Как найти наим знач функции

Определение

Наибольшим или наименьшим значением функции в определенной области называют наибольшее или наименьшее значение, которое достигает эта функция на указанной области.

Чтобы найти наибольшее или наименьшее значение функции в данной области, нужно решить задачу на экстремум, то есть найти производную заданной функции, приравнять её к нулю и найти точки, в которых производная функции обращается в нуль. Потом из этих точек нужно выбрать только те, которые входят в нашу заданную область. Затем нужно вычислить значение функций в этих точках. Кроме этого, нужно найти значение функции в граничных точках заданной области (если это отрезок) и сравнить их со значениями в точках экстремума. Потом можно сделать вывод о наименьшем или наибольшем значении функции в данной области.

Пример 1

Определить наименьшее и наибольшее значения функции y=x3−6×2+9y=x^3-6x^2+9 на отрезке [−1;2][-1;2].

Решение

Сначала вычисляем производную исходной функции:

y′=3×2−12xy’=3x^2-12x

Затем приравниваем ее к нулевому значению и решаем уравнение:

3×2−12x=03x^2-12x=0

x(3x−12)=0x(3x-12)=0

x1=0x_1=0

x2=4x_2=4

Затем — непосредственный поиск максимального и минимального значений функции на заданном отрезке. Важно отметить, что точка x=4x=4 не входит в заданный отрезок, поэтому значение функции в этой точке вычислять не требуется.

Находим значение функции в точке x1x_1:

f(0)=9f(0)=9

Кроме этого, нужно найти значение функции в граничных точках нашего отрезка, то есть в точках x=−1x=-1 и x=2x=2:

f(−1)=−1−6+9=2f(-1)=-1-6+9=2

f(2)=8−24+9=−7f(2)=8-24+9=-7

Получаем, что на заданном отрезке, наименьшее значение функции, которое равно −7-7, достигается в точке x=2x=2 , а наибольшее значение, равное 99, достигается в точке x=0x=0.

Пример 2

Найти наибольшее и наименьшее значение функции-параболы y=3x2y=3x^2 на всей области её определения.

Решение

Функция y=3x2y=3x^2 определена на всем интервале от минус бесконечности к плюс бесконечности. Найдем производную этой функции:

y′=6xy’=6x

Приравниваем производную к нулю:

6x=06x=0

x=0x=0

Точка x=0x=0 — единственный экстремум этой функции. В этой точке функция равна f(0)=0f(0)=0. Остается решить максимум это или минимум.

Так как график нашей функции это парабола, ветви которой направлены вверх (поскольку 3>03>0), то точка x=0x=0 — точка минимума этой функции. Следовательно, функция y=3x2y=3x^2 достигает своего минимального значения в точке x=0x=0 равного 00. Максимального значения эта функция не имеет. Оно только приближается к сколь угодно большому числу когда значение аргумента стремится к плюс или минус бесконечности.

Тест по теме “Наибольшие и наименьшие значения функции”

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Бесплатные доработки

Гарантированные бесплатные доработки

Быстрое выполнение

Быстрое выполнение от 2 часов

Проверка работы

Проверка работы на плагиат

Наибольшее и наименьшее значения функции можно найти по графику функции. Иногда это значения удаётся найти, используя свойства функции. В общем случае наибольшее и наименьшее значения функции находятся с помощью производной. Для этого сформулируем некоторые теоремы.

1. Если функция непрерывна на отрезке, то она достигает на нём и своего наибольшего, и своего наименьшего значений (Эта теорема доказывается в курсе высшей математики).

2. Наибольшего и наименьшего значений непрерывная функция может достигать как на концах отрезка, так и внутри него.

3. Если наибольшее (или наименьшее) значение достигается внутри отрезка, то только в стационарной или критической точке.

Как найти наименьшее и наибольшее значения функции на отрезке?

Пусть функция (f(x)) напрерывна на отрезке ([a; b]), тогда:

1) находим производную функции f′(x);

2) приравниваем производную к нулю, определяем точки экстремума функции, отбираем из них те, которые принадлежат отрезку ([a; b]);

3) находим значения функции y=f(x) в отобранных точках, и в конечных точках отрезка (a) и (b); выбираем среди полученных значений наименьшее (yнаим) и наибольшее (yнаиб).

А что делать, если нужно найти наибольшее или наименьшее значения функции, непрерывной на интервале? Один из вариантов — графический метод, который подразумевает построение графика функции и  определение наименьшего или наибольшего значения функции по нему. Однако не всегда этот способ удобен, целесообразнее использовать следующую теорему.

