравнение траектории точки в виде:

.

Таким образом, траекторией точки М является эллипс со смещенным центром, изображенный на рис. Отметим на траектории положение точки М 1 ( x 1, y 1) в момент времени t 1 = 0,5 c

;

.

Вектор скорости точки представим в виде:

,

где – орты координатных осей О x и О y ; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от соответствующих координат по времени

В момент времени t 1 = 0,5 c

Вектор скорости точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор должен быть направлен по касательной к траектории точки в сторону движения. Модуль скорости точки определим по уже найденным проекциям

Вектор ускорения точки представим в виде:

,

где – орты координатных осей О x и О y ; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от проекций вектора скорости или 2-м производным от соответствующих координат по времени:

В момент времени t 1 = 0,5 c

Вектор ускорения точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор ускорения точки в общем случае должен отклоняться от вектора скорости в сторону вогнутости траектории, а при движении по эллипсовидной траектории – проходить через центр эллипса. Модуль ускорения точки определим по уже найденным проекциям

Вектор полного ускорения точки можно также представить в виде геометрической суммы его проекций на оси естественной системы отсчета

,

где и – единичные орты касательной и главной нормали; и – соответственно проекции вектора ускорения на касательную и главную нормаль. Касательную М 1 t направляем по касательной к траектории в сторону движения точки движения, а главную нормаль М1 n – перпендикулярно касательной в сторону вогнутости траектории. При вычислении касательного ускорения удобно воспользоваться формулой, устанавливающей связь между координатным и естественным способами задания движения точки

.

В момент времени t 1 = 0,5 c

.

Значение касательного ускорения имеет отрицательный знак, следовательно, в данный момент времени движение точки замедленное и вектор касательного ускорения направлен в противоположную сторону направлению вектора скорости точки .

Нормальное ускорение вычислим по формуле , если известен радиус кривизны траектории. Например, если точка движется по окружности радиусом R, то в любой точке траектории . Если же траекторией движения точки является прямая, то , следовательно, . В данном случае радиус кривизны траектории заранее не известен, поэтому нормальное ускорение определяем по формуле:

.

В момент времени t 1 = 0,5 c

.

Построим векторы и в соответствии с уже выбранным масштабом, а затем сложим их геометрически. В результате получим тот же вектор полного ускорения точки , который ранее уже был получен геометрической суммой составляющих и . Этот факт служит контролем правильности решения.

Радиус кривизны траектории в рассматриваемой точке определим по формуле

.

В момент времени t 1 = 0,5 c

.

Ответ: =8,82 см; =2,59 см; =4,44 см/ c ; =2,22 см/ c ; =4,96 см/с; =6,97 см/с 2 ; =3,49 см/с 2 ; =7,79 см/с 2 ; =4,67 см/с 2 ; =6,23 см/с 2 ; =3,95 см (радиус кривизны траектории в точке ).

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Радиус кривизны плоской кривой

Любая линия является кривой, даже прямая. Поэтому к любой линии применимы такие характеристики как кривизна или радиус кривизны. Как правило кривизна обозначается латинской литерой k, а радиус кривизны греческой литерой ρ.

Между собой эти характеристики кривой связаны следующим образом:

k = 1/ρ (542.1)

Т.е. чем больше радиус кривой, тем меньше ее кривизна.

А теперь рассмотрим несколько частных случаев кривых.

Радиус кривизны окружности

Окружность — это плоская кривая с постоянным радиусом кривизны. Т.е. радиус окружности это и есть радиус кривизны окружности:

Как определить радиус окружности, мы рассмотрим ниже.

Кривизна дуги

Любая дуга — это часть окружности. Соответственно радиус дуги равен радиусу окружности:

Рисунок 542.1. Дуга — часть окружности

На рисунке 542.1 мы видим дугу АВ, показанную оранжевым цветом, являющуюся частью окружности с радиусом R. Кроме того, мы видим, что угол α, образованный радиусами в точках А и В, равен углу между касательными (показаны фиолетовым цветом) к окружности в этих точках.

Эти закономерности позволяют определить радиус дуги и найти центр окружности даже тогда, когда изначально мы окружность не видим, а только имеем дугу.

Понятие кривизны дуги формулируется так:

Кривизна дуги — это отношение угла между касательными, проведенными в начале и конце дуги, к длине дуги

Т.е. зная длину дуги m и угол α между касательными, мы можем определить кривизну дуги:

А так как длина дуги зависит от угла между радиусами или между касательными в концах дуги:

то, подставив значение длины дуги в уравнение (542.3), получим:

Примечание: При измерении угла между касательными не в радианах, а в градусах уравнение длины дуги имеет другой вид:

но сути дела это не меняет. Такая запись по-прежнему означает, что мы рассматриваем часть длины окружности. Так при α = 360° дуга становится окружностью

Более того, сама идея радианов на этой формуле и основана, так прямой угол 90° = П/2, развернутый 180° = П и т.д.

