Как найти наименьшее значение степенной функции

28 апреля 2012

По определению, показательная функция — это выражение вида y = ax, где a > 0. Но в задаче B15 встречаются только функции вида y = ex. В крайнем случае, y = ekx + b. Причина в том, что производные этих функций считаются очень легко:

(ex)’ = ex;
(ekx + b)’ = k · ekx + b.

Как видите, если в показателе стоит просто переменная x, ничего не меняется. А если там будет линейное выражение вида kx + b, то спереди добавляется множитель k. Эта формула — частный случай производной сложной функции.

Задачи на вычисление наибольшего/наименьшего значения

Все задачи B15 с показательной функцией решаются по стандартной схеме — см. «Общая схема решения задач B15». Но если требуется найти наименьше/наибольшее значение функции, есть одна фишка:

Показатель должен быть равен нулю. Потому что e0 = 1 — нормальное число, его можно записать в ответ. В отличие от чисел e1, e2, которые вообще не представимы в виде десятичной дроби.

Данное замечание реально сокращает объем вычислений. Аналогичное правило есть у логарифмов — см. «Как считать логарифмы еще быстрее». И это вполне логично, поскольку логарифмы и показательные функции — родственные объекты.

А теперь разберем конкретные задачи.

Задача. Найдите наименьшее значение функции на отрезке [−1; 5]:

y = (x2 − 5x + 5)ex − 3

Сначала находим производную и раскладываем ее на множители:

y’ = ((x2 − 5x + 5)ex − 3)’ = … = (x2 − 3x)ex − 3 = x(x − 3)ex − 3

Затем приравниваем полученное выражение к нулю и находим корни:

x(x − 3)ex − 3 = 0;
x1 = 0; x2 = 3.

Оба корня принадлежат отрезку [−1; 5]. Итого получаем четыре точки: два корня и два конца отрезка. Осталось вычислить значение функции в этих точках:

y(−1) = ((−1)2 − 5 · (−1) + 5)e−1 − 3 = … = 11e−4;
y(0) = (02 − 5 · 0 + 5)e0 − 3 = … = 5e−3;
y(3) = (32 − 5 · 3 + 5)e3 − 3 = … = −1;
y(5) = (52 − 5 · 5 + 5)e5 − 3 = … = 5e2.

Заметим, что из этих четырех чисел в бланк можно записать только y = −1. Кроме того, это единственное отрицательное число. Следовательно, это число и будет наименьшим.

Задача. Найдите наибольшее значение функции на отрезке [0; 6]:

y = (2x − 7)e8 − 2 · x

Как и в прошлый раз, вычисляем производную функции и раскладываем ее на множители:

y’ = (y = (2x − 7)e8 − 2 · x)’ = … = (16 − 4x)e8 − 2 · x = 4(4 − x)e8 − 2 · x

Приравниваем производную к нулю и находим корни:

y’ = 0;
4(4 − x)e8 − 2 · x = 0;
x = 4.

Корень x = 4 принадлежит отрезку [0; 6]. Мы ищем наибольшее значение, поэтому подставляем этот корень, а также концы отрезка в исходную функцию. Имеем:

y(0) = (2 · 0 − 7)e8 − 2 · 0 = … = −7e8;
y(4) = (2 · 4 − 7)e8 − 2 · 4 = … = 1;
y(6) = (2 · 6 − 7)e8 − 2 · 6 = … = 5e−4.

Итак, ответом может быть только число y = 1.

Задачи на вычисление точек максимума/минимума

В задачах на точки максимума/минимума нельзя применять приведенное выше правило, поэтому считаем все по стандартной схеме.

Задача. Найдите точку минимума функции:

y = (x − 12)ex − 11

В первую очередь считаем производную:

y’ = (y = (x − 12)ex − 11)’ =
= (x − 12)’ · ex − 11 + (x − 12) · (ex − 11)’ =
= 1 · ex − 11 + (x − 12)ex − 11 =
= (1 + x − 12)ex − 11 =
= (x − 11)ex − 11

Приравниваем производную к нулю:

y’ = 0;
(x − 11)ex − 11 = 0;
x − 11 = 0;
x = 11.

Множитель ex − 11 никогда не равен нулю, поэтому мы избавились от него. Осталось начертить координатную ось и расставить знаки производной:

Производная показательной функции

Итак, в точке x = 11 знак производной меняется с минуса на плюс. Считаем всегда в направлении оси — слева направо. Значит, x = 11 — это точка минимума.

Задача. Найдите точку максимума функции:

y = (2x2 − 34x + 34)e6 − x

Снова считаем производную:

y’ = ((2x2 − 34x + 34)e6 − x)’ =
= (2x2 − 34x + 34)’ · e6 − x + (2x2 − 34x + 34) · (e6 − x)’ =
= (4x − 34)e6 − x + (2x2 − 34x + 34) · (−1) · e6 − x

Напомню, что производная сложной показательной функции считается по формуле:

(ekx + b)’ = k · ekx + b;
(e6 − x)’ = (−1) · e6 − x.

Производная получилась довольно навороченная. Разложим ее на множители, для этого вынесем e6 − x за скобку. Имеем:

(4x − 34)e6 − x + (2x2 − 34x + 34) · (−1) · e6 − x =
= e6 − x · (4x − 34 − 2x2 + 34x − 34) =
= e6 − x · (−2x2 + 38x − 68)

Приравниваем полученное выражение к нулю:

e6 − x · (−2x2 + 38x − 68) = 0;
−2x2 + 38x − 68 = 0;
x2 − 19x + 34 = 0;

x1 = 17; x2 = 2.

Множитель e6 − x снова можно безболезненно убрать, поскольку он никогда не равен нулю. Осталось отметить полученные точки и знаки производной на координатной прямой:

Производная: 2 корня

Обратите внимание: на рисунке отмечены знаки производной функции: y = e6 − x · (−2x2 + 38x − 68) — а вовсе не многочлена x2 − 19x + 34, как думают некоторые ученики. В скобках стоит квадратичная функция, ее график — парабола ветвями вниз, поскольку a = −2 < 0.

В точке x = 17 знак производной меняется с плюса на минус. Значит, это точка максимума, что и требовалось найти.

Смотрите также:

  1. Задача B15: частный случай при работе с квадратичной функцией
  2. Специфика работы с логарифмами в задаче B15
  3. Тест к уроку «Что такое числовая дробь» (легкий)
  4. Типичные задачи B12 с функциями
  5. Однородные тригонометрические уравнения: общая схема решения
  6. ЕГЭ 2022, задание 6. Касательная и уравнение с параметром

Содержание:

Рассмотрим выражение Показательная функция, её график и свойства с примерами решения

Определение:

Показательной функцией называется функция вида Показательная функция, её график и свойства с примерами решения где а — постоянная, Показательная функция, её график и свойства с примерами решения

Область определения показательной функции — это естественная область определения выражения Показательная функция, её график и свойства с примерами решения т. е. множество всех действительных чисел.

Графики некоторых показательных функций при а > 1 изображены на рисунке 23, при 0< а< 1 — на рисунке 24. Как получаются изображения таких графиков?

Показательная функция, её график и свойства с примерами решения

Например, чтобы изобразить график функции Показательная функция, её график и свойства с примерами решения придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:

Показательная функция, её график и свойства с примерами решения

Вычислив приближенные значения у с точностью до 0,1, получим следующую таблицу:

Показательная функция, её график и свойства с примерами решения

Отметим точки Показательная функция, её график и свойства с примерами решения с указанными координатами на координатной плоскости Оху (рис. 25) и соединим эти точки плавной непрерывной линией.

Показательная функция, её график и свойства с примерами решения

Полученную кривую можно рассматривать как изображение графика функции Показательная функция, её график и свойства с примерами решения(рис. 26).

График функции Показательная функция, её график и свойства с примерами решения расположен над осью Ох и пересекает ось Оу в точке Показательная функция, её график и свойства с примерами решения Заметим еще, что когда значения аргумента х уменьшаются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х увеличиваются, то график «круто поднимается» вверх.

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Аналогично для любой функции Показательная функция, её график и свойства с примерами решения(рис. 27).

Показательная функция, её график и свойства с примерами решения

Изобразим теперь график функции Показательная функция, её график и свойства с примерами решения Для этого придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:Показательная функция, её график и свойства с примерами решения

Вычислив приближенные значения у с точностью до 0,1. получим следующую таблицу:

Показательная функция, её график и свойства с примерами решения

Отметим точки Показательная функция, её график и свойства с примерами решения с указанными координатами на координатной плоскости Оху (рис. 28) и соединим эти точки плавной непрерывной линией.

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Полученную кривую можно рассматривать как изображение графика функции Показательная функция, её график и свойства с примерами решения (рис. 29).

График функции Показательная функция, её график и свойства с примерами решения расположен над осью Ох и пересекает ось Оу в точке Показательная функция, её график и свойства с примерами решения Заметим еще, что когда значения аргумента х увеличиваются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х уменьшаются, то график «круто поднимается» вверх.

Аналогично для любой функции Показательная функция, её график и свойства с примерами решения (рис. 30).

Теорема (о свойствах показательной функцииПоказательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения)

  1. Областью определения показательной функции является множество R всех действительных чисел.
  2. Множеством (областью) значений показательной функции является интервал Показательная функция, её график и свойства с примерами решения
  3. Показательная функция наименьшего и наибольшего значений не имеет.
  4. График показательной функции пересекается с осью ординат в точке (0; 1) и не пересекается с осью абсцисс.
  5. Показательная функция не имеет нулей.
  6. Показательная функция принимает положительные значения на всей области определения; все точки ее графика лежат выше оси Ох в I и II координатных углах.
  7. Показательная функция не является ни четной, ни нечетной.
  8. При а > 1 показательная функция возрастает на всей области определения. При Показательная функция, её график и свойства с примерами решения показательная функция убывает на всей области определения.
  9. Показательная функция не является периодической.

Свойства, указанные в этой теореме, мы примем без доказательства.

Изображение графика показательной функции позволяет наглядно представить эти свойства.

Множество (область) значений показательной функции — это проекция ее графика на ось Оу, а на рисунках 27 и 30 видно, что эта проекция есть интервал Показательная функция, её график и свойства с примерами решения на оси Оу. Это значит, что для любой точки Показательная функция, её график и свойства с примерами решения принадлежащей этому интервалу, найдется такая точка Показательная функция, её график и свойства с примерами решения на оси Ох, что Показательная функция, её график и свойства с примерами решения (свойство 2).

Множество (область) значений показательной функции — это интервал Показательная функция, её график и свойства с примерами решенияа в этом интервале нет ни наименьшего числа, ни наибольшего (свойство 3).

График показательной функции проходит через точку Показательная функция, её график и свойства с примерами решения и лежит в верхней полуплоскости (свойства 4, 5, 6).

График показательной функции не симметричен относительно оси ординат, поэтому она не является четной; график показательной функции не симметричен относительно начала координат, поэтому она не является нечетной (свойство 7).

На рисунке 27 видно, что при а > 1 показательная функция возрастает, а на рисунке 30 видно, что при 0 < а < 1 показательная функция убывает (свойство 8).

На графике показательной функции нет точек с одинаковыми ординатами, поэтому она не является периодической (свойство 9).

К графику показательной функции Показательная функция, её график и свойства с примерами решения можно провести невертикальную касательную в любой его точке, в том числе и в точке Показательная функция, её график и свойства с примерами решения (напомним, что это означает наличие производной функции в этой точке).

Если Показательная функция, её график и свойства с примерами решения то угол Показательная функция, её график и свойства с примерами решения который образует такая касательная с осью Ох, острый. Например, если а = 2, то Показательная функция, её график и свойства с примерами решения(рис. 31, а), а если а = 3, то Показательная функция, её график и свойства с примерами решения (рис. 31, б).

Существует основание 2 < а < 3 такой единственной показательной функции, что касательная, проведенная к ее графику в точке (0; 1), образует с осью Ох угол Показательная функция, её график и свойства с примерами решения(рис. 31, в).

Показательная функция, её график и свойства с примерами решения

Основанием показательной функции с таким свойством является число, которое было открыто еще в XVII в. Джоном Непером (его портрет — на обложке) и названо неперовым числом; оно приближенно равно 2,7182818284. С XVIII в. неперово число стали обозначать буквой е в честь великого Леонарда Эйлера. В 1766 г. Ламбертом (с помощью приема Эйлера) было доказано, что число е, как и число Показательная функция, её график и свойства с примерами решения иррационально. Числа Показательная функция, её график и свойства с примерами решения очень важны для математики, они входят в большое число формул. В российских гимназиях для запоминания приближенного значения числа е использовали такое двустишие:

«Помнить е — закон простой: Два, семь, дважды Лев Толстой», Поскольку 1828 — год рождения великого русского писателя Л. Н. Толстого.

Пример:

Указать наибольшее и наименьшее значения функции (если они существуют):

Показательная функция, её график и свойства с примерами решения

Решение:

а) Поскольку 3 — положительное число больше 1, то большему значению показателя Показательная функция, её график и свойства с примерами решения соответствует и большее значение степени Показательная функция, её график и свойства с примерами решения Но выражение Показательная функция, её график и свойства с примерами решения при х = 0 имеет наименьшее значение, а наибольшего значения не имеет. Значит, при любых значениях х верно неравенство

Показательная функция, её график и свойства с примерами решения

б) Поскольку 0,7 — положительное число меньше 1, то большему значению показателя sin х соответствует меньшее значение степени Показательная функция, её график и свойства с примерами решения Значения выражения sin х при любых значениях х удовлетворяют неравенству

Показательная функция, её график и свойства с примерами решения

Таким образом, при любых значениях х верно неравенство

Показательная функция, её график и свойства с примерами решения

Значит, верно и неравенство

Показательная функция, её график и свойства с примерами решения

Ответ: а) 1 — наименьшее значение функции Показательная функция, её график и свойства с примерами решениянаибольшего значения нет;

б) Показательная функция, её график и свойства с примерами решения наименьшее значение, а Показательная функция, её график и свойства с примерами решения наибольшее значение функции Показательная функция, её график и свойства с примерами решения

Понятие показательной функции

Показательной функцией называется функция, заданная формулой

Показательная функция, её график и свойства с примерами решения

где Показательная функция, её график и свойства с примерами решения — некоторое действительное число, Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения.

