Как найти наименьшее возможное значение функции

Наибольшее и наименьшее значение функции

Как найти?

Постановка задачи

Найти наибольшее и наименьшее значение функции $ f(x) $ на отрезке $ [a,b] $

План решения

Наибольшее и наименьшее значение непрерывной функции $ f(x) $ на промежутке $ [a,b] $ достигаются в критических точках, то есть в точках в которых производная функции равна нулю $ f'(x) = 0 $, бесконечности $ f'(x) = pm infty $, не существует, либо на концах отрезка $ [a,b] $

  1. Проверяем на непрерывность функцию $ f(x) $ на заданном отрезке
  2. Если функция непрерывная, то находим производную $ f'(x) $ и приравниваем её к нулю
  3. Решая уравнение $ f'(x) = 0 $ получаем корни, являющиеся критическими точками
  4. Выбираем критические точки, принадлежащие отрезку $ [a,b] $
  5. Вычисляем значения функции $ f(x) $ в оставшихся критических точках, а так же на концах промежутка $ [a,b] $. Затем выбираем из них наибольшее $ M $ и наименьшее $ m $

Примеры решений

Пример 1
Найти наибольшее и наименьшее значение функции $ y = 2x^3 — 3x^2 — 4 $ на отрезке $ [0;2] $
Решение

Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке $ [0;2] $.

Находим производную: $$ y’ = (2x^3 — 3x^2 — 4)’ = 6x^2 — 6x $$

Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:

$$ 6x^2 — 6x = 0 $$ $$ 6x(x — 1) = 0 $$ $$ x_1 = 0, x_2 = 1 $$

Проверяем принадлежность полученных точек отрезку $ [0;2] $:

$$ x_1 in [0;2], x_2 in [0;2] $$

Так как обе точки принадлежат отрезку, то вычисляем в них значение функции $ f(x) $, так же значение этой функции на концах интервала $ [0;2] $:

$$ y(x_1) = y(a) = f(0) = 2 cdot 0^3 — 3 cdot 0^2 — 4 = -4 $$

$$ y(x_2) = y(1) = 2 cdot 1^3 — 3 cdot 1^2 — 4 = -5 $$

$$ y(b) = y(2) = 2 cdot 2^3 — 3 cdot 2^2 — 4 = 0 $$

Среди полученных значений наибольшее $ M = 0 $, наименьшее $ m = -5 $

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M = 0, m = -5 $$
Пример 2
Найти наименьшее и наибольшее значение функции $ y = frac{4x^2}{3+x^2} $ на $ [-1;1] $
Решение

Функция непрерывна на $ x in [-1;1] $ так как знаменатель не обращается в ноль ни при каком $ x $.

Выполняем нахождение производной:

$$ y’ = (frac{4x^2}{3+x^2})’ = frac{(4x^2)'(3+x^2)-(4x^2)(3+x^2)’}{(3+x^2)^2} = $$

$$ = frac{8x(3+x^2)-(4x^2)(2x)}{(3+x^2)^2} = frac{24x+8x^3-8x^3}{3+x^2)^2} = frac{24x}{(3+x^2)^2} $$

Приравниваем полученную производную к нулю и вычисляем критические точки:

$$ frac{24x}{(3+x^2)^2} = 0 $$ $$ 24x = 0, 3+x^2 neq 0 $$ $$ x = 0 $$

Получена единственная критическая точка $ x = 0 $, которая принадлежит $ [-1; 1] $.

Вычисляем значение функции $ f(x) $ в критической точке и на концах интервала $ [-1;1] $:

$$ y(-1) = frac{4cdot (-1)^2}{3+(-1)^2} = frac{4}{4}=1 $$

$$ y(0) = frac{0}{3} = 0 $$

$$ y(1) = frac{4cdot 1^2}{3+1^2} = frac{4}{4} = 1 $$

Из полученных значений видно, что максимальное значение $ M = 1 $ и минимальное значение $ m = 0 $.

Ответ
$$ m = 0, M = 1 $$
Определение

Наибольшим или наименьшим значением функции в определенной области называют наибольшее или наименьшее значение, которое достигает эта функция на указанной области.

Чтобы найти наибольшее или наименьшее значение функции в данной области, нужно решить задачу на экстремум, то есть найти производную заданной функции, приравнять её к нулю и найти точки, в которых производная функции обращается в нуль. Потом из этих точек нужно выбрать только те, которые входят в нашу заданную область. Затем нужно вычислить значение функций в этих точках. Кроме этого, нужно найти значение функции в граничных точках заданной области (если это отрезок) и сравнить их со значениями в точках экстремума. Потом можно сделать вывод о наименьшем или наибольшем значении функции в данной области.