И еще одно интересное свойство дуги: Если соединить точки А и В прямой линией, то угол между этой линией и касательными будет равен α/2, а сама прямая линия — это и есть расстояние между точками А и В. Если дуга расположена в плоскости соответствующим образом, например так, как показано на рисунке 542.2:

Рисунок 542.2. Дуга из точки начала координат.

то расстояние между точками — это проекция l дуги на ось х. А максимальное расстояние между дугой и осью х — это стрела дуги h.

Радиус кривизны прямой линии

Любая прямая линия, даже бесконечно длинная, может рассматриваться как бесконечно малая часть окружности, т.е. как дуга. Соответственно в каких единицах измерять радиус такой окружности даже трудно представить.

Поэтому обычно прямой линией называют кривую с бесконечно большим радиусом:

kп.л = 1/∞ = 0 (542.6)

Про до сих пор неразрешенный парадокс, возникающий при подобных подходах к прямой линии и к окружности, я уже упоминал в статье «Основы геометрии. Определения основных элементов, пятый элемент». Здесь лишь добавлю, что через прямую линию можно провести бесконечное множество плоскостей и в любой из этих плоскостей радиус кривизны прямой линии будет равен бесконечности. При этом через окружность можно провести две взаимно перпендикулярные плоскости, в одной из которых окружность будет окружностью, а в другой — прямой линией конечной длины. Поэтому

все линии, которые в одной из плоскостей имеют бесконечно большой радиус кривизны, считаются плоскими

Ну и на закуску еще несколько парадоксов, на этот раз связанных с определениями кривизны и радиуса:

1. Из уравнения (542.1) можно сделать вывод, что:

kp = 1 (542.7)

Соответственно для прямой линии:

0·∞ = 1 (542.7.2)

Т.е. если бесконечно много раз взять ноль, то на единичку мы наскребем. Впрочем дальше будет еще веселее.

2. Если прямая — это дуга с бесконечно большим радиусом, соответственно касательные, проведенные в концах такой дуги, совпадают с прямой, а угол, образованный касательными, равен нулю.

Это означает, что радиусы проведенные в концах дуги — прямой линии, являются параллельными прямыми и не могут пересекаться. А между тем по определению это радиусы, которые обязательно должны сходиться в некоторой точке — центре окружности.

Получается, что параллельные прямые пересекаться не должны, но где-то в бесконечности все-таки пересекаются.

Разрешить этот парадокс пытались многие математики, однако в пределах евклидовой геометрии при принятом толковании определений данный парадокс не разрешим.

Радиус кривизны точки

Точка — это самый простой и самый сложный элемент геометрии. Одни считают, что точка не имеет размеров, а значит и определить кривизну или радиус кривизны точки не возможно. Другие, в частности Евклид, считают, что точка не имеет частей, а каковы при этом размеры точки — не совсем понятно. Я же считаю, что точка — это начальный, далее не делимый элемент геометрии, размеры которого пренебрежимо малы по сравнению с остальными рассматриваемыми элементами. В этом случае для точки будут справедливыми следующие уравнения кривизны и радиуса кривизны:

kт. = 1/0 = ∞ (542.9)

И хотя нас с первых лет обучения в школе учат, что делить на 0 нельзя и даже встроенный в операционную систему калькулятор пишет, что «деление на ноль невозможно», тем не менее делить на ноль можно, а результатом деления всегда будет бесконечность.

Как и в случае с прямой мы имеем парадоксальный результат, выражаемый формулой (542.5.2). Тем не менее точку также можно отнести к плоской кривой, имеющей постоянный радиус кривизны.

Примечание: На мой взгляд большинство из описанных выше парадоксов возникают из-за неправильного толкования понятия «бесконечность». Бесконечность как некая абсолютная величина не имеет пределов, а значит и никакому измерению не поддается. Кроме того бесконечность — это даже не постоянная, а переменная величина. Например луч — это прямая линия с началом в некоторой точке. Длина луча может быть бесконечно большой. При этом прямая линия тоже может быть бесконечно длинной при этом не иметь ни начала ни конца. Получается, что с одной стороны бесконечно длинный луч вроде бы в 2 раза короче, чем бесконечно длинная прямая. А с другой стороны длины их бесконечны и поэтому равны.

Возможным выходом из этой ситуации является принятие понятия «бесконечность», как относительного. Например, кривизна прямой линии является пренебрежимо малой величиной по отношению к радиусу кривизны. Или радиус кривизны прямой линии несопоставимо больше кривизны. Подобные толкования допускают и наличие кривизны прямой и некое конечное значение радиуса кривизны прямой и многое другое. Я бы назвал такой относительный подход к рассмотрению проблемы реалистичным, а подходы, использующие абсолютные понятия — идеализированными. Впрочем прямого отношения к теме данной статьи это не имеет. Продолжим рассмотрение плоских кривых.