Теорема 1.

Областью определения показательной функции является множество Показательная функция, её график и свойства с примерами решения всех действительных чисел, а областью значений — множество Показательная функция, её график и свойства с примерами решения всех положительных действительных чисел.

Доказательство:

Пусть Показательная функция, её график и свойства с примерами решения. Тогда, по свойству (10) степени с действительным показателем из параграфа 6, выражение-степень Показательная функция, её график и свойства с примерами решения имеет значение при любом значении переменной Показательная функция, её график и свойства с примерами решения, а это означает, что областью определения показательной функции является множество Показательная функция, её график и свойства с примерами решения всех действительных чисел.

Поскольку Показательная функция, её график и свойства с примерами решения, то, по свойству (11) степени с действительным показателем из параграфа 6, значение выражения Показательная функция, её график и свойства с примерами решения положительно при всех значениях переменной Показательная функция, её график и свойства с примерами решения. В курсе математического анализа доказывается, что при Показательная функция, её график и свойства с примерами решения уравнение Показательная функция, её график и свойства с примерами решения имеет единственный корень. Это означает, что каждое положительное число Показательная функция, её график и свойства с примерами решения можно получить как значение выражения Показательная функция, её график и свойства с примерами решения, иными словами, областью значений показательной функции является множество Показательная функция, её график и свойства с примерами решения всех положительных действительных чисел.

Теорема 2.

Показательная функция Показательная функция, её график и свойства с примерами решения на множестве всех действительных чисел при Показательная функция, её график и свойства с примерами решения является возрастающей, а при Показательная функция, её график и свойства с примерами решения — убывающей.

Доказательство:

Сравним значения выражений Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения:

Показательная функция, её график и свойства с примерами решения

Пусть Показательная функция, её график и свойства с примерами решения, т. е. Показательная функция, её график и свойства с примерами решения. Если Показательная функция, её график и свойства с примерами решения, то, по свойству (12) степени с действительным показателем из параграфа 9, из условия Показательная функция, её график и свойства с примерами решения следует, что Показательная функция, её график и свойства с примерами решения, а потому Показательная функция, её график и свойства с примерами решения и, значит, Показательная функция, её график и свойства с примерами решения, так как Показательная функция, её график и свойства с примерами решения по свойству (11) из параграфа 6. Получили, что Показательная функция, её график и свойства с примерами решения, или Показательная функция, её график и свойства с примерами решения. Это неравенство вместе с определением возрастающей функции позволяет утверждать, что функция Показательная функция, её график и свойства с примерами решения является возрастающей при Показательная функция, её график и свойства с примерами решения.

Если Показательная функция, её график и свойства с примерами решения, то Показательная функция, её график и свойства с примерами решения и по уже доказанному Показательная функция, её график и свойства с примерами решения, или Показательная функция, её график и свойства с примерами решения и потому Показательная функция, её график и свойства с примерами решения. Это неравенство с учетом определения убывающей функции позволяет утверждать, что при Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения является убывающей.

Следствие 1.

Равные степени с одним и тем же положительным и не равным единице основанием имеют равные показатели:

Показательная функция, её график и свойства с примерами решения

Действительно, если допустить, что Показательная функция, её график и свойства с примерами решения, то при Показательная функция, её график и свойства с примерами решения по теореме 2 получим, что Показательная функция, её график и свойства с примерами решения, а при Показательная функция, её график и свойства с примерами решения — что Показательная функция, её график и свойства с примерами решения. Но оба эти неравенства противоречат условию.

Так же приводит к противоречию с условием и допущение Показательная функция, её график и свойства с примерами решения.

Теорема 3.

Графики всех показательных функций проходят через точку (0; 1).

Для доказательства теоремы достаточно заметить, что при любом положительном Показательная функция, её график и свойства с примерами решения истинно равенство Показательная функция, её график и свойства с примерами решения.

Построим график функции Показательная функция, её график и свойства с примерами решения. Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.

Показательная функция, её график и свойства с примерами решения

Используя построенные точки и установленные свойства показательной функции, получим график функции Показательная функция, её график и свойства с примерами решения, который представлен на рисунке 153. Обратим внимание на то, что график функции Показательная функция, её график и свойства с примерами решения при уменьшении отрицательных значений переменной Показательная функция, её график и свойства с примерами решения быстро приближается к оси абсцисс, но остается выше нее.

Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Для построения графика функции Показательная функция, её график и свойства с примерами решения учтем, что Показательная функция, её график и свойства с примерами решения, и используем утверждение о том, что график функции Показательная функция, её график и свойства с примерами решения получается из графика функции Показательная функция, её график и свойства с примерами решения симметричным отражением относительно оси ординат. Указанное преобразование приведено на рисунке 154. Обращаем внимание на то, что график функции Показательная функция, её график и свойства с примерами решения при увеличении положительных значений переменной Показательная функция, её график и свойства с примерами решения быстро приближается к оси абсцисс, но не пересекает ее.

Теорема 4.

Если Показательная функция, её график и свойства с примерами решения, то Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения.

Доказательство:

Пусть Показательная функция, её график и свойства с примерами решения, тогда Показательная функция, её график и свойства с примерами решения. Сравним значения выражений Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения:

Показательная функция, её график и свойства с примерами решения

Пусть Показательная функция, её график и свойства с примерами решения, тогда Показательная функция, её график и свойства с примерами решения, так как Показательная функция, её график и свойства с примерами решения. Значит, Показательная функция, её график и свойства с примерами решения, а потому Показательная функция, её график и свойства с примерами решения, так как Показательная функция, её график и свойства с примерами решения. Значит, Показательная функция, её график и свойства с примерами решения, или Показательная функция, её график и свойства с примерами решения.

Пусть Показательная функция, её график и свойства с примерами решения, тогда Показательная функция, её график и свойства с примерами решения и, значит, Показательная функция, её график и свойства с примерами решения. Поскольку Показательная функция, её график и свойства с примерами решения, то Показательная функция, её график и свойства с примерами решения. Значит, Показательная функция, её график и свойства с примерами решения, или Показательная функция, её график и свойства с примерами решения.

В соответствии с теоремой 4 при увеличении основания Показательная функция, её график и свойства с примерами решения график функции Показательная функция, её график и свойства с примерами решения на промежутке Показательная функция, её график и свойства с примерами решения будет располагаться более близко к оси абсцисс, а на промежутке Показательная функция, её график и свойства с примерами решения — более далеко.

График любой показательной функции Показательная функция, её график и свойства с примерами решения с основанием Показательная функция, её график и свойства с примерами решения, большим единицы, похож на график функции Показательная функция, её график и свойства с примерами решения. На рисунке 155 представлены графики функций Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения.

График любой показательной функции Показательная функция, её график и свойства с примерами решения с положительным основанием Показательная функция, её график и свойства с примерами решения, меньшим единицы, похож на график функцииПоказательная функция, её график и свойства с примерами решения.

На рисунке 156 приведены графики функций Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения.

Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Обратим внимание на ограничения Показательная функция, её график и свойства с примерами решения на основание степени Показательная функция, её график и свойства с примерами решения показательной функции Показательная функция, её график и свойства с примерами решения. Первое ограничение вызвано тем, что значение выражения Показательная функция, её график и свойства с примерами решения определено при всех значениях показателя Показательная функция, её график и свойства с примерами решения только при положительном основании. Второе ограничение объясняется тем, что при Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения принимает вид Показательная функция, её график и свойства с примерами решения, т. е. все значения такой функции равны единице (рис. 157), и такая функция не вызывает особого интереса.

Показательная функция, её график и свойства с примерами решения

Показательная функция описывает ряд физических процессов. Например, радиоактивный распад определяется формулой Показательная функция, её график и свойства с примерами решения, где Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения — массы радиоактивного вещества в начальный момент времени 0 и в момент времени Показательная функция, её график и свойства с примерами решения, Показательная функция, её график и свойства с примерами решения — период полураспада, т. е. промежуток времени, за который количество радиоактивного вещества уменьшается в два раза. С помощью показательной функции описывается зависимость Показательная функция, её график и свойства с примерами решения от высоты Показательная функция, её график и свойства с примерами решения, где Показательная функция, её график и свойства с примерами решения — давление на уровне моря, Показательная функция, её график и свойства с примерами решения — определенная константа; ток самоиндукции в катушке после подачи постоянного напряжения.

Понятие показательной функции и ее график:

Определение: показательной функцией называется функция вида: Показательная функция, её график и свойства с примерами решения

График показательной функции (экспонента):

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Свойства показательной функции:

1. Область определения: Показательная функция, её график и свойства с примерами решения 2. Область значений: Показательная функция, её график и свойства с примерами решения 3. Функция ни четная, ни нечетная 4. Точки пересечения с осями координат: с осью Показательная функция, её график и свойства с примерами решения, с осью Показательная функция, её график и свойства с примерами решения 5. Промежутки возрастания и убывания:

Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает на всей области определения

Показательная функция, её график и свойства с примерами решения

функция Показательная функция, её график и свойства с примерами решения убывает на всей области определения

6. Промежутки знакопостоянства:Показательная функция, её график и свойства с примерами решения 7. Наибольшего и наименьшего значений функция не имеет. 8. Для любых действительных значений Показательная функция, её график и свойства с примерами решения выполняются равенства: Показательная функция, её график и свойства с примерами решения

Объяснение и обоснование:

Показательной функцией. называется функция вида Показательная функция, её график и свойства с примерами решения Например,Показательная функция, её график и свойства с примерами решения — показательные функции. Отметим, что функция вида Показательная функция, её график и свойства с примерами решения существует и при Показательная функция, её график и свойства с примерами решения

Тогда Показательная функция, её график и свойства с примерами решения то есть Показательная функция, её график и свойства с примерами решения при всех значениях Показательная функция, её график и свойства с примерами решения Но в этом случае функция Показательная функция, её график и свойства с примерами решения не называется показательной. (График функции Показательная функция, её график и свойства с примерами решения — прямая, изображенная на рис. 13.1.) Поскольку при Показательная функция, её график и свойства с примерами решения выражение Показательная функция, её график и свойства с примерами решения определено при всех действительных значениях Показательная функция, её график и свойства с примерами решения то областью определения показательной функции Показательная функция, её график и свойства с примерами решения являю тся все действительные числа. Попытаемся сначала построить графики некоторых показательных функций, например Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения«по точкам», а затем перейдем к характеристике общих свойств показательной функции.

Составим таблицу нескольких значений функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Построим на координатной плоскости соответствующие точки (рис. 13.2, а) и соединим их плавной линией, которую естественно считать графиком функции у = 2′ (рис. 13.2, б).

Как видно из графика, Показательная функция, её график и свойства с примерами решения— возрастающая функция, которая принимает все значения на промежутке Показательная функция, её график и свойства с примерами решения Аналогично составим таблицу некоторых значений функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Построим на координатной плоскости соответствующие точки (рис. 13.3, а) и соединим их плавной линией, которую естественно считать графиком функции Показательная функция, её график и свойства с примерами решения (рис. 13.3, б). Как видно из графика, Показательная функция, её график и свойства с примерами решения — убывающая функция, которая принимает все значения на промежутке Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Заметим, что график функции Показательная функция, её график и свойства с примерами решения можно получить из графика функции Показательная функция, её график и свойства с примерами решения с помощью геометрических преобразований. ДействительноПоказательная функция, её график и свойства с примерами решения Таким образом, график функции Показательная функция, её график и свойства с примерами решения симметричен графику функции Показательная функция, её график и свойства с примерами решения относительно оси Показательная функция, её график и свойства с примерами решения , и поэтому, если функция Показательная функция, её график и свойства с примерами решения является возрастающей, функция Показательная функция, её график и свойства с примерами решенияобязательно будет убывающей.

Оказывается, что всегда при Показательная функция, её график и свойства с примерами решения график функции Показательная функция, её график и свойства с примерами решения похож на график функции Показательная функция, её график и свойства с примерами решения а при Показательная функция, её график и свойства с примерами решения — на график функции Показательная функция, её график и свойства с примерами решения (рис. 13.4). График показательной функции называется экспонентой.

Показательная функция, её график и свойства с примерами решения

Свойства показательной функции

Как отмечалось выше, областью определения показательной функции Показательная функция, её график и свойства с примерами решения являются все действительные числа: Показательная функция, её график и свойства с примерами решения В курсе математического анализа доказывается, что областью значений функции Показательная функция, её график и свойства с примерами решения является множество всех положительных чисел, иначе говоря, функция Показательная функция, её график и свойства с примерами решения принимает только положительные значения, причем любое положительное число является значением функции, то есть Показательная функция, её график и свойства с примерами решения

Это означает, что график показательной функции Показательная функция, её график и свойства с примерами решения всегда расположен выше оси Показательная функция, её график и свойства с примерами решения и любая прямая, которая параллельна оси Показательная функция, её график и свойства с примерами решения и находится выше нее, пересекает этот график.

При Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает на всей области определения, а приПоказательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения убывает на всей области определения. Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяют последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.

Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Показательная функция, её график и свойства с примерами решения Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Остальные свойства показательной функции легко обосновать с помощью этих свойств.