Пример 1

Определить наименьшее и наибольшее значения функции y=x3−6×2+9y=x^3-6x^2+9 на отрезке [−1;2][-1;2].

Решение

Сначала вычисляем производную исходной функции:

y′=3×2−12xy’=3x^2-12x

Затем приравниваем ее к нулевому значению и решаем уравнение:

3×2−12x=03x^2-12x=0

x(3x−12)=0x(3x-12)=0

x1=0x_1=0

x2=4x_2=4

Затем — непосредственный поиск максимального и минимального значений функции на заданном отрезке. Важно отметить, что точка x=4x=4 не входит в заданный отрезок, поэтому значение функции в этой точке вычислять не требуется.

Находим значение функции в точке x1x_1:

f(0)=9f(0)=9

Кроме этого, нужно найти значение функции в граничных точках нашего отрезка, то есть в точках x=−1x=-1 и x=2x=2:

f(−1)=−1−6+9=2f(-1)=-1-6+9=2

f(2)=8−24+9=−7f(2)=8-24+9=-7

Получаем, что на заданном отрезке, наименьшее значение функции, которое равно −7-7, достигается в точке x=2x=2 , а наибольшее значение, равное 99, достигается в точке x=0x=0.

Пример 2

Найти наибольшее и наименьшее значение функции-параболы y=3x2y=3x^2 на всей области её определения.

Решение

Функция y=3x2y=3x^2 определена на всем интервале от минус бесконечности к плюс бесконечности. Найдем производную этой функции:

y′=6xy’=6x

Приравниваем производную к нулю:

6x=06x=0

x=0x=0

Точка x=0x=0 — единственный экстремум этой функции. В этой точке функция равна f(0)=0f(0)=0. Остается решить максимум это или минимум.

Так как график нашей функции это парабола, ветви которой направлены вверх (поскольку 3>03>0), то точка x=0x=0 — точка минимума этой функции. Следовательно, функция y=3x2y=3x^2 достигает своего минимального значения в точке x=0x=0 равного 00. Максимального значения эта функция не имеет. Оно только приближается к сколь угодно большому числу когда значение аргумента стремится к плюс или минус бесконечности.

Тест по теме “Наибольшие и наименьшие значения функции”

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Бесплатные доработки

Гарантированные бесплатные доработки

Быстрое выполнение

Быстрое выполнение от 2 часов

Проверка работы

Проверка работы на плагиат

Математики и Data Science-специалисты должны хорошо разбираться в функциях. Предлагаем попрактиковаться в решении задач на обнаружение максимальных и минимальных значений у заданных функций.

Максимум

Задумываясь над тем, как найти максимальное значение функции, нужно четко понимать, с чем предстоит иметь дело. Для этого нужно запомнить такое определение:

Наибольшее значение функции y = f(x) на промежутке x – это max y = f(x0). Оно будет при любом значении x€ X, x≠x0 делает справедливым неравенство: f(x)≤f(x0).

Максимальное значение (максимум) – это точка на функции, в которой значение функции больше, чем в соседних «отметках».

Минимум

Наименьшее значение функции находить так же легко, как и наибольшее. Но сначала нужно понимать, что это такое.

Значение функции на отрезке будет считаться минимумом, если оно меньше, чем в соседних «отметках». Здесь действует такое определение:

Наименьшее значение функции y=f(x) на промежутке x – это miny=f(x0), которое при любом значении x€ X, x≠x0 делает справедливым неравенство f(x)≥f(x0).

Соответствующие определения являются достаточными и очевидными. Если говорить простыми словами, то максимум функции – это ее самое большое значение на заданном промежутке (участке) при абсциссе x0, а минимум – самое маленькое.

Стационарные точки

При решении вопроса о том, как найти наибольшее или наименьшее значение функции, стоит обратить внимание на так называемые «стационарные точки». Это – значения аргумента функции, при которых ее производная будет равняться нулю.

Стационарная точка – это «отметка», в которой расположен экстремум дифференцируемой функции. А именно – локальный минимум или максимум. В одной из таких «отметок» записанное выражение будет достигать своих предельных параметров.

Здесь рекомендуется запомнить следующее:

  1. Экстремум функции – это минимумы и максимумы.
  2. Если определить производную в точках экстремумов, она будет равно 0.
  3. Когда говорят «экстремумы», подразумевается значение функции. Если же речь идет об «отметках» экстремумов, рассматривать стоит x, в которых достигаются соответствующие пределы.