Теорема. Пусть функция y=f(x) непрерывна на промежутке (X) и имеет внутри него единственную стационарную или критическую точку x0. Тогда:

а) если x=x0 — точка максимума, то yнаиб=f(xo);

б) если  x=x0 — точка минимума, то yнаим=f(xo).

На рисунках продемонстрированы геометрические иллюстрации данной теоремы.

                       min_.png                         max.png

Наибольшее и наименьшее значение функции

Как найти?

Постановка задачи

Найти наибольшее и наименьшее значение функции $ f(x) $ на отрезке $ [a,b] $

План решения

Наибольшее и наименьшее значение непрерывной функции $ f(x) $ на промежутке $ [a,b] $ достигаются в критических точках, то есть в точках в которых производная функции равна нулю $ f'(x) = 0 $, бесконечности $ f'(x) = pm infty $, не существует, либо на концах отрезка $ [a,b] $

  1. Проверяем на непрерывность функцию $ f(x) $ на заданном отрезке
  2. Если функция непрерывная, то находим производную $ f'(x) $ и приравниваем её к нулю
  3. Решая уравнение $ f'(x) = 0 $ получаем корни, являющиеся критическими точками
  4. Выбираем критические точки, принадлежащие отрезку $ [a,b] $
  5. Вычисляем значения функции $ f(x) $ в оставшихся критических точках, а так же на концах промежутка $ [a,b] $. Затем выбираем из них наибольшее $ M $ и наименьшее $ m $

Примеры решений

Пример 1
Найти наибольшее и наименьшее значение функции $ y = 2x^3 — 3x^2 — 4 $ на отрезке $ [0;2] $
Решение

Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке $ [0;2] $.

Находим производную: $$ y’ = (2x^3 — 3x^2 — 4)’ = 6x^2 — 6x $$

Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:

$$ 6x^2 — 6x = 0 $$ $$ 6x(x — 1) = 0 $$ $$ x_1 = 0, x_2 = 1 $$

Проверяем принадлежность полученных точек отрезку $ [0;2] $:

$$ x_1 in [0;2], x_2 in [0;2] $$

Так как обе точки принадлежат отрезку, то вычисляем в них значение функции $ f(x) $, так же значение этой функции на концах интервала $ [0;2] $:

$$ y(x_1) = y(a) = f(0) = 2 cdot 0^3 — 3 cdot 0^2 — 4 = -4 $$

$$ y(x_2) = y(1) = 2 cdot 1^3 — 3 cdot 1^2 — 4 = -5 $$

$$ y(b) = y(2) = 2 cdot 2^3 — 3 cdot 2^2 — 4 = 0 $$

Среди полученных значений наибольшее $ M = 0 $, наименьшее $ m = -5 $

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M = 0, m = -5 $$
Пример 2
Найти наименьшее и наибольшее значение функции $ y = frac{4x^2}{3+x^2} $ на $ [-1;1] $
Решение

Функция непрерывна на $ x in [-1;1] $ так как знаменатель не обращается в ноль ни при каком $ x $.

Выполняем нахождение производной:

$$ y’ = (frac{4x^2}{3+x^2})’ = frac{(4x^2)'(3+x^2)-(4x^2)(3+x^2)’}{(3+x^2)^2} = $$

$$ = frac{8x(3+x^2)-(4x^2)(2x)}{(3+x^2)^2} = frac{24x+8x^3-8x^3}{3+x^2)^2} = frac{24x}{(3+x^2)^2} $$

Приравниваем полученную производную к нулю и вычисляем критические точки:

$$ frac{24x}{(3+x^2)^2} = 0 $$ $$ 24x = 0, 3+x^2 neq 0 $$ $$ x = 0 $$

Получена единственная критическая точка $ x = 0 $, которая принадлежит $ [-1; 1] $.

Вычисляем значение функции $ f(x) $ в критической точке и на концах интервала $ [-1;1] $:

$$ y(-1) = frac{4cdot (-1)^2}{3+(-1)^2} = frac{4}{4}=1 $$

$$ y(0) = frac{0}{3} = 0 $$

$$ y(1) = frac{4cdot 1^2}{3+1^2} = frac{4}{4} = 1 $$

Из полученных значений видно, что максимальное значение $ M = 1 $ и минимальное значение $ m = 0 $.

Ответ
$$ m = 0, M = 1 $$

Нередко приходится решать задачи, в которых необходимо найти наибольшее или наименьшее значения из совокупности тех значений, которые на отрезке принимает функция.

Наибольшее и наименьшее значения функции 1Обратимся, например, к графику функции f(х) = 1 + 2х2 – х4 на отрезке [-1; 2]. Для работы с функцией нам необходимо построить ее график.