Функция Показательная функция, её график и свойства с примерами решения не является ни четной, ни нечетной, поскольку Показательная функция, её график и свойства с примерами решения (по определению Показательная функция, её график и свойства с примерами решения). Также Показательная функция, её график и свойства с примерами решения поскольку Показательная функция, её график и свойства с примерами решения (по свойству 1), Показательная функция, её график и свойства с примерами решения

График и точки пересечения с осями координат

График функции Показательная функция, её график и свойства с примерами решения пересекает ось Показательная функция, её график и свойства с примерами решения в точке Показательная функция, её график и свойства с примерами решения Действительно, на осиПоказательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения График показательной функции Показательная функция, её график и свойства с примерами решения не пересекает ось Показательная функция, её график и свойства с примерами решения так как на оси Показательная функция, её график и свойства с примерами решения но значение Показательная функция, её график и свойства с примерами решения не принадлежит области значений функции Показательная функция, её график и свойства с примерами решения (Показательная функция, её график и свойства с примерами решения только при Показательная функция, её график и свойства с примерами решения хотя по определению Показательная функция, её график и свойства с примерами решения). Промежутки знакопостоянства. Показательная функция, её график и свойства с примерами решения при всех действительных значениях Показательная функция, её график и свойства с примерами решенияпоскольку Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения Отметим еще одно свойство показательной функции. График функции Показательная функция, её график и свойства с примерами решенияпересекает ось Показательная функция, её график и свойства с примерами решенияв точке Показательная функция, её график и свойства с примерами решения Учитывая возрастание функции при Показательная функция, её график и свойства с примерами решения и убывание при Показательная функция, её график и свойства с примерами решения получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:

Значение функции

Показательная функция, её график и свойства с примерами решения

Значение аргумента при Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Значение аргумента при Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Значение функции

Показательная функция, её график и свойства с примерами решения

Значение аргумента при Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Значение аргумента при Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Функция Показательная функция, её график и свойства с примерами решения не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток Показательная функция, её график и свойства с примерами решения не содержащий ни наименьшего, ни наибольшего числа.

Свойства показательной функции:

  • Показательная функция, её график и свойства с примерами решения

Рассмотрим одно из характерных свойств показательной функции, выделяющее ее из ряда других функций: если Показательная функция, её график и свойства с примерами решения то

при любых действительных значениях аргументов Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения выполняется равенство Показательная функция, её график и свойства с примерами решения

Действительно, Показательная функция, её график и свойства с примерами решения В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция Показательная функция, её график и свойства с примерами решенияэто строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению Показательная функция, её график и свойства с примерами решения а затем обосновывается, что функция Показательная функция, её график и свойства с примерами решения совпадает с функцией Показательная функция, её график и свойства с примерами решения

Кроме общих свойств показательной функции при Показательная функция, её график и свойства с примерами решения и приПоказательная функция, её график и свойства с примерами решения отметим некоторые особенности поведения графиков показательных функций при конкретных значениях Показательная функция, её график и свойства с примерами решения Так, на рис. 13.5 приведены графики показательных функций Показательная функция, её график и свойства с примерами решения при значениях основания Показательная функция, её график и свойства с примерами решения

Сравнивая эти графики, можно сделать вывод: чем больше основание Показательная функция, её график и свойства с примерами решения тем круче поднимается график функции Показательная функция, её график и свойства с примерами решения при движении точки вправо и тем. быстрее график приближается к оси Показательная функция, её график и свойства с примерами решения при движении точки влево. Аналогично, чем меньше основание Показательная функция, её график и свойства с примерами решения тем круче поднимается график функции Показательная функция, её график и свойства с примерами решенияпри движении точки влево и тем быстрее график приближается к оси Показательная функция, её график и свойства с примерами решения при движении точки вправо.

Заканчивая разговор о показательной функции, укажем причины, по которым не рассматриваются показательные функции с отрицательным или нулевым основанием.

Отметим, что выражение Показательная функция, её график и свойства с примерами решения можно рассматривать и при Показательная функция, её график и свойства с примерами решения и при Показательная функция, её график и свойства с примерами решения Но в этих случаях оно уже будет определено не при всех действительных значениях Показательная функция, её график и свойства с примерами решения как показательная функция Показательная функция, её график и свойства с примерами решенияВ частности, выражение Показательная функция, её график и свойства с примерами решения определено при всех Показательная функция, её график и свойства с примерами решения (и тогда Показательная функция, её график и свойства с примерами решения), а выражение Показательная функция, её график и свойства с примерами решения — при всех целых значениях Показательная функция, её график и свойства с примерами решения (например, Показательная функция, её график и свойства с примерами решения

По этой причине не берут основание показательной функции Показательная функция, её график и свойства с примерами решения (получаем постоянную функцию приПоказательная функция, её график и свойства с примерами решения) и Показательная функция, её график и свойства с примерами решения (получаем функцию, определенную только при Показательная функция, её график и свойства с примерами решения). Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения Показательная функция, её график и свойства с примерами решения (например, как мы видели выше, пара значенийПоказательная функция, её график и свойства с примерами решения принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).

Показательная функция, её график и свойства с примерами решения

Примеры решения задач:

Пример №1

Сравните значения выражений: Показательная функция, её график и свойства с примерами решения

Решение:

1) ФункцияПоказательная функция, её график и свойства с примерами решения убывающая Показательная функция, её график и свойства с примерами решения поэтому из неравенства Показательная функция, её график и свойства с примерами решения получаем Показательная функция, её график и свойства с примерами решения 2) Функция Показательная функция, её график и свойства с примерами решения возрастающая Показательная функция, её график и свойства с примерами решения поэтому из неравенства Показательная функция, её график и свойства с примерами решенияполучаем Показательная функция, её график и свойства с примерами решения

Комментарий:

Учтем, что функция Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения является возрастающей, а при Показательная функция, её график и свойства с примерами решения — убывающей. Поэтому сначала сравним данное основание Показательная функция, её график и свойства с примерами решения с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.

Пример №2

Сравните с единицей положительное основание Показательная функция, её график и свойства с примерами решения, если известно, что выполняется неравенство: Показательная функция, её график и свойства с примерами решения

Решение:

1) Поскольку Показательная функция, её график и свойства с примерами решения и по условию Показательная функция, её график и свойства с примерами решения то функция Показательная функция, её график и свойства с примерами решения — убывающая, следовательно,Показательная функция, её график и свойства с примерами решения 2) Так как Показательная функция, её график и свойства с примерами решения и по условию Показательная функция, её график и свойства с примерами решения то функция Показательная функция, её график и свойства с примерами решения — возрастающая, поэтому Показательная функция, её график и свойства с примерами решения

Комментарий:

В каждом задании данные выражения — это два значения функции Показательная функция, её график и свойства с примерами решения. Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы). Если большему значению аргумента соответствует большее значение функции, то функция Показательная функция, её график и свойства с примерами решения является возрастающей и Показательная функция, её график и свойства с примерами решения Если большему значению аргумента соответствует меньшее значение функции, то функция Показательная функция, её график и свойства с примерами решения — убывающая, тогда Показательная функция, её график и свойства с примерами решения

Пример №3

Постройте график функции: Показательная функция, её график и свойства с примерами решения

Комментарий:

При Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения следовательно, график функции Показательная функция, её график и свойства с примерами решения всегда расположен выше оси Показательная функция, её график и свойства с примерами решения Он пересекает ось Показательная функция, её график и свойства с примерами решения в точке Показательная функция, её график и свойства с примерами решения При Показательная функция, её график и свойства с примерами решения показательная функция Показательная функция, её график и свойства с примерами решениявозрастает, а значит, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.

При Показательная функция, её график и свойства с примерами решения показательная функция Показательная функция, её график и свойства с примерами решения убывает, поэтому, графиком функции Показательная функция, её график и свойства с примерами решения будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь, график приближается к оси Показательная функция, её график и свойства с примерами решения но никогда ее не пересекает.) Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.

Решение:

Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения

Пример №4

Изобразите схематически график функции Показательная функция, её график и свойства с примерами решения

Решение:

Последовательно строим графики:

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Комментарий:

оставим план построения графика данной функции с помощью последовательных геометрических преобразований.

Решение показательных уравнений и неравенств

Простейшие показательные уравнения

1. Основные формулы и соотношения

Показательная функция, её график и свойства с примерами решения

График функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения возрастает;

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения убывает;

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения постоянная.

2. Схема равносильных преобразований простейших показательных уравнений

Ориентир:

Показательная функция, её график и свойства с примерами решения

Пример:

Показательная функция, её график и свойства с примерами решения

Ответ: -1.

Показательная функция, её график и свойства с примерами решения

Корней нет (поскольку Показательная функция, её график и свойства с примерами решения для всех Показательная функция, её график и свойства с примерами решения)

Ответ: корней нет.

3. Приведение некоторых показательных уравнений к простейшим

Ориентир:

Примеры:

1) Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

2)Показательная функция, её график и свойства с примерами решения

Ответ: 2.

Объяснение и обоснование:

Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).

Рассмотрим простейшее показательное уравнение вида

Показательная функция, её график и свойства с примерами решения

Чтобы его найти, достаточно представить Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения Очевидно, что Показательная функция, её график и свойства с примерами решенияявляется корнем уравнения Показательная функция, её график и свойства с примерами решения

Графически это проиллюстрировано на рис. 14.1.

Показательная функция, её график и свойства с примерами решения

Чтобы решить, например, уравнение Показательная функция, её график и свойства с примерами решения достаточно представить его в виде Показательная функция, её график и свойства с примерами решения и записать единственный корень —Показательная функция, её график и свойства с примерами решения

Если Показательная функция, её график и свойства с примерами решения то уравнение Показательная функция, её график и свойства с примерами решения (при Показательная функция, её график и свойства с примерами решения) корней не имеет, так как Показательная функция, её график и свойства с примерами решения всегда больше нуля. (На графиках, приведенных на рис. 14.2, прямая Показательная функция, её график и свойства с примерами решения не пересекает график функции Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения) Например, уравнение Показательная функция, её график и свойства с примерами решения не имеет корней.

Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения уравнение вида Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения равносильно уравнению Показательная функция, её график и свойства с примерами решения

Коротко это утверждение можно записать так: при Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция Показательная функция, её график и свойства с примерами решения является строго монотонной и каждое свое значение принимает только при одном значении аргумента Показательная функция, её график и свойства с примерами решения (то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2).

А это и означает, что уравнения (2) и (3) равносильны.

В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями привести (если это возможно) данное уравнение к виду Показательная функция, её график и свойства с примерами решения

Для решения более сложных показательных уравнений чаще всего используют замену переменных или свойства соответствующих функций.

Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Областью допустимых значений (ОДЗ) показательных уравнениях чаще всего является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. далее решение задач 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ.

Примеры решения задач:

Пример №5

Решите уравнение: Показательная функция, её график и свойства с примерами решения

Решение:

1) Показательная функция, её график и свойства с примерами решения 2) Показательная функция, её график и свойства с примерами решения — корней нет, поскольку 5′ > 0 всегда. 3) Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Комментарий:

При Показательная функция, её график и свойства с примерами решения всегда Показательная функция, её график и свойства с примерами решения поэтому уравнение Показательная функция, её график и свойства с примерами решения не имеет корней. Другие уравнения приведем к виду Показательная функция, её график и свойства с примерами решения и перейдем к равносильному уравнению Показательная функция, её график и свойства с примерами решения

Пример №6

Решите уравнение: Показательная функция, её график и свойства с примерами решения

Решение:

1) Данное уравнение равносильно уравнениям:

Показательная функция, её график и свойства с примерами решения

Ответ: 5.

2) Данное уравнение равносильно уравнениям:

Показательная функция, её график и свойства с примерами решения

Ответ: 1.

Комментарий:

В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени.

В этом случае для приведения уравнения к виду Показательная функция, её график и свойства с примерами решения попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одинаковыми основаниями.

В уравнении 1 следует обратить внимание на то, что Показательная функция, её график и свойства с примерами решения а Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения таким образом, левую и правую части этого уравнения можно записать как степени числа 5.

Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево. Например, для левой части этого уравнения воспользуемся формулой Показательная функция, её график и свойства с примерами решения и запишем Показательная функция, её график и свойства с примерами решения

Пример №7

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Данное уравнение равносильно уравнениям: Показательная функция, её график и свойства с примерами решения

Ответ: 1

Комментарий:

В левой части уравнения все члены содержат выражения вида Показательная функция, её график и свойства с примерами решения (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть Показательная функция, её график и свойства с примерами решения

Пример №8

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

ОДЗ: Показательная функция, её график и свойства с примерами решения любое Показательная функция, её график и свойства с примерами решения Рассмотрим два случая. 1) При Показательная функция, её график и свойства с примерами решения получаем уравнение Показательная функция, её график и свойства с примерами решения корни которого — все действительные числа из ОДЗ, то есть Показательная функция, её график и свойства с примерами решения 2) При Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения поэтому данное уравнение равносильно уравнению Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения

Ответ: 1) при Показательная функция, её график и свойства с примерами решения 2) при Показательная функция, её график и свойства с примерами решения

Комментарий:

Это уравнение относительно переменной Показательная функция, её график и свойства с примерами решения содержит параметр Показательная функция, её график и свойства с примерами решения Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях Показательная функция, её график и свойства с примерами решения основание Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решенияпри Показательная функция, её график и свойства с примерами решения — возрастающая, а при Показательная функция, её график и свойства с примерами решения — постоянная (см. графики функции Показательная функция, её график и свойства с примерами решения). ОснованиеПоказательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения а при всех других значениях Показательная функция, её график и свойства с примерами решения основание Показательная функция, её график и свойства с примерами решения Рассмотрим каждый из этих случаев отдельно: Показательная функция, её график и свойства с примерами решения

Решение более сложных показательных уравнений и их систем

Схема поиска плана решения показательных уравнений

Ориентир:

1. Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями» приведенные в табл. 53).

Пример:

Показательная функция, её график и свойства с примерами решения

Учитывая, что Показательная функция, её график и свойства с примерами решения приводим все степени к одному основанию 2:

Показательная функция, её график и свойства с примерами решения

Ориентир:

2. Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.

Пример:

Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения— корней нет. Ответ: 1.

Ориентир:

3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).