 Этого достаточно для того, чтобы разобраться, как найти наибольшее на заданном отрезке у выражения. Для реализации поставленной задачи вовсе не обязательно составлять график. Поэтому сначала воспользуемся записями формул и вычислений.

План действий

Пример – дана функция f(x) на отрезке [a, b]. Наибольшее и наименьшее значение такой непрерывной функции достигаются в определенных местах. Это – критические точки. Там, где производная записанного выражения будет равно нулю.

Для того, чтобы найти наибольшие значения уравнения, потребуется придерживаться следующего алгоритма:

  1. Узнайте, какая перед вами функция. Для этого нужно проверить ее на непрерывность. В расчет обязательно берется заданный отрезок.
  2. Если запись непрерывная – ищем производную.
  3. После того, как найдем производную, приравниваем ее к нулю. Это поможет найти точки экстремумов. В результате получаются корни.
  4. Образовавшиеся корни – это критические точки. Нужно выбрать те «параметры», что относятся к промежутку [a, b].
  5. Вычислить значения функции на концах отрезка [a, b].
  6. Определить значения имеющегося выражения в критических «отметках».

Теперь понятно, как найти наибольшие функции на заданном отрезке. После произведенных подсчетов остается выбрать из результатов M (максимум) и m (минимум).

На отрезке

Разобравшись в тем, как найти наибольшие «параметры» выражения «на бумаге», стоит рассмотреть соответствующий процесс на графиках. Определять максимумы/минимумы в данном случае будет проще.

Первый график указывает на выражение, у которого точка минимума и максимума находятся в стационарных точках на промежутке [-6;6]. Соответствующие «пределы» обозначены жирным.

Второй график указывает на изменение отрезка. Теперь он будет [1;6]. Минимальное значение останется прежним. А вот максимальное – изменится. Оно образуется в правой части в точке с абсциссой. Поиск минимального «параметра» окажется в критической точке.

Задумываясь, как найти наименьшие или «самые крупные» параметры выражения на графике, можно также рассмотреть третий рисунок. Здесь функция принадлежала промежутку [-3;2]. Чтобы найти наибольшее и наименьшее в таком случае, предстоит учитывать абсциссы. В них достигаются соответствующие пределы.

Открытый интервал

Если промежуток задан конкретным числом, определить экстремумы будет не так сложно. Иначе происходит, если интервал открыт.

Здесь:

  1. Функция будет принимать максимум/минимум по значению в стационарных точках на открытом интервале от -6 до 6. Ответ – на 4 рисунке.
  2. Если взять отрезок [1;6), минимум будет достигнут в стационарной точке. А вот максимум – неизвестен. Связано это с тем, что 6 не принадлежит к заданному интервалу. Если бы «шестерка» относилась к соответствующему промежутку, ответ на вопрос относительно определения максимума оказался понятным. Максимальный параметр был бы в точке с абсциссой 6.
  3. На рисунке 6, задумываясь, как найти наименьшие «параметры», нужно обратить внимание на заданный интервал. Он равен (-3;2]. Минимум будет достигнут в правой границе. А вот максимум – не определен.

Найти значения на графиках обычно проще, чем «в чистых формулах». Соответствующие задания можно отыскать тут.

Бесконечность

Иногда значения функций нужно найти на бесконечном промежутке. Графически возможны такие ситуации:

На 7 рисунке функция достигает максимума в стационарной точке с абсциссой 1. Минимум окажется на границе интервала справа. На минус бесконечности значения приближаются к y=3 асимптотически.

Если взять интервал от 2-х до «плюс бесконечности», заданная функция не будет иметь ни максимумов, ни минимумов. Значения здесь стремятся к бесконечности. Связано это с тем, что x=2 является вертикальной асимптотой. Если абсцисса стремится к плюс бесконечности, значения будут асимптотически подходить к y=3. Соответствующий пример показан на рисунке 8.

Чтобы не приходилось долго разбираться с тем, как найти наименьшее у заданной функции, не путаться с тем, какие знаки производной использовать, а также легко строить графики, можно воспользоваться специальными онлайн калькуляторами. А еще – закончить тематические дистанционные онлайн курсы.

Экстремумы функции

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word. Если же задана функция f(x,y), следовательно, необходимо найти экстремум функции двух переменных. Также можно найти интервалы возрастания и убывания функции.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word
  • Также решают

Необходимое условие экстремума функции одной переменной

Уравнение f’0(x*) = 0 — это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:

f’0(x*) = 0

0(x*) > 0

то точка x* является точкой локального (глобального) минимума функции.

Если в точке x* выполняется условие:

f’0(x*) = 0

0(x*) < 0

то точка x* — локальный (глобальный) максимум.