Из построенного графика видно, что наибольшее значение на этом отрезке, равное 2, функция принимает в точках: х = -1 и х = 1; наименьшее значение, равное -7, функция принимает при х = 2.

Точка х = 0 является точкой минимума функции f(х) = 1 + 2х2 – х4. Это значит, что существует окрестность точки х = 0, например, интервал (-1/2; 1/2) – такая, что в этой окрестности наименьшее значение функция принимает при х = 0. Однако на большем промежутке, например, на отрезке [-1; 2], наименьшее значение функция принимает на конце отрезка, а не в точке минимума.

Таким образом, чтобы найти наименьшее значения функции на определенном отрезке, необходимо сравнить ее значения на концах отрезка и в точках минимума.

В целом предположим, что функция f(х) непрерывная на отрезке [a; b] и что функция имеет производную в каждой внутренней точке этого отрезка.

Чтобы на отрезке [a; b] найти наибольшее и наименьшее значения функции, необходимо:

1) найти значения функции в концах отрезка, т.е. числа f(а) и f(b);

2) найти значения функции в стационарных точках, которые принадлежат интервалу (a; b);

3) выбрать из найденных значений наибольшее и наименьшее.

Применим полученные знания на практике и рассмотрим задачу.

Задача.

Найти наибольшее и наименьшее значения функции f(х) = х3 + х/3 на отрезке [1/2; 2].

Решение.

1) f(1/2) = 6  1/8, f(2) = 9  ½.

2) f´(х) = 3х2 – 3/х2 = (3х4 – 3)/х2, 3х4 – 3 = 0; х1 = 1, х2 = -1.

Интервалу (1/2; 2) принадлежит одна стационарная точка х1 = 1, f(1) = 4.

3) Из чисел 6  1/8, 9 ½ и 4 наибольшее 9 ½, наименьшее 4.

Ответ. Наибольшее значение функции равно 9 ½, наименьшее значение функции равно 4.

Часто при решении задач необходимо найти наибольшее и наименьшее значение функции не на отрезке, а на интервале.

В практических задачах обычно функция f(х) имеет на заданном интервале лишь одну стационарную точку: или точку максимума, или точку минимума. В этих случаях функция f(х) принимает наибольшее значение на данном интервале в точке максимума, а в точке минимума – наименьшее значение на данном интервале. Обратимся к задаче.

Задача.

Число 36 записать в виде произведения двух положительных чисел, сумма которых наименьшая.

Решение.

1) Пусть первый множитель равен х, тогда второй множитель равен 36/х.

2) Сумма этих чисел равна х + 36/х.

3) По условия задачи х – положительное число. Итак, задача сводится к нахождению значения х – такого, при котором функция f(х) = х + 36/х принимает наименьшее значение на интервале х > 0.

4) Найдем производную: f´(х) = 1 – 36/х2 =((х + 6)(х – 6)) / х2.

5) Стационарные точки х1 = 6, х2 = -6. На интервале х > 0 есть только одна стационарная точка х = 6. При переходе через точку х = 6 производная меняет знак «–» на знак «+», и поэтому х = 6 – точка минимума. Следовательно, наименьшее значение на интервале х > 0 функция f(х) = х + 36/х принимает в точке х = 6 (это значение f(6) = 12).

Ответ. 36 = 6 ∙ 6.Наибольшее и наименьшее значения функции 2

При решении некоторых задач, где необходимо  найти наибольшее и наименьшее значения функции, полезно использовать следующее утверждение:

если значения функции f(х) на некотором промежутке неотрицательны, то эта функция и функция (f(х))n, где n – натуральное число, принимают наибольшее (наименьшее) значение в одной и той же точке.

© devblog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Понятие наибольшего и наименьшего значений функции.

Понятие набольшего и наименьшего значений тесно связано с понятием критической точки функции.

Определение 1

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ — внутренняя точка области определения;

2) $f’left(x_0right)=0$ или не существует.

Введем теперь определения наибольшего и наименьшего значения функции.

Определение 2

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наибольшего значения, если существует точка $x_0in X$, такая, что для всех $xin X$ выполняется неравенство

[fleft(xright)le f(x_0)]

Определение 3

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наименьшего значения, если существует точка $x_0in X$, такая, что для всех $xin X$ выполняется неравенство

[fleft(xright)ge f(x_0)]

Теорема Вейерштрасса о непрерывной на отрезке функции

Введем для начала понятие непрерывной на отрезке функции:

Определение 4

Функция $fleft(xright)$ называется непрерывной на отрезке $[a,b]$, если она непрерывна в каждой точке интервала $(a,b)$, а также непрерывна справа в точке $x=a$ и слева в точке $x=b$.