Пример:

Показательная функция, её график и свойства с примерами решения

Приведем все степени к основаниям 2 и 3: Показательная функция, её график и свойства с примерами решения Имеем однородное уравнение (у всех членов одинаковая суммарная степень — Показательная функция, её график и свойства с примерами решения). Для его решения разделим обе части на Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения Обратная замена дает уравнения: Показательная функция, её график и свойства с примерами решения — корней нет или Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения

Ответ: 0.

Ориентир:

4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное выражение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций

Пример:

Показательная функция, её график и свойства с примерами решения

Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем Показательная функция, её график и свойства с примерами решения Теперь можно вынести за скобки общий множитель Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения Получаем два уравнения: 1) Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения 2) Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения Ответ: 2; 1.

Объяснение и обоснование:

Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в п. 14.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней. используя формулы: Показательная функция, её график и свойства с примерами решения

Например, в уравнении

Показательная функция, её график и свойства с примерами решения

вместо Показательная функция, её график и свойства с примерами решения записываем произведение Показательная функция, её график и свойства с примерами решения и получаем уравнение

Показательная функция, её график и свойства с примерами решения

равносильное данному.

Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием 2: Показательная функция, её график и свойства с примерами решенияполучить уравнение Показательная функция, её график и свойства с примерами решения

Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной). Обращаем внимание на то, что Показательная функция, её график и свойства с примерами решения Таким образом, в уравнение (3) переменная входит фактически в одном виде — Показательная функция, её график и свойства с примерами решения поэтому удобно ввести замену Показательная функция, её график и свойства с примерами решения Получаем квадратное уравнение

Показательная функция, её график и свойства с примерами решения

для которого находим корни, а затем выполняем обратную замену. Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго, и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений).

В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение. Например, рассмотрим уравнение

Показательная функция, её график и свойства с примерами решения

Все степени в этом уравнении можно записать через основания 2 и 3, поскольку

Показательная функция, её график и свойства с примерами решения

Получаем уравнение

Показательная функция, её график и свойства с примерами решения

Все одночлены, стоящие в левой части этого уравнения, имеют степень Показательная функция, её график и свойства с примерами решения(степень одночлена Показательная функция, её график и свойства с примерами решения также равна Показательная функция, её график и свойства с примерами решения). Напомним ориентир:

Если все члены, уравнения, в левой и правой частях которого стоят многочлены от двух переменных (и ли от двух функций одной переменной), имеют одинаковую суммарную степень*, то уравнение называется однородным.

Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.

Следовательно, уравнение (6) является однородным и его можно решить делением обеих частей или на Показательная функция, её график и свойства с примерами решения или на Показательная функция, её график и свойства с примерами решения Отметим, что при всех значениях Показательная функция, её график и свойства с примерами решения выражения Показательная функция, её график и свойства с примерами решенияи Показательная функция, её график и свойства с примерами решения не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на Показательная функция, её график и свойства с примерами решения получаем Показательная функция, её график и свойства с примерами решения или после сокращения Показательная функция, её график и свойства с примерами решения В последнем уравнении все члены можно представить как степени с одним основанием Показательная функция, её график и свойства с примерами решения и выполнить замену Показательная функция, её график и свойства с примерами решения

Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в табл. 19.

Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесообразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в табл. 19 для уравнения Показательная функция, её график и свойства с примерами решения

Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.

Примеры решения задач:

Пример №9

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Замена Показательная функция, её график и свойства с примерами решения Получаем Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения

Обратная замена дает уравнения: Показательная функция, её график и свойства с примерами решения — корней нет или Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения Ответ: 1.

Комментарий:

В данное уравнение переменная входит только в одном виде Показательная функция, её график и свойства с примерами решения поэтому удобно ввести замену Показательная функция, её график и свойства с примерами решения и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.

Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, чтоПоказательная функция, её график и свойства с примерами решения и поэтому ОДЗ полученного уравнения: Показательная функция, её график и свойства с примерами решения будет учтена автоматически).

*Конечно, если уравнение имеет вид Показательная функция, её график и свойства с примерами решения (где Показательная функция, её график и свойства с примерами решения — многочлен), то речь идет только о степени членов многочлена Показательная функция, её график и свойства с примерами решения, поскольку нуль-многочлен степени не имеет.

Пример №10

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения илиПоказательная функция, её график и свойства с примерами решения — корней нет. 5 Ответ: 0.

Комментарий:

  • 1. Избавляемся от числовых слагаемых в показателях степеней.
  • 2. Приводим все степени (с переменной в показателе) к одному основанию 5.
  • 3. Выполняем замену Показательная функция, её график и свойства с примерами решения решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).

Пример №11

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения

Ответ: 2.

Комментарий:

При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.

Пример №12

Решите систему уравнений Показательная функция, её график и свойства с примерами решения

Решение:

Из первого уравнения системы Показательная функция, её график и свойства с примерами решения Тогда из второго уравнения получаем Показательная функция, её график и свойства с примерами решения то есть Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения из которого получаем уравнение Показательная функция, её график и свойства с примерами решения имеющее корни: Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения откуда Показательная функция, её график и свойства с примерами решения Находим соответствующие значения Показательная функция, её график и свойства с примерами решения если Показательная функция, её график и свойства с примерами решения если Показательная функция, её график и свойства с примерами решения Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Если из первого уравнения выразить Показательная функция, её график и свойства с примерами решения через Показательная функция, её график и свойства с примерами решения и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2). Выполняя замену, учитываем, что Показательная функция, её график и свойства с примерами решения Тогда в полученном дробном уравнении Показательная функция, её график и свойства с примерами решения знаменатель Показательная функция, её график и свойства с примерами решения Таким образом, это дробное уравнение равносильно уравнению

Показательная функция, её график и свойства с примерами решения

Пример №13

Решите систему уравнений Показательная функция, её график и свойства с примерами решения

Решение:

Замена Показательная функция, её график и свойства с примерами решенияи Показательная функция, её график и свойства с примерами решения дает систему уравнений и Показательная функция, её график и свойства с примерами решения Из второго уравнения этой системы имеем Показательная функция, её график и свойства с примерами решения Далее из первого уравнения получаем Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения Обратная замена дает уравнения: Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения отсюда Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения отсюда Показательная функция, её график и свойства с примерами решения Ответ: (2; 2).

Комментарий:

Если обозначить Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения то Показательная функция, её график и свойства с примерами решения Тогда данная система будет равносильна алгебраической системе, которую легко решить.

Решение показательных неравенств

1. График показательной функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

2. Схема равносильных преобразований простейших показательных неравенств

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения— знак неравенства сохраняется

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения— знак неравенства меняется на противоположный

Примеры:

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решения является возрастающей, следовательно: Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решения убывающая, следовательно: Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

3. Решение более сложных показательных неравенств

Ориентир:

I. С помощью равносильных преобразований (по схеме решения показательны х уравнений) данное неравенство приводится к неравенству известного вида (квадратному, дробному и др.).

После решения полученного неравенства приходим к простейшим показательным неравенствам.

Пример:

Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения дает неравенство Показательная функция, её график и свойства с примерами решения решения которого Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения (см. рисунок).

Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения (ре шений нет) или Показательная функция, её график и свойства с примерами решения откуда Показательная функция, её график и свойства с примерами решения то есть Показательная функция, её график и свойства с примерами решения Ответ: Показательная функция, её график и свойства с примерами решения

II. Применяем метод интервалов, приводя данное неравенство к виду Показательная функция, её график и свойства с примерами решения и используя схему:

  1. Найти ОДЗ.
  2. Найти нули Показательная функция, её график и свойства с примерами решения
  3. Отметить пули функции на ОДЗ и найти знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ. 4. Записать ответ, учитывая знак неравенства.

Пример:

Показательная функция, её график и свойства с примерами решения

Решим неравенство методом интервалов. Данное неравенство равносильно неравенству Показательная функция, её график и свойства с примерами решения

Обозначим Показательная функция, её график и свойства с примерами решения

  1. ОДЗ: Показательная функция, её график и свойства с примерами решения
  2. Нули функции: Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения
  3. Поскольку функция Показательная функция, её график и свойства с примерами решения является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения: Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения
  4. Отмечаем нули функции на ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Объяснение и обоснование:

Решение простейших показательных неравенств вида Показательная функция, её график и свойства с примерами решения (или Показательная функция, её график и свойства с примерами решения где Показательная функция, её график и свойства с примерами решенияи Показательная функция, её график и свойства с примерами решения) основывается на свойствах функции Показательная функция, её график и свойства с примерами решения которая возрастает при Показательная функция, её график и свойства с примерами решенияи убывает при Показательная функция, её график и свойства с примерами решения Например, чтобы найти решение неравенства Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения достаточно представить Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения Получаем неравенство

Показательная функция, её график и свойства с примерами решения(1)

При Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем Показательная функция, её график и свойства с примерами решения(знак этого неравенства совпадает со знаком неравенства(1)). ПриПоказательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем Показательная функция, её график и свойства с примерами решения (знак этого неравенства противоположен знаку неравенства (1)).

Графически это проиллюстрировано на рис. 14.3.

Показательная функция, её график и свойства с примерами решения

Например, чтобы решить неравенство Показательная функция, её график и свойства с примерами решения достаточно представить это неравенство в видеПоказательная функция, её график и свойства с примерами решения учесть, что Показательная функция, её график и свойства с примерами решения (функция Показательная функция, её график и свойства с примерами решениявозрастающая, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение: Показательная функция, её график и свойства с примерами решения

Решение данного неравенства можно записывать в виде Показательная функция, её график и свойства с примерами решения или в виде промежутка Показательная функция, её график и свойства с примерами решения

Аналогично, чтобы решить неравенство Показательная функция, её график и свойства с примерами решения достаточно представить это неравенство в виде Показательная функция, её график и свойства с примерами решения учесть, что Показательная функция, её график и свойства с примерами решения (функция Показательная функция, её график и свойства с примерами решения убывающая, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение: Показательная функция, её график и свойства с примерами решения

Учитывая, что при любых положительных значениях Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения всегда больше нуля, получаем, что при Показательная функция, её график и свойства с примерами решения неравенство Показательная функция, её график и свойства с примерами решения решений не имеет, а неравенство Показательная функция, её график и свойства с примерами решения выполняется при всех действительных значениях Показательная функция, её график и свойства с примерами решения

Например, неравенство Показательная функция, её график и свойства с примерами решения не имеет решений, а решениями неравенства Показательная функция, её график и свойства с примерами решения являются все действительные числа.

Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при Показательная функция, её график и свойства с примерами решения неравенство Показательная функция, её график и свойства с примерами решения равносильно неравенству Показательная функция, её график и свойства с примерами решения а при О < а < 1 — неравенству Показательная функция, её график и свойства с примерами решения Коротко это утверждение можно записать так.

Показательная функция, её график и свойства с примерами решения

Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при Показательная функция, её график и свойства с примерами решения неравенства

Показательная функция, её график и свойства с примерами решения

могут быть верными только одновременно, поскольку функция Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решениявозрастающая и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) равносильны. Аналогично обосновывается равносильность неравенств Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решенияпри Показательная функция, её график и свойства с примерами решения

В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду Показательная функция, её график и свойства с примерами решения

Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.

Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).

  • Заказать решение задач по высшей математике

Примеры решения задач:

Пример №14

Решите неравенствоПоказательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения

Поскольку функция уПоказательная функция, её график и свойства с примерами решения убывающая, то Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения(см. рисунок).

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Запишем правую часть неравенства как степень числа Показательная функция, её график и свойства с примерами решения Поскольку Показательная функция, её график и свойства с примерами решения то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному). Для решения полученного квадратного неравенства используем графическую иллюстрацию.

Пример №15

Решите неравенство Показательная функция, её график и свойства с примерами решения

Решение:

ОДЗ: Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения дает неравенство Показательная функция, её график и свойства с примерами решения равносильное неравенству Показательная функция, её график и свойства с примерами решения Поскольку Показательная функция, её график и свойства с примерами решения получаем Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения Учитывая, что Показательная функция, её график и свойства с примерами решения имеем Показательная функция, её график и свойства с примерами решения Выполняя обратную замену, получаем Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решения возрастающая, таким образом, Показательная функция, её график и свойства с примерами решения Учитывая ОДЗ, получаем Показательная функция, её график и свойства с примерами решения Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя и формулу Показательная функция, её график и свойства с примерами решенияизбавляемся от а числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену Показательная функция, её график и свойства с примерами решения В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному. После выполнения обратной замены следует учесть не только возрастание функции Показательная функция, её график и свойства с примерами решения но и ОДЗ исходного неравенства.

Пример №16

Решите неравенство Показательная функция, её график и свойства с примерами решения

Решение:

Решим неравенство методом интервалов. Обозначим Показательная функция, её график и свойства с примерами решения 1. ОДЗ: Показательная функция, её график и свойства с примерами решения 2. Нули функции: Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения Получаем Показательная функция, её график и свойства с примерами решения Обратная замена дает: Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения

Отсюда Показательная функция, её график и свойства с примерами решения 3. Отметим нули функции на ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из полученных промежутков и записываем решения неравенства Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Ответ:Показательная функция, её график и свойства с примерами решения

Комментарий:

Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в табл. 20. При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Показательная функция, её график и свойства с примерами решенияУчитывая, что Показательная функция, её график и свойства с примерами решения при всех значениях Показательная функция, её график и свойства с примерами решения в результате деления на Показательная функция, её график и свойства с примерами решения получаем уравнение, равносильное предыдущему. Разумеется, для решения данного неравенства можно было учесть, что Показательная функция, её график и свойства с примерами решения всегда, и после деления данного неравенства на Показательная функция, её график и свойства с примерами решения и замены Показательная функция, её график и свойства с примерами решения получить алгебраическое неравенство.