Пример №1. Найти наибольшее и наименьшее значения функции:
Наибольшее и наименьшее значения функции. Пример на отрезке [1; 3].

Решение.



Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).

Вычисляем значения функции на концах отрезка и в критической точке.

f(1)=9, f(2)=5/2, f(3)=3 8/81

Ответ: fmin=5/2 при x=2; fmax=9 при x=1

Пример №2. С помощью производных высших порядков найти экстремум функции y=x-2sin(x).

Решение.

Находим производную функции: y’=1-2cos(x). Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=±π/3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем Наибольшее и наименьшее значения функции. Пример, значит x=π/3+2πk, k∈Z – точки минимума функции; Наибольшее и наименьшее значения функции. Пример, значит x=-π/3+2πk, k∈Z – точки максимума функции.

Пример №3. Исследовать на экстремум фцнкцию в окрестностях точки x=0.

Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0, то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).

Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4. Разбить число 49 на два слагаемых, произведение которых будет наибольшим.

Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое.

Произведение будет максимальным: x·(49-x) → max

или

49x — x2

Наибольший объем цилиндра

Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса R.

Решение:



Объем цилиндра равен: V = πr2H

где H = 2h,

Подставим эти значения в целевую функцию.



V → max

Найдем экстремум функции. Поскольку функция объема V(h) зависит только от одной переменной, то найдем производную с помощью сервиса Производная онлайн и приравняем ее к нулю.

dV/dh = 2πR2 — 6πh2

dV/dh = 0

2πR2 — 6πh2 = 0 или R2 = 3h2

Откуда





При высоте и радиусе основания размеры цилиндра будут наибольшими.

Алгебра и начала математического анализа, 11 класс

Урок №17. Наибольшее и наименьшее значения функции.

Перечень вопросов, рассматриваемых в теме

1) Нахождение наибольшего и наименьшего значения функции,

2)Определение алгоритма нахождения наибольшего и наименьшего значений функции на отрезке,

3) Рассмотреть прикладные задачи на нахождение наибольшего и наименьшего значений

Глоссарий по теме

Алгоритм нахождения наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b]:

  1. Найти область определения функции D(f).
  2. Найти производную f‘ (x).
  3. Найти стационарные и критические точки функции, принадлежащие интервалу (a; b).
  4. Найти f(a), f(b) и значения функции в стационарных точках, принадлежащих интервалу (а; b).
  5. Среди полученных значений выбрать наибольшее и наименьшее.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Нахождение наибольшего и наименьшего значений функции на отрезке.

  1. Если функция непрерывна на отрезке, то она достигает на нем своего наибольшего и своего наименьшего значения.
  2. Наибольшего и наименьшего значений непрерывная функция может достигать как на концах отрезка, так и внутри него.
  3. Если наибольшее (наименьшее) значение функции достигается внутри отрезка, то только в стационарной или критической точке.

Алгоритм нахождения наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b]:

  1. Найти производную f‘ (x) стационарные и критические точки функции, принадлежащие интервалу (a; b).
  2. Найти f(a), f(b) и значения функции в стационарных точках, принадлежащих интервалу (а; b)и среди полученных значений выбрать наибольшее и наименьшее

Примеры и разбор решения заданий тренировочного модуля

№1.Найти наибольшее и наименьшее значения функции f (x) = 2x3 – 9x2 + 12x – 2 на отрезке [0; 3]

Решение. Действуем в соответствии с алгоритмом.

1) D(f) = (-∞; +∞).

2) f (x) = 6x2 – 18x + 12

3) Стационарные точки: х = 1; х = 2.

4) f(0) = -2

f(3) = 7

f(1) = 3

f(2) = 2

5) fнаим.=f(0) = -2

fнаиб.=f(3) = 7.

Ответ: fнаим= -2

fнаиб.= 7.

№2.Найдите два положительных числа, сумма которых равна 16, а произведение наибольшее.

Решение.

Пусть первое число равно х,

Тогда второе число —

Следовательно,

Произведение этих чисел равно х(16 – х).

Составим функцию:

f(x) = x(16 – x)

x = 8 – единственная стационарная точка на интервале (0; 16), она является точкой максимума.

Следовательно, в этой точке функция F(x) = x(16 – x) принимает наибольшее значение.

Следовательно, два положительных числа, сумма которых равна 16, а произведение наибольшее, это 8 и 8.

Ответ: 8 и 8

Понравилась статья? Поделить с друзьями:
  • Почему шипит колонка как исправить
  • Как найти реактив для вещества
  • Как составить воскресную службу
  • Как найти сходство со знаменитостями
  • Как найти историю страниц в браузере