Сформулируем теорему о непрерывной на отрезке функции.

Теорема Вейерштрасса

Непрерывная на отрезке $[a,b]$ функция $fleft(xright)$ достигает на этом отрезке своего наибольшего и наименьшего значения, то есть существуют точки $alpha ,beta in [a,b]$ такие, что для всех $xin [a,b]$ выполняется неравенство $f(alpha )le f(x)le f(beta )$.

«Наибольшее и наименьшее значения функции» 👇

Геометрическая интерпретация теоремы изображена на рисунке 1.

Здесь функция $f(x)$ достигает своего наименьшего значения в точке $x=alpha $ достигает своего наибольшего значения в точке $x=beta $.

Схема нахождения наибольшего и наименьшего значений функции $f(x)$ на отрезке $[a,b]$

1) Найти производную $f'(x)$;

2) Найти точки, в которых производная $f’left(xright)=0$;

3) Найти точки, в которых производная $f'(x)$ не существует;

4) Выбрать из полученных в пунктах 2 и 3 точек те, которые принадлежат отрезку $[a,b]$;

5) Вычислить значение функции в точках, полученных в пункте 4, а также на концах отрезка $[a,b]$;

6) Выбрать из полученных значений наибольшее и наименьшее значение.

Задачи на нахождение наибольшего и наименьшего значений функции на отрезке

Пример 1

Найти наибольшее и наименьшее значение функции на отрезке [0,4]: $f(x)={2x}^3-15x^2+36x+1$

Решение.

Решение будем проводить по выше данной схеме.

1) $f’left(xright)=6x^2-30x+36$;

2) $f’left(xright)=0$;

[6x^2-30x+36=0] [x^2-5x+6=0] [x=3, x=2]

3) $f'(x)$ существует во всех точках области определения;

4) $2in left[0,4right], 3in [0,4]$;

5) Значения:

[fleft(0right)=1] [fleft(2right)=16-60+72+1=29] [fleft(3right)=54-135+108+1=28] [fleft(4right)=128-240+144+1=33]

6) Наибольшее из найденных значений — $33$, наименьшее из найденных значений — $1$. Таким образом, получим:

Ответ: $max=33, min=1$.

Пример 2

Найти наибольшее и наименьшее значение функции на отрезке [0,6]: $fleft(xright)=x^3-3x^2-45x+225$

Решение.

Решение будем проводить по выше данной схеме.

1) $f’left(xright)=3x^2-6x-45$;

2) $f’left(xright)=0$;

[3x^2-6x-45=0] [x^2-2x-15=0] [x=-3, x=5]

3) $f'(x)$ существует во всех точках области определения;

4) $-3notin left[0,6right], 5in [0,6]$;

5) Значения:

[fleft(0right)=225] [fleft(5right)=125-75-225+225=50] [fleft(6right)=216-108-270+225=63]

6) Наибольшее из найденных значений — $225$, наименьшее из найденных значений — $50$. Таким образом, получим:

Ответ: $max=225, min=50$.

Пример 3

Найти наибольшее и наименьшее значение функции на отрезке [-2,2]: $fleft(xright)=frac{x^2-6x+9}{x-1}$

Решение.

Решение будем проводить по выше данной схеме.

1) $f’left(xright)=frac{left(2x-6right)left(x-1right)-(x^2-6x+9)}{{(x-1)}^2}=frac{x^2-2x-3}{{(x-1)}^2}$;

2) $f’left(xright)=0$;

[frac{x^2-2x-3}{{(x-1)}^2}=0] [x^2-2x-3=0] [x=-1, x=3]

3) $f'(x)$ не существует в точке $x=1$

4) $3notin left[-2,2right], -1in left[-2,2right], 1in left[-2,2right]$, однако 1 не принадлежит области определения;

5) Значения:

[fleft(-2right)=frac{4+12+9}{-3}=-8frac{1}{3}] [fleft(-1right)=frac{1+6+9}{-2}=-8] [fleft(2right)=frac{4-12+9}{1}=1]

6) Наибольшее из найденных значений — $1$, наименьшее из найденных значений — $-8frac{1}{3}$. Таким образом, получим:
end{enumerate}

Ответ: $max=1, min==-8frac{1}{3}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти общую папку на компе
  • Как составить график подготовки производства
  • Как найти где сохранен скрин
  • Как составить обязательство по материнского капитала
  • Графит как его найти