Пример №17

Решите неравенствоПоказательная функция, её график и свойства с примерами решения

Комментарий:

Данное нестрогое неравенство также удобно решать методом интервалов. При этом следует учитывать, что в случае, когда мы решаем нестрогое неравенство Показательная функция, её график и свойства с примерами решения все нули функции Показательная функция, её график и свойства с примерами решения должны войти в ответ.

Решение:

Обозначим Показательная функция, её график и свойства с примерами решения 1. ОДЗ: Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения или Показательная функция, её график и свойства с примерами решения (см. рисунок).

Показательная функция, её график и свойства с примерами решения 2. Нули функции: Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения илиПоказательная функция, её график и свойства с примерами решения Из первого уравнения: Показательная функция, её график и свойства с примерами решения — не принадлежит ОДЗ, а из второго: Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения 3. Отмечаем нули Показательная функция, её график и свойства с примерами решенияна ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства Показательная функция, её график и свойства с примерами решения Ответ: Показательная функция, её график и свойства с примерами решения

Определение и вычисление показательной функции

Если величины Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения связаны уравнением Показательная функция, её график и свойства с примерами решения (где Показательная функция, её график и свойства с примерами решения), то величина у называется показательной функцией от Показательная функция, её график и свойства с примерами решения. Возьмем для примера Показательная функция, её график и свойства с примерами решения, тогда Показательная функция, её график и свойства с примерами решения. Будем давать Показательная функция, её график и свойства с примерами решения значения, равные нулю и целым положительным числам, тогда Показательная функция, её график и свойства с примерами решения будет принимать значения, указанные в таблице:

Показательная функция, её график и свойства с примерами решения

Мы видим, что если придавать независимому переменному значения, увеличивающиеся в арифметической прогрессии, то у будет расти в геометрической прогрессии со знаменателем, равным 2.

Вообще, если в уравнении Показательная функция, её график и свойства с примерами решения независимое переменное увеличивается в арифметической прогрессии, то функция Показательная функция, её график и свойства с примерами решения возрастает в геометрической прогрессии со знаменателем Показательная функция, её график и свойства с примерами решения. Если независимое переменное уменьшать, придавая ему целые отрицательные значения, то у будет уменьшаться в геометрической прогрессии со знаменателем Показательная функция, её график и свойства с примерами решения. В самом деле, взяв уравнение Показательная функция, её график и свойства с примерами решения, составим таблицу:

Показательная функция, её график и свойства с примерами решения

Приняв Показательная функция, её график и свойства с примерами решения за абсциссу, а Показательная функция, её график и свойства с примерами решения за ординату точки, построим точки, полученные в таблицах, и соединим их плавной кривой. Тогда получим кривую линию, изображенную на рис. 31. Эта линия называется графиком показательной функции.

Отметим, что показательная функция нигде не обращается в нуль, т. е. ее график нигде не пересекает ось Показательная функция, её график и свойства с примерами решения.

Показательная функция, её график и свойства с примерами решения

Аналогичный график имеет и любая показательная функция с основанием, большим единицы (Показательная функция, её график и свойства с примерами решения).

Если же взять основание положительное, но меньшее единицы (Показательная функция, её график и свойства с примерами решения), то график будет иметь вид, изображенный на рис. 32.

Показательная функция, её график и свойства с примерами решения

Показательная функция — практическое занятие с решением

1) Составьте таблицу значений для функций Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения.

Показательная функция, её график и свойства с примерами решения

2) На координатной плоскости постройте точки, абсциссы которых соответствуют аргументам, а ординаты значениям функции и соедините сплошной кривой линией.

Показательная функция, её график и свойства с примерами решения

3) Сравните с Показательная функция, её график и свойства с примерами решениязначение выражения Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения для произвольных значений х.

4) Увеличиваются или уменьшаются значения функции Показательная функция, её график и свойства с примерами решения при увеличении значений х ? Увеличиваются или уменьшаются значения функции Показательная функция, её график и свойства с примерами решения при увеличении значений х?

5) В какой точке графики пересекают ось у ?

6) Сравните графики и запишите их сходные и отличительные черты.

7) Выполните задание для функций Показательная функция, её график и свойства с примерами решения .

При а > 0, Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения называется показательной функцией.

1) Область определения показательной функции все действительные числа.Показательная функция, её график и свойства с примерами решения

2) Множество значений показательной функции все положительные

числа.Показательная функция, её график и свойства с примерами решения

3) Так как Показательная функция, её график и свойства с примерами решения = 1(при х = 0), то показательная функция пересекает ось у в точке (0; 1).

4) При а > 1 функция Показательная функция, её график и свойства с примерами решения возрастающая, при Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения убывающая.

5) Показательная функция не пересекает ось абсцисс и её график расположен выше оси х, т.е. в верхней полуплоскости.

Функция Показательная функция, её график и свойства с примерами решения и её график называется экспонентой.

Экспонента при изменении аргумента увеличивается или уменьшается с большой скоростью.

6) При Показательная функция, её график и свойства с примерами решения, если х бесконечно возрастают, соответствующие значения у бесконечно убывают и точки графика функции Показательная функция, её график и свойства с примерами решения неограниченно стремятся к оси абсцисс. При Показательная функция, её график и свойства с примерами решения точки на графике неограниченно стремятся к оси абсцисс.

Экспоненциально возрастающая и экспоненциально убывающие функции

Показательная функция, её график и свойства с примерами решенияФункция Показательная функция, её график и свойства с примерами решения также называется экспоненциальной функцией.

Например: функциюПоказательная функция, её график и свойства с примерами решения можно записать в виде Показательная функция, её график и свойства с примерами решения

Пример:

По графику функции зададим её уравнение.

Показательная функция, её график и свойства с примерами решения

Решение:

Составим таблицу значений.

Показательная функция, её график и свойства с примерами решения

Из таблицы значений видно, что при увеличении значений х на 1 единицу, значения у уменьшаются в Показательная функция, её график и свойства с примерами решения.

Значит, Показательная функция, её график и свойства с примерами решения .Тогда формула функции будет: Показательная функция, её график и свойства с примерами решения

Пример:

При каких значениях переменных справедливо следующие:

а)равенство Показательная функция, её график и свойства с примерами решения; б) неравенство Показательная функция, её график и свойства с примерами решения ; в) неравенство Показательная функция, её график и свойства с примерами решения?

Решение:

а) запишем равенство Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения. Здесь по свойству степени с действительным показателем х = 3.

б)запишем неравенство Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения . Здесь ясно, что Показательная функция, её график и свойства с примерами решения .

в)запишем неравенство Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения (в виде степени с одинаковым основанием), степени с основанием меньше 1. Получим, что Показательная функция, её график и свойства с примерами решения.

Преобразование графиков показательных функций

Общий вид показательной функции Показательная функция, её график и свойства с примерами решения. Функция вида Показательная функция, её график и свойства с примерами решения является основной функцией в семействе показательных функций. Выполняя различные преобразования можно построить графики следующих функций

Показательная функция, её график и свойства с примерами решения.

•График в Показательная функция, её график и свойства с примерами решения раз растягивается от оси х.

Например. Показательная функция, её график и свойства с примерами решения

•При Показательная функция, её график и свойства с примерами решения происходит отражение относительно оси х.

Например. Показательная функция, её график и свойства с примерами решения График функции Показательная функция, её график и свойства с примерами решения

можно построить при помощи графика функции Показательная функция, её график и свойства с примерами решения

используя параллельный перенос. Показательная функция, её график и свойства с примерами решения

Пример №18

Построим график функции Показательная функция, её график и свойства с примерами решения при помощи параллельного переноса графика функции Показательная функция, её график и свойства с примерами решения. 1.Для функции Показательная функция, её график и свойства с примерами решения отметим точки (0; 3), (1; 6); (2; 12) и соединим эти точки гладкой линией. Прямая у = 0 является асимптотой 2.График функции Показательная функция, её график и свойства с примерами решения перенесём параллельно на одну единицу влево Показательная функция, её график и свойства с примерами решения и на одну единицу вверх Показательная функция, её график и свойства с примерами решения (на вектор (-1; 1)), найдём новые координаты указанных точек и расположим их на координатной плоскости. Соединим эти точки гладкой линией и получим график функции Показательная функция, её график и свойства с примерами решения.

Показательная функция, её график и свойства с примерами решения

Прямая у = 1 является горизонтальной асимптотой.

В реальной жизни, при ежегодном увеличении величины на постоянный процент, её состояние через Показательная функция, её график и свойства с примерами решения лет можно оценить формулой Показательная функция, её график и свойства с примерами решения, при уменьшении — формулой Показательная функция, её график и свойства с примерами решения .Здесь а — начальное количество, Показательная функция, её график и свойства с примерами решения — процент увеличения (уменьшения) ( десятичная дробь), Показательная функция, её график и свойства с примерами решения -количество лет.

При помощи данных формул решим следующее задание.

Пример №19

Цена автомобиля купленного за 24 ООО руб ежегодно снижается на 12%. Запишем зависимость между количеством лет Показательная функция, её график и свойства с примерами решения эксплуатации автомобиля и его ценой.

Решение.

В формулеПоказательная функция, её график и свойства с примерами решенияпримем а = 24000, Показательная функция, её график и свойства с примерами решения = 12% = 0,12, 1 — Показательная функция, её график и свойства с примерами решения = 0,88.

Тогда данную ситуацию можно смоделировать показательной

функцией Показательная функция, её график и свойства с примерами решения.

Показательная функция. Число е.

Исследование:

Представьте, что вы вложили в банк 1 руб, под сложные проценты с процентной ставкой равной 100%. В течении года вы произвели вычислений Показательная функция, её график и свойства с примерами решения раз, подставив в формулу сложного процентного роста следующие данные Показательная функция, её график и свойства с примерами решения.

Показательная функция, её график и свойства с примерами решения

Вычислите значения функции и установите, к какому числу приближается значение функции Показательная функция, её график и свойства с примерами решения при различных значениях Показательная функция, её график и свойства с примерами решения. Показательная функция, её график и свойства с примерами решения

Как видно, если банк будет чаще вычислять процент для вложенной суммы, то прибыль увеличится. Однако, отношение ежедневных вычислений к ежемесячным даёт прибыль 10 гяпик. Если даже банк будет находить процент для денег на счету ежесекундно , то и в данном случае разница между начислением процентов ежечасно или ежедневно будет незначительна. Из графика функции Показательная функция, её график и свойства с примерами решения построенного при помощи графкалькулятора видно, что при Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения имеет горизонтальную асимптоту.

Показательная функция, её график и свойства с примерами решения

Число е:

Исследование показывает, что при увеличении значений Показательная функция, её график и свойства с примерами решения значение выражения Показательная функция, её график и свойства с примерами решения колеблется между 2,71 и 2,72. Это число записывается буквой е и имеет значение е = 2,718 281 828 459… .

Число е, так же как и число Показательная функция, её график и свойства с примерами решения является иррациональным числом. Эти числа называются трансцендентными числами. Трансцендентным называется число, которое не является корнем уравнения Показательная функция, её график и свойства с примерами решения степени с целыми коэффициентами. Экспоненциальное возрастание или убывание по основанию е задаётся формулой Показательная функция, её график и свойства с примерами решения. Здесь No-начальное значение, t -время, Показательная функция, её график и свойства с примерами решения -постоянное число.

График функции y=ex

График функции Показательная функция, её график и свойства с примерами решения.

Для построения графика функции Показательная функция, её график и свойства с примерами решения можно использовать различные граф калькуляторы. Например, (http://www.meta-calculator.com/onlinc) или как показано на рисунке, при помощи программы Geometer’s Sketchpad®.

Показательная функция, её график и свойства с примерами решения

Показательная и логарифмическая функции их свойства и график

Понятие показательной функции и ее график:

Определение. Показательной функцией называется функция вида Показательная функция, её график и свойства с примерами решения

График показательной функции (экспонента)

Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения

1. Область определения: Показательная функция, её график и свойства с примерами решения

2. Область значений: Показательная функция, её график и свойства с примерами решения

3. Функция ни четная, ни нечетная.

4. Точки пересечения с осями координат:

с осью Показательная функция, её график и свойства с примерами решения

5. Промежутки возрастания и убывания:

Показательная функция, её график и свойства с примерами решения

функция Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения возрастает на всей области определения

Показательная функция, её график и свойства с примерами решения

функция Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения убывает на всей области определения

6. Промежутки знакопостоянства: Показательная функция, её график и свойства с примерами решения

7. Показательная функция, её график и свойства с примерами решения

8. Для любых действительных значений Показательная функция, её график и свойства с примерами решения выполняются равенства:

Показательная функция, её график и свойства с примерами решения

Понятие показательной функции

Показательной функцией называется функция вида Показательная функция, её график и свойства с примерами решения

Например, Показательная функция, её график и свойства с примерами решения показательная функция

Отметим, что функция вида Показательная функция, её график и свойства с примерами решения существует и при Показательная функция, её график и свойства с примерами решения

Тогда Показательная функция, её график и свойства с примерами решения при всех значениях Показательная функция, её график и свойства с примерами решения Но в этом случае функция Показательная функция, её график и свойства с примерами решения не называется показательной. (График функции Показательная функция, её график и свойства с примерами решения — прямая, изображенная на рис. 118.)

Показательная функция, её график и свойства с примерами решения

Поскольку при Показательная функция, её график и свойства с примерами решения выражение Показательная функция, её график и свойства с примерами решения определено при всех действительных значениях Показательная функция, её график и свойства с примерами решения то областью определения показательной функции Показательная функция, её график и свойства с примерами решения являются все действительные числа.

Попытаемся сначала построить графики некоторых показательных функций, например Показательная функция, её график и свойства с примерами решения «по точкам», а затем перейдем к характеристике общих свойств показательной функции.

Составим таблицу некоторых значений функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Построим на координатной плоскости соответствующие точки (рис. 119, а) и соединим эти точки плавной линией, которую естественно считать графиком функции Показательная функция, её график и свойства с примерами решения (рис. 119,6).