И окружность и прямая линия являются плоскими кривыми с постоянным радиусом кривизны. При этом радиус кривизны прямой линии всегда известен, так как равен бесконечности, а для окружности всегда можно определить радиус, воспользовавшись теоремой Пифагора. Так в частном случае, если центр окружности совпадает с началом координат рассматриваемой плоскости (u = 0; v = 0 — координаты центра окружности), то:

Рисунок 541.4. Радиус окружности, как гипотенуза прямоугольного треугольника.

R 2 = x 2 + y 2 (541.1.2)

А в общем случае, когда координаты центра окружности не совпадают с началом координат:

Рисунок 542.3. Окружность, центр которой не совпадает с началом координат.

R 2 = (x — u) 2 + (y — v) 2 (542.10)

Но в жизни достаточно часто приходится сталкиваться с кривыми, радиус кривизны которых — не постоянная величина. Более того, этот радиус может изменяться в двух плоскостях измерения. Тем не менее так далеко углубляться в геометрию и алгебру мы не будем и далее рассмотрим, как можно определить радиус плоской кривой в некоторой точке.

Плоские кривые с изменяющимся радиусом кривизны

Примеров плоских кривых с изменяющимся радиусом кривизны очень много, это и гиперболы, и параболы, и синусоиды и т.п. Определение радиуса кривизны таких кривых основано на следующих теоретических предпосылках:

1. Любую окружность можно рассматривать как некоторое множество дуг.

2. Если количество дуг, составляющих окружность, стремится к бесконечности, то соответственно длина таких дуг стремится к нулю (m → 0).

3. Если мы обозначим длину такой очень короткой дуги как приращение функции длины окружности (m = Δl), то уравнение кривизны (542.3) примет следующий вид:

(542.3.1)

4. Тогда любую плоскую кривую с изменяющимся радиусом можно рассматривать как стремящееся к бесконечности множество дуг с постоянным радиусом. Другими словами в пределах любой кривой, описываемой параметрическими уравнениями, всегда можно выделить дугу, пусть даже и очень малой длины, стремящейся к точке и определить для нее кривизну и радиус кривизны в рассматриваемой точке.

Это означает, что самый точный способ определения радиуса кривизны в таком случае — это использование дифференциальных исчислений. В общем случае для этого нужно два раза продифференцировать уравнение радиуса окружности (542.10) по аргументу функции х, а затем извлечь квадратный корень из полученного результата. В итоге (полный вывод уравнения здесь не привожу из-за повышенной сложности записи, а для особо заинтересованных есть справочники и другие сайты) мы получим следующую формулу для определения радиуса кривизны:

(542.11)

Соответственно кривизна плоской кривой в рассматриваемой точке будет равна:

(542.12)

В частном случае, когда тангенс угла между касательными — первая производная от функции — является относительно малой величиной, например, tg2° = 0.035 соответственно (tg2°) 2 = 0.0012, то влиянием куба суммы первой производной и единицы на кривизну можно пренебречь (значение знаменателя дроби сводится к единице) и тогда:

k = y» = d 2 y/dx 2 (542.12.2)

Т.е. формально в таких случаях кривизной считается не отношение угла наклона между касательными к длине дуги, а некоторая величина, примерно соответствующая высоте h на рисунке 542.2.

Эта особенность второй производной очень активно используется в частности для упрощения определения прогиба элементов строительных конструкций.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:

  • Расчет конструкций . Основы прикладной геометрии

Оценка пользователей:
10.0 (голосов: 1)

Переходов на сайт:
6701

Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Кинематика материальной точки

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Скорость и ускорение точки M

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.

Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.

Тогда вектор скорости точки можно представить в следующем виде:
.

Ускорение материальной точки

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Скорость, касательное и нормальное ускорение точки M

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.

Тангенциальное (касательное) ускорение

Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .

Подставив , имеем:
.
Здесь мы учли, что .

Найдем производную по времени модуля скорости . Применяем правила дифференцирования:

;
.

Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.

Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.

Радиус кривизны траектории

Теперь исследуем вектор .

Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).

Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.

При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.

Абсолютное значение производной:
.
Здесь мы учли, что .

Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.

Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.

Нормальное ускорение

Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020

источники:

http://doctorlom.com/item542.html

http://1cov-edu.ru/mehanika/kinematika/tochki/

Понравилась статья? Поделить с друзьями:
  • Как найти новых людей в инстаграм
  • Как найти ветвь гиперболы
  • Как найти сотрудника через кадровое агентство
  • Эссе как найти хорошую работу
  • Как исправить ассиметрию зубов