Как видим из графика, функция Показательная функция, её график и свойства с примерами решения является возрастающей функцией, которая принимает все значения на промежутке Показательная функция, её график и свойства с примерами решения

Аналогично составим таблицу некоторых значений функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Построим на координатной плоскости соответствующие точки (рис. 120, а) и соединим эти точки плавной линией, которую естественно считать графиком функции Показательная функция, её график и свойства с примерами решения(рис. 120, б).

 Показательная функция, её график и свойства с примерами решения

Как видим из графика, функция Показательная функция, её график и свойства с примерами решения является убывающей функцией, которая принимает все значения на промежутке. Заметим, что график функции Показательная функция, её график и свойства с примерами решения можно получить из графика функции Показательная функция, её график и свойства с примерами решения с помощью геометрических преобразований. Действительно, Показательная функция, её график и свойства с примерами решения

Таким образом, график функции Показательная функция, её график и свойства с примерами решения симметричен графику функции Показательная функция, её график и свойства с примерами решения относительно оси Показательная функция, её график и свойства с примерами решения (табл. 4, с. 28), и поэтому, если функция Показательная функция, её график и свойства с примерами решения является возрастающей, функция Показательная функция, её график и свойства с примерами решения обязательно будет убывающей.

Оказывается, что всегда при Показательная функция, её график и свойства с примерами решения график функции Показательная функция, её график и свойства с примерами решения похож на график функции Показательная функция, её график и свойства с примерами решения— на график функции Показательная функция, её график и свойства с примерами решения (рис. 121). График показательной функции называется экспонентой.

Свойства показательной функции

Как было обосновано выше, областью определения показательной функции Показательная функция, её график и свойства с примерами решения являются все действительные числа: Показательная функция, её график и свойства с примерами решения

Областью значений функции Показательная функция, её график и свойства с примерами решения является множество всех положительных чисел, то есть функция Показательная функция, её график и свойства с примерами решения принимает только положительные значения, причем любое положительное число является значением функции, то есть

Показательная функция, её график и свойства с примерами решения

Это означает, что график показательной функции Показательная функция, её график и свойства с примерами решения всегда расположен выше оси Показательная функция, её график и свойства с примерами решения и любая прямая, которая параллельна оси Показательная функция, её график и свойства с примерами решения и находится выше нее, пересекает этот график.

При Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает на всей области определения, Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения убывает на всей области определения.

Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяются последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели. Показательная функция, её график и свойства с примерами решения

Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Показательная функция, её график и свойства с примерами решения Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Все остальные свойства показательной функции легко обосновываются с помощью этих свойств.

Функция Показательная функция, её график и свойства с примерами решения не является ни четной, ни нечетной, поскольку Показательная функция, её график и свойства с примерами решения (по определению Показательная функция, её график и свойства с примерами решения Также Показательная функция, её график и свойства с примерами решения поскольку Показательная функция, её график и свойства с примерами решения (по свойству 1), а Показательная функция, её график и свойства с примерами решения

Точки пересечения с осями координат. График функции Показательная функция, её график и свойства с примерами решения пересекает ось Показательная функция, её график и свойства с примерами решения в точке Показательная функция, её график и свойства с примерами решения Действительно, на оси Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения

График показательной функции Показательная функция, её график и свойства с примерами решения не пересекает ось Показательная функция, её график и свойства с примерами решения поскольку на оси Показательная функция, её график и свойства с примерами решения но значение Показательная функция, её график и свойства с примерами решения не принадлежит области значений показательной функции Показательная функция, её график и свойства с примерами решения только при Показательная функция, её график и свойства с примерами решения но по определению Показательная функция, её график и свойства с примерами решения

Промежутки знакопостоянства. Показательная функция, её график и свойства с примерами решения при всех действительных значениях Показательная функция, её график и свойства с примерами решения поскольку Показательная функция, её график и свойства с примерами решения

Отметим еще одно свойство показательной функции. Поскольку график функции Показательная функция, её график и свойства с примерами решения пересекает ось Показательная функция, её график и свойства с примерами решения в точке Показательная функция, её график и свойства с примерами решения то, учитывая возрастание функции при Показательная функция, её график и свойства с примерами решения и убывание при Показательная функция, её график и свойства с примерами решения получаем следующие соотношения между значениями функции и соответствующими значениями аргумента: Показательная функция, её график и свойства с примерами решения

Функция Показательная функция, её график и свойства с примерами решения не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток Показательная функция, её график и свойства с примерами решения который не содержит ни наименьшего, ни наибольшего числа.

Свойства показательной функции, приведенные в пункте 8 таблицы 49:

Показательная функция, её график и свойства с примерами решения были обоснованы в разделе 3.

Отметим еще одно свойство показательной функции, которое выделяет ее из ряда других функций: если Показательная функция, её график и свойства с примерами решения то при любых действительных значениях аргументов Показательная функция, её график и свойства с примерами решения выполняется равенство Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Действительно, Показательная функция, её график и свойства с примерами решения В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция Показательная функция, её график и свойства с примерами решения — это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению Показательная функция, её график и свойства с примерами решения а затем обосновывается, что функция Показательная функция, её график и свойства с примерами решения совпадает с функцией Показательная функция, её график и свойства с примерами решения

Кроме общих свойств показательной функции при Показательная функция, её график и свойства с примерами решения отметим некоторые особенности поведения графиков показательных функций при конкретных значениях Показательная функция, её график и свойства с примерами решения Так, на рисунке 122 приведены графики показательных функций Показательная функция, её график и свойства с примерами решения при значениях основания Показательная функция, её график и свойства с примерами решения

Сравнивая эти графики, можно сделать вывод: чем больше основание Показательная функция, её график и свойства с примерами решения тем круче поднимается график функции Показательная функция, её график и свойства с примерами решения при движении точки вправо и тем быстрее график приближается к оси Показательная функция, её график и свойства с примерами решения при движении точки влево. Аналогично, чем меньше основание Показательная функция, её график и свойства с примерами решения тем круче поднимается график функции Показательная функция, её график и свойства с примерами решения при движении точки влево и тем быстрее график приближается к оси Показательная функция, её график и свойства с примерами решения при движении точки вправо.

Заканчивая разговор о показательной функции, укажем те причины, которые мешают рассматривать показательные функции с отрицательным или нулевым основанием.

Отметим, что выражение Показательная функция, её график и свойства с примерами решения можно рассматривать и при Показательная функция, её график и свойства с примерами решения и при Показательная функция, её график и свойства с примерами решения Но в этих случаях оно уже будет определено не при всех действительных значениях Показательная функция, её график и свойства с примерами решения как показательная функция Показательная функция, её график и свойства с примерами решения В частности, выражение Показательная функция, её график и свойства с примерами решения определено при всех Показательная функция, её график и свойства с примерами решения (и тогда Показательная функция, её график и свойства с примерами решения а выражение Показательная функция, её график и свойства с примерами решения — при всех целых значениях ( например Показательная функция, её график и свойства с примерами решения По этой причине не берут основание показательной функции Показательная функция, её график и свойства с примерами решения (получаем постоянную функцию при Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения (получаем функцию, определенную только при достаточно «редких» значениях Показательная функция, её график и свойства с примерами решения Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения Показательная функция, её график и свойства с примерами решения (например, как мы видели выше, пара значений Показательная функция, её график и свойства с примерами решения принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).

Примеры решения задач:

Пример №20

Сравните значения выражений:

Показательная функция, её график и свойства с примерами решения

Решение:

1) Функция Показательная функция, её график и свойства с примерами решения является убывающей Показательная функция, её график и свойства с примерами решения поэтому из неравенства Показательная функция, её график и свойства с примерами решения получаем Показательная функция, её график и свойства с примерами решения

2) Функция Показательная функция, её график и свойства с примерами решения является возрастающей поэтому из неравенства Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения получаем

Показательная функция, её график и свойства с примерами решения

Комментарий:

Учтем, что функция Показательная функция, её график и свойства с примерами решения является возрастающей, а при Показательная функция, её график и свойства с примерами решения — убывающей. Поэтому сначала сравним данное основание Показательная функция, её график и свойства с примерами решения с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.

Пример №21

Сравните с единицей положительное основание а, если известно, что выполняется неравенство:

Показательная функция, её график и свойства с примерами решения

Решение:

1) Поскольку Показательная функция, её график и свойства с примерами решения и по условию Показательная функция, её график и свойства с примерами решения то функция Показательная функция, её график и свойства с примерами решения является убывающей, следовательно,

Показательная функция, её график и свойства с примерами решения

2) Поскольку Показательная функция, её график и свойства с примерами решения и по условию Показательная функция, её график и свойства с примерами решения то функция Показательная функция, её график и свойства с примерами решения является возрастающей, следовательно, Показательная функция, её график и свойства с примерами решения

Комментарий:

В каждом задании данные выражения — это два значения функции Показательная функция, её график и свойства с примерами решения

Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы).

Если большему значению аргумента соответствует большее значение функции, то функция Показательная функция, её график и свойства с примерами решения является возрастающей и Показательная функция, её график и свойства с примерами решения Если большему значению аргумента соответствует меньшее значение функции, то функция Показательная функция, её график и свойства с примерами решения является убывающей, и тогда Показательная функция, её график и свойства с примерами решения

Пример №22

Постройте график функции:

Показательная функция, её график и свойства с примерами решения

Комментарий:

При Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения следовательно, график функции Показательная функция, её график и свойства с примерами решения всегда расположен выше оси Показательная функция, её график и свойства с примерами решения Этот график пересекает ось Показательная функция, её график и свойства с примерами решения в точке Показательная функция, её график и свойства с примерами решения

При Показательная функция, её график и свойства с примерами решения показательная функция Показательная функция, её график и свойства с примерами решения возрастает, следовательно, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.

При Показательная функция, её график и свойства с примерами решения показательная функция Показательная функция, её график и свойства с примерами решения убывает, следовательно, графиком функции Показательная функция, её график и свойства с примерами решения будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь вниз, график приближается к оси Показательная функция, её график и свойства с примерами решения но никогда ее не пересекает.)

Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.

Решение:

Показательная функция, её график и свойства с примерами решения

Пример №23

Изобразите схематически график функции Показательная функция, её график и свойства с примерами решения

Решение:

Последовательно строим графики:

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Комментарий:

Составим план построения графика данной функции с помощью последовательных геометрических преобразований (табл. 4 на с. 28). 1. Мы можем построить график функции Показательная функция, её график и свойства с примерами решения основание Показательная функция, её график и свойства с примерами решения показательная функция убывает).

2. Затем можно построить график функции Показательная функция, её график и свойства с примерами решения справа от оси Показательная функция, её график и свойства с примерами решения (и на самой оси) график функции Показательная функция, её график и свойства с примерами решения остается без изменений, и эта же часть графика отображается симметрично относительно оси

Показательная функция, её график и свойства с примерами решения

3. После этого можно построить график функции

Показательная функция, её график и свойства с примерами решения

параллельно перенести график Показательная функция, её график и свойства с примерами решения вдоль оси Показательная функция, её график и свойства с примерами решения на (-3) единицы.

4. Затем можно построить график данной функцииПоказательная функция, её график и свойства с примерами решения выше оси Показательная функция, её график и свойства с примерами решения (и на самой оси) график функции Показательная функция, её график и свойства с примерами решения должен остаться без изменений(но таких точек у графика функции Показательная функция, её график и свойства с примерами решения нет, а ниже оси Показательная функция, её график и свойства с примерами решения — график функции Показательная функция, её график и свойства с примерами решения необходимо отобразить симметрично относительно оси Показательная функция, её график и свойства с примерами решения

Решение показательных уравнении и неравенств

Основные формулы и соотношения:

Показательная функция, её график и свойства с примерами решения

График функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения — возрастает

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения — убывает

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения — постоянная

Схема равносильных преобразований простейших показательных уравнений:

Ориентир:

При Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Пример №24

Показательная функция, её график и свойства с примерами решения

Ответ: —1

Показательная функция, её график и свойства с примерами решения

Корней нет (поскольку Показательная функция, её график и свойства с примерами решения для всех Показательная функция, её график и свойства с примерами решения

Ответ: корней нет.

Приведение некоторых показательных уравнений к простейшим:

1) Если в левой и правой частях показательного уравнения стоят только произведения, частные, корни или степени, то целесообразно с помощью основных формул попробовать записать обе части уравнения как степени с одним основанием.

Пример №25

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

2) Если в одной части показательного уравнения стоит число, а в другой все члены содержат выражение вида Показательная функция, её график и свойства с примерами решения (показатели степеней отличаются только свободными членами), то удобно в этой части уравнения вынести за скобки наименьшую степень Показательная функция, её график и свойства с примерами решения

Пример №26

Показательная функция, её график и свойства с примерами решения

Ответ: 2

Показательная функция, её график и свойства с примерами решения

Объяснение и обоснование:

Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).

Простейшие показательные уравнения

Рассмотрим простейшее показательное уравнение вида

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решениягде Показательная функция, её график и свойства с примерами решения Поскольку при этих значениях Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения строго монотонна (возрастает при Показательная функция, её график и свойства с примерами решения и убывает при Показательная функция, её график и свойства с примерами решения то каждое свое значение она принимает только при одном значении аргумента. Это означает, что уравнение Показательная функция, её график и свойства с примерами решения имеет единственный корень. Чтобы его найти, достаточно представить Показательная функция, её график и свойства с примерами решения

Очевидно, что Показательная функция, её график и свойства с примерами решения является корнем уравнения Показательная функция, её график и свойства с примерами решения

Графически это проиллюстрировано на рисунке 123.

Например, чтобы решить уравнение Показательная функция, её график и свойства с примерами решения достаточно представить это уравнение в виде Показательная функция, её график и свойства с примерами решения и записать его единственный корень Показательная функция, её график и свойства с примерами решения

Если Показательная функция, её график и свойства с примерами решения то уравнение Показательная функция, её график и свойства с примерами решения корней не имеет, поскольку Показательная функция, её график и свойства с примерами решения всегда больше нуля. (На графиках, приведенных на рисунке 124, прямая Показательная функция, её график и свойства с примерами решения не пересекает график функции Показательная функция, её график и свойства с примерами решения

Например, уравнение Показательная функция, её график и свойства с примерами решения не имеет корней.

Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при Показательная функция, её график и свойства с примерами решения уравнение вида

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения равносильно уравнениюПоказательная функция, её график и свойства с примерами решения

Коротко это утверждение можно записать так: при Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция Показательная функция, её график и свойства с примерами решения является строго монотонной и каждое свое значение принимает только при одном значении аргумента (Показательная функция, её график и свойства с примерами решениято есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2). А это и означает, что уравнения (2) и(3) равносильны.

В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями (см. таблицу 46) привести (если это возможно) данное уравнение к виду Показательная функция, её график и свойства с примерами решения

Для решения более сложных показательных уравнений чаще всего используют замену переменных (применение этого метода рассмотрено в табл. 51, с. 344) или свойства соответствующих функций (применение этих методов рассмотрено в табл. 58, с. 403).

Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Но в показательных уравнениях чаще всего областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. ниже задачи 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ (задача 4″ на с. 343).

Примеры решения задач:

Пример №27

Решите уравнение:

Показательная функция, её график и свойства с примерами решения

Решение:

1) Показательная функция, её график и свойства с примерами решения

2) Показательная функция, её график и свойства с примерами решения — корней нет, поскольку Показательная функция, её график и свойства с примерами решения всегда;

3) Показательная функция, её график и свойства с примерами решения

Комментарий:

При Показательная функция, её график и свойства с примерами решения всегда Показательная функция, её график и свойства с примерами решения поэтому уравнение Показательная функция, её график и свойства с примерами решения не имеет корней.

Другие уравнения приведем к виду Показательная функция, её график и свойства с примерами решения и перейдем к равносильному уравнению Показательная функция, её график и свойства с примерами решения

Пример №28

Решите уравнение:

Показательная функция, её график и свойства с примерами решения

Решение:

1) Данное уравнение равносильно уравнениям:

Показательная функция, её график и свойства с примерами решения

Ответ: 5.

2) Данное уравнение равносильно уравнениям:

Показательная функция, её график и свойства с примерами решения

Ответ: 1.

Комментарий:

В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени. В этом случае для приведения уравнения к виду Показательная функция, её график и свойства с примерами решения попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одним основанием.

В уравнении 1 следует обратить внимание на то, что Показательная функция, её график и свойства с примерами решения а Показательная функция, её график и свойства с примерами решения таким образом, левую и правую части этого уравнения можно записать как степени числа 5.

Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево, например для левой части этого уравнения воспользуемся формулой Показательная функция, её график и свойства с примерами решения то есть запишем Показательная функция, её график и свойства с примерами решения

Пример №29

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Данное уравнение равносильно уравнениям:

Показательная функция, её график и свойства с примерами решения

Ответ: 1.

Комментарий:

В левой части уравнения все члены содержат выражения вида Показательная функция, её график и свойства с примерами решения (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть Показательная функция, её график и свойства с примерами решения

Пример №30

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

► ОДЗ: Показательная функция, её график и свойства с примерами решения

Рассмотрим два случая.

1) При Показательная функция, её график и свойства с примерами решения получаем уравнение Показательная функция, её график и свойства с примерами решения корни которого — все действительные числа из ОДЗ, то есть Показательная функция, её график и свойства с примерами решения

2) При Показательная функция, её график и свойства с примерами решения значение Показательная функция, её график и свойства с примерами решения и тогда данное уравнение равносильно уравнению

Показательная функция, её график и свойства с примерами решения

Отсюда Показательная функция, её график и свойства с примерами решения

Ответ: 1) при Показательная функция, её график и свойства с примерами решения

2) при Показательная функция, её график и свойства с примерами решения

Комментарий:

Это уравнение относительно переменной Показательная функция, её график и свойства с примерами решения которое содержит параметр Показательная функция, её график и свойства с примерами решения Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях Показательная функция, её график и свойства с примерами решения основание Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решения является возрастающей, а при Показательная функция, её график и свойства с примерами решения — постоянной (см. графики функции Показательная функция, её график и свойства с примерами решения в табл. 50).

Основание Показательная функция, её график и свойства с примерами решения а при всех других значениях Показательная функция, её график и свойства с примерами решения основание Показательная функция, её график и свойства с примерами решения

Рассмотрим каждый из этих случаев отдельно, то есть: Показательная функция, её график и свойства с примерами решения

Решение более сложных показательных уравнений и их систем

Схема поиска плана решения показательных уравнений:

  1. Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями, приведенные в табл. 50).
  2. Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.

Учитывая, что Показательная функция, её график и свойства с примерами решения приводим все степени к одному основанию 2: Показательная функция, её график и свойства с примерами решения Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения

Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения корней нет.

Ответ: 1.

3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).

Показательная функция, её график и свойства с примерами решения

Приведем все степени к двум основаниям 2 и 3: Показательная функция, её график и свойства с примерами решения

Имеем однородное уравнение (у всех членов одинаковая суммарная степень — Показательная функция, её график и свойства с примерами решения Для его решения разделим обе части на Показательная функция, её график и свойства с примерами решения

  • Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения — корней нет или Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения Ответ: 0.

4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное уравнение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций.

Показательная функция, её график и свойства с примерами решения

Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаемПоказательная функция, её график и свойства с примерами решения

Теперь можно вынести за скобки общий множитель Показательная функция, её график и свойства с примерами решения

  • Показательная функция, её график и свойства с примерами решения

Тогда Показательная функция, её график и свойства с примерами решения Получаем два уравнения:

  • Показательная функция, её график и свойства с примерами решения

Ответ: 2; 1.

Объяснение и обоснование:

Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в предыдущем пункте 30.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней, используя формулы: Показательная функция, её график и свойства с примерами решения Например, в уравнении Показательная функция, её график и свойства с примерами решения вместо Показательная функция, её график и свойства с примерами решения записываем произведение Показательная функция, её график и свойства с примерами решения и получаем уравнение Показательная функция, её график и свойства с примерами решения равносильное заданному.

Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием Показательная функция, её график и свойства с примерами решения и получить уравнение Показательная функция, её график и свойства с примерами решения

Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Обращаем внимание на то, что Показательная функция, её график и свойства с примерами решения Таким образом, в уравнение (3) переменная входит фактически в одном виде — Показательная функция, её график и свойства с примерами решения поэтому в этом уравнении удобно ввести замену Показательная функция, её график и свойства с примерами решения Получаем квадратное уравнение Показательная функция, её график и свойства с примерами решения для которого находим корни, а затем выполняем обратную замену (см. решение в табл. 51).

Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений на с. 341).

В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение.

Например, рассмотрим уравнение Показательная функция, её график и свойства с примерами решения

Все степени в этом уравнении можно записать через основания 2 и 3, поскольку Показательная функция, её график и свойства с примерами решения

Получаем уравнение Показательная функция, её график и свойства с примерами решения

Все одночлены, стоящие в левой части этого уравнения, имеют степень Показательная функция, её график и свойства с примерами решения (степень одночленаПоказательная функция, её график и свойства с примерами решения также равна Показательная функция, её график и свойства с примерами решения

Напомним (см. раздел 2, с. 172):

Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным.

Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.

Следовательно, уравнение (6) является однородным, и его можно решить делением обеих частей или на Показательная функция, её график и свойства с примерами решения или на Показательная функция, её график и свойства с примерами решения Отметим, что при всех значениях Показательная функция, её график и свойства с примерами решения выражения Показательная функция, её график и свойства с примерами решения не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на Показательная функция, её график и свойства с примерами решения получаем

Показательная функция, её график и свойства с примерами решения или после сокращения Показательная функция, её график и свойства с примерами решения

В последнем уравнении все члены можно представить как степени с одним основанием Показательная функция, её график и свойства с примерами решения и выполнить замену Показательная функция, её график и свойства с примерами решения Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в таблице 51.

Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесобразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в таблице 51 для уравнения Показательная функция, её график и свойства с примерами решения

Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.

Примеры решения задач:

Пример №31

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Замена Показательная функция, её график и свойства с примерами решения Получаем

Показательная функция, её график и свойства с примерами решения

Тогда Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения

Обратная замена дает

Показательная функция, её график и свойства с примерами решения — корней нет или Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения

Ответ: 1.

Комментарий:

В данное уравнение переменная входит только в одном виде Показательная функция, её график и свойства с примерами решения и поэтому удобно ввести замену Показательная функция, её график и свойства с примерами решения и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.

Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что Показательная функция, её график и свойства с примерами решения и поэтому ОДЗ полученного уравнения: Показательная функция, её график и свойства с примерами решения будет учтена автоматически).

Пример №32

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения дает уравнение

Показательная функция, её график и свойства с примерами решения

Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда

Показательная функция, её график и свойства с примерами решения корней нет

Ответ: 0.

Комментарий:

  1. Избавляемся от числовых слагаемых в показателях степеней.
  2. Приводим все степени (с переменной в показателе) к одному основанию 5.
  3. Выполняем замену Показательная функция, её график и свойства с примерами решения решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).

Пример №33

Решите уравнение Показательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения

Ответ: 2

Комментарий:

  1. Избавляемся от числовых слагаемых в показателях степеней,переносим все члены уравнения в одну сторону и приводим подобные члены.
  2. Замечаем, что степени всех членов полученного уравнения Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения(с двумя основаниями 2 и 3) одинаковые — Показательная функция, её график и свойства с примерами решения следовательно, это уравнение однородное. Его можно решить делением обеих частей на наибольшую степень одного из видов выражений с переменной — или на Показательная функция, её график и свойства с примерами решения или на Показательная функция, её график и свойства с примерами решения Учитывая, что Показательная функция, её график и свойства с примерами решения при всех значениях Показательная функция, её график и свойства с примерами решения в результате деления на Показательная функция, её график и свойства с примерами решения получаем уравнение, равносильное предыдущему (а значит, и заданному).

При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.

Пример №34

Решите систему уравнений Показательная функция, её график и свойства с примерами решения

Решение:

Из первого уравнения системы Показательная функция, её график и свойства с примерами решения

Тогда из второго уравнения получаем Показательная функция, её график и свойства с примерами решения то есть Показательная функция, её график и свойства с примерами решенияЗамена Показательная функция, её график и свойства с примерами решения дает уравнение Показательная функция, её график и свойства с примерами решения из которого получаем уравнение Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения имеющее корни: Показательная функция, её график и свойства с примерами решения Обратная замена дает Показательная функция, её график и свойства с примерами решения тогда Показательная функция, её график и свойства с примерами решения откуда Показательная функция, её график и свойства с примерами решения Находим соответствующие значения Показательная функция, её график и свойства с примерами решения если Показательная функция, её график и свойства с примерами решения если Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Если из первого уравнения выразить Показательная функция, её график и свойства с примерами решения через Показательная функция, её график и свойства с примерами решения и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2).

Выполняя замену, учитываем, что Показательная функция, её график и свойства с примерами решения Тогда в полученном дробном уравнении Показательная функция, её график и свойства с примерами решения знаменатель Показательная функция, её график и свойства с примерами решения Таким образом, это дробное уравнение равносильно уравнению Показательная функция, её график и свойства с примерами решения

Пример №35

Решите систему уравнений Показательная функция, её график и свойства с примерами решения

Решение:

Замена Показательная функция, её график и свойства с примерами решения и дает систему

Показательная функция, её график и свойства с примерами решения

Из второго уравнения этой системы имеем Показательная функция, её график и свойства с примерами решения Тогда из первого уравнения получаем Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения Обратная замена дает

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Если обозначить Показательная функция, её график и свойства с примерами решения то Показательная функция, её график и свойства с примерами решения

Тогда данная система будет равносильна алгебраической системе, которую легко решить.

После обратной замены получаем систему простейших показательных уравнений

Решение показательных неравенств

График показательной функции Показательная функция, её график и свойства с примерами решения:

Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения

Схема равносильных преобразований простейших показательных неравенств:

Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения

знак неравенства сохраняется знак неравенства меняется на противоположный

Пример №36

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения . Функция Показательная функция, её график и свойства с примерами решения является возрастающей, следовательно: Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Пример №37

Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения Функция Показательная функция, её график и свойства с примерами решения убывающая, следовательно: Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Решение более сложных показательных неравенств

I. С помощью равносильных преобразований (по схеме решения показательных уравнений, табл. 51) данное неравенство приводится к неравенству известного вида (квадратному, дробному и т. д.). После решения полученного неравенства приходим к простейшим показательным неравенствам.

Пример №38

Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения дает неравенство Показательная функция, её график и свойства с примерами решения решения которого Показательная функция, её график и свойства с примерами решения (см. рисунок).

Показательная функция, её график и свойства с примерами решения

Обратная замена дает Показательная функция, её график и свойства с примерами решения (решений нет) или Показательная функция, её график и свойства с примерами решения откуда

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

II. Применяем общий метод интервалов, приводя данное неравенство к виду f (x)Показательная функция, её график и свойства с примерами решения0 и используя схему:

1. Найти ОДЗ.

2. Найти нули Показательная функция, её график и свойства с примерами решения

3. Отметить нули функции на ОДЗ и найти знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ.

4. Записать ответ, учитывая знак неравенства.

Показательная функция, её график и свойства с примерами решения

Решим неравенство методом интервалов. Данное неравенство равносильно неравенству Показательная функция, её график и свойства с примерами решения Обозначим Показательная функция, её график и свойства с примерами решения

1. ОДЗ: Показательная функция, её график и свойства с примерами решения

2. Нули функции: Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения

Поскольку функция Показательная функция, её график и свойства с примерами решения является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

3. Отмечаем нули функции на ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Объяснение и обоснование:

Решение простейших показательных неравенств вида Показательная функция, её график и свойства с примерами решения где Показательная функция, её график и свойства с примерами решения основывается на свойствах функции Показательная функция, её график и свойства с примерами решения которая возрастает при Показательная функция, её график и свойства с примерами решения и убывает при Показательная функция, её график и свойства с примерами решения Например, чтобы найти решение неравенства Показательная функция, её график и свойства с примерами решения достаточно представить Показательная функция, её график и свойства с примерами решения в виде Показательная функция, её график и свойства с примерами решения Получаем неравенствоПоказательная функция, её график и свойства с примерами решения

При Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем Показательная функция, её график и свойства с примерами решения (знак этого неравенства совпадает со знаком неравенства (1)).

При Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем Показательная функция, её график и свойства с примерами решения (знак этого неравенства противоположен знаку неравенства (1)).

Графически это проиллюстрировано на рисунке 125.

Например, чтобы решить неравенство Показательная функция, её график и свойства с примерами решения достаточно представить это неравенство в виде Показательная функция, её график и свойства с примерами решения учесть, что Показательная функция, её график и свойства с примерами решения (функция Показательная функция, её график и свойства с примерами решения является возрастающей, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Заметим, что решение данного неравенства можно записывать в виде Показательная функция, её график и свойства с примерами решения или в виде промежутка Показательная функция, её график и свойства с примерами решения

Аналогично, чтобы решить неравенство Показательная функция, её график и свойства с примерами решения Достаточно представить это неравенство в виде Показательная функция, её график и свойства с примерами решения Учесть Показательная функция, её график и свойства с примерами решения что (Функция Показательная функция, её график и свойства с примерами решения является убывающей, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение: Показательная функция, её график и свойства с примерами решения

Учитывая, что при любых положительных значениях а значение Показательная функция, её график и свойства с примерами решения всегда больше нуля, получаем, что при Показательная функция, её график и свойства с примерами решения неравенство Показательная функция, её график и свойства с примерами решения решений не имеет, а неравенство Показательная функция, её график и свойства с примерами решения выполняется при всех действительных значениях Показательная функция, её график и свойства с примерами решения

Например, неравенство Показательная функция, её график и свойства с примерами решения не имеет решений, а решениями неравенства являются все действительные числа.

Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при Показательная функция, её график и свойства с примерами решения неравенство Показательная функция, её график и свойства с примерами решения равносильно неравенству Показательная функция, её график и свойства с примерами решения а при Показательная функция, её график и свойства с примерами решения — неравенству Показательная функция, её график и свойства с примерами решения

При Показательная функция, её график и свойства с примерами решения (знак неравенства сохраняется).

При Показательная функция, её график и свойства с примерами решения (знак неравенства меняется на противоположный).

Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при Показательная функция, её график и свойства с примерами решения неравенства Показательная функция, её график и свойства с примерами решения могут быть верными только одновременно, поскольку функция Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения является возрастающей и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) являются равносильными.

Аналогично обосновывается равносильность неравенств Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения при Показательная функция, её график и свойства с примерами решения

В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду Показательная функция, её график и свойства с примерами решения

Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.

Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).

Примеры решения задач:

Пример №39

Решите неравенство Показательная функция, её график и свойства с примерами решения

Решение:

Показательная функция, её график и свойства с примерами решения Поскольку функция Показательная функция, её график и свойства с примерами решения является убывающей, то Показательная функция, её график и свойства с примерами решения

Отсюда Показательная функция, её график и свойства с примерами решения ( см.рисунок)

Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Запишем правую часть неравенства как степень числа Показательная функция, её график и свойства с примерами решения Поскольку Показательная функция, её график и свойства с примерами решения то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному).

Для решения полученного квадратного неравенства используем графическую иллюстрацию.

Пример №40

Решите неравенство Показательная функция, её график и свойства с примерами решения

Решение:

ОДЗ: Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения дает неравенство

Показательная функция, её график и свойства с примерами решения равносильное неравенству Показательная функция, её график и свойства с примерами решения Поскольку Показательная функция, её график и свойства с примерами решения получаем Показательная функция, её график и свойства с примерами решения Отсюда Показательная функция, её график и свойства с примерами решения Учитывая, что Показательная функция, её график и свойства с примерами решения имеем Показательная функция, её график и свойства с примерами решения Выполняя обратную замену, получаем Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения

Функция Показательная функция, её график и свойства с примерами решения является возрастающей, таким образом, Показательная функция, её график и свойства с примерами решения Учитывая ОДЗ, получаем Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя формулу Показательная функция, её график и свойства с примерами решенияизбавляемся от числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену Показательная функция, её график и свойства с примерами решения

В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному.

После выполнения обратной замены следует учесть не только возрастание функции Показательная функция, её график и свойства с примерами решения но и ОДЗ исходного неравенства.

Пример №41

Решите неравенство Показательная функция, её график и свойства с примерами решения

Решение:

Решим неравенство методом интервалов. Обозначим

Показательная функция, её график и свойства с примерами решения

1 ОДЗ: Показательная функция, её график и свойства с примерами решения

2. Нули функции: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Замена Показательная функция, её график и свойства с примерами решения Получаем Показательная функция, её график и свойства с примерами решения Обратная замена дает: Показательная функция, её график и свойства с примерами решения

Отсюда Показательная функция, её график и свойства с примерами решения Отметим нули функции на ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из полученных промежутков и записываем решения неравенства Показательная функция, её график и свойства с примерами решения Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Комментарий:

Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в таблице 52.

При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Показательная функция, её график и свойства с примерами решения Учитывая, что Показательная функция, её график и свойства с примерами решения при всех значениях Показательная функция, её график и свойства с примерами решения в результате деления на Показательная функция, её график и свойства с примерами решения получаем уравнение, равносильное предыдущему.

Разумеется, для решения данного неравенства можно было учесть, что Показательная функция, её график и свойства с примерами решения всегда, и после деления данного неравенства на Показательная функция, её график и свойства с примерами решения и замены Показательная функция, её график и свойства с примерами решения получить алгебраическое неравенство.

Пример №42

Решите неравенство Показательная функция, её график и свойства с примерами решения

Комментарий:

Данное нестрогое неравенство также удобно решать методом интервалов. Записывая ответ, следует учитывать, что в случае, когда мы решаем нестрогое неравенство Показательная функция, её график и свойства с примерами решения все нули функции Показательная функция, её график и свойства с примерами решения должны войти в ответ.

Решение:

Обозначим Показательная функция, её график и свойства с примерами решения

1. ОДЗ: Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения (см. рисунок).

Показательная функция, её график и свойства с примерами решения

2. Нули функции: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения Тогда Показательная функция, её график и свойства с примерами решения Из первого уравнения: Показательная функция, её график и свойства с примерами решения — не принадлежит ОДЗ, а из второго: Показательная функция, её график и свойства с примерами решения

3. Отмечаем нули Показательная функция, её график и свойства с примерами решения на ОДЗ, находим знак Показательная функция, её график и свойства с примерами решения в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства Показательная функция, её график и свойства с примерами решения

Ответ: Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

Показательные функции в высшей математике

Рассмотрим функцию, заданную равенством Показательная функция, её график и свойства с примерами решения Составим таблицу её значений для нескольких значений аргумента:
Показательная функция, её график и свойства с примерами решения          

На рисунке 19, а обозначены точки, координаты которых соответствуют этой таблице. Когда на этой же координатной плоскости обозначить больше точек с координатами Показательная функция, её график и свойства с примерами решения удовлетворяющих равенству Показательная функция, её график и свойства с примерами решения они разместятся, как показано на рисунке 19, б. А если для каждого действительного значения Показательная функция, её график и свойства с примерами решения вычислить соответствующее значение Показательная функция, её график и свойства с примерами решения и обозначить на координатной плоскости точки с координатами Показательная функция, её график и свойства с примерами решения они разместятся на одной бесконечной кривой (рис. 19, в). Эта кривая — график функции Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения

График функции Показательная функция, её график и свойства с примерами решения размещён в I и II координатных четвертях. Когда Показательная функция, её график и свойства с примерами решения он как угодно близко подходит к оси Показательная функция, её график и свойства с примерами решения но общих точек с ней не имеет. Говорят, что график функции Показательная функция, её график и свойства с примерами решения асимптотически приближается к оси Показательная функция, её график и свойства с примерами решения что ось Показательная функция, её график и свойства с примерами решения — асимптота этого графика. Когда Показательная функция, её график и свойства с примерами решения неограниченно увеличивается, график функции Показательная функция, её график и свойства с примерами решения всё дальше отходит от оси Показательная функция, её график и свойства с примерами решения Как видим, функция Показательная функция, её график и свойства с примерами решения определена для всех действительных чисел, её область значений — промежуток Показательная функция, её график и свойства с примерами решения На всей области определения функция возрастает, она ни чётная, ни нечётная, ни периодическая.

Рассматриваемая функция Показательная функция, её график и свойства с примерами решения — пример показательной функции, а именно — показательная функция с основанием 2.

Показательной функцией называется функция, заданная формулой Показательная функция, её график и свойства с примерами решения

Примеры других показательных функций: Показательная функция, её график и свойства с примерами решенияПоказательная функция, её график и свойства с примерами решения Их графики изображены на рисунке 20. Согласно определению функция Показательная функция, её график и свойства с примерами решения не является показательной.

Основные свойства показательной функции

  1. Область определения функции Показательная функция, её график и свойства с примерами решениямножество Показательная функция, её график и свойства с примерами решения ибо при каждом положительном Показательная функция, её график и свойства с примерами решения и действительном Показательная функция, её график и свойства с примерами решения выражение Показательная функция, её график и свойства с примерами решения определено.
  2. Область значений функции Показательная функция, её график и свойства с примерами решения— множество Показательная функция, её график и свойства с примерами решения поскольку, если основание Показательная функция, её график и свойства с примерами решения степени положительное, то положительная и степень Показательная функция, её график и свойства с примерами решения Следовательно, функция Показательная функция, её график и свойства с примерами решения принимает только положительные значения.
  3. Если Показательная функция, её график и свойства с примерами решения функция Показательная функция, её график и свойства с примерами решения возрастает, а если Показательная функция, её график и свойства с примерами решения — убывает. Это свойство хорошо видно на графиках функций (рис. 20).Показательная функция, её график и свойства с примерами решения
  4. Функция Показательная функция, её график и свойства с примерами решения каждое своё значение принимает только один раз, т. е. прямую, параллельную оси Показательная функция, её график и свойства с примерами решения график показательной функции может пересечь только в одной точке. Это следует из свойства 3.
  5. Функция Показательная функция, её график и свойства с примерами решения ни чётная, ни нечётная, ни периодическая. Поскольку каждое своё значение она принимает только один раз, то не может быть чётной или периодической. Не может она быть и нечётной, так как не имеет ни отрицательных, ни нулевых значений.
  6. График каждой показательной функции проходит через точку Показательная функция, её график и свойства с примерами решенияпоскольку если Показательная функция, её график и свойства с примерами решения

При решении задач и упражнений, связанных с показательной функцией, особенно часто используется третье свойство, в котором указывается на монотонность показательной функции, то есть её возрастание или убывание. В частности из него вытекают следующие утверждения.

  1. Если Показательная функция, её график и свойства с примерами решения
  2. Если Показательная функция, её график и свойства с примерами решения
  3. Если Показательная функция, её график и свойства с примерами решения

Присмотритесь к графикам показательных функций Показательная функция, её график и свойства с примерами решения и Показательная функция, её график и свойства с примерами решения (рис. 21). Угловой коэффициент касательной, проведённой в точке Показательная функция, её график и свойства с примерами решения к графику функции Показательная функция, её график и свойства с примерами решения меньше 1, а к графику функции Показательная функция, её график и свойства с примерами решения— больше 1. Существует ли такая показательная функция, у которой угловой коэффициент касательной к её графику в точке Показательная функция, её график и свойства с примерами решения равен 1? Существует (рис. 22).Основание этой показательной функции — иррациональное число 2,71828 …, которое принято обозначать буквой Показательная функция, её график и свойства с примерами решения Показательная функция Показательная функция, её график и свойства с примерами решения в математике и многих прикладных науках встречается довольно часто, ее называют экспонентом (лат. exponens — выставлять напоказ).

Показательная функция, её график и свойства с примерами решения

К показательной функции иногда относят также функции вида Показательная функция, её график и свойства с примерами решения При помощи таких функций описывают много разных процессов, связанных с физикой, химией, биологией, экономикой, социологией и т. д. Например, процессы новообразования и распада вещества можно описать с помощью формулы Показательная функция, её график и свойства с примерами решенияЗдесь Показательная функция, её график и свойства с примерами решения — количество вновь образованного (или распавшегося) вещества в момент времени Показательная функция, её график и свойства с примерами решения — начальное количество вещества, Показательная функция, её график и свойства с примерами решения — постоянная, значение которой определяется для конкретной ситуации. Подберите самостоятельно соответствующие примеры.

Показательная функция, её график и свойства с примерами решения

Пример №43

Сравните с единицей число: Показательная функция, её график и свойства с примерами решения

Решение:

а) Представим число 1 в виде степени с основанием 0,5. Имеем: Показательная функция, её график и свойства с примерами решения Поскольку функция Показательная функция, её график и свойства с примерами решения убывающая и Показательная функция, её график и свойства с примерами решения отсюда Показательная функция, её график и свойства с примерами решения

Показательная функция, её график и свойства с примерами решения функция возрастающая и Показательная функция, её график и свойства с примерами решения поэтому Показательная функция, её график и свойства с примерами решения отсюда Показательная функция, её график и свойства с примерами решения

Пример №44

Функция Показательная функция, её график и свойства с примерами решения задана на промежутке Показательная функция, её график и свойства с примерами решения Найдите её наименьшее и наибольшее значения.

Решение:

Поскольку Показательная функция, её график и свойства с примерами решения то данная функция убывающая. Поэтому её наименьшее и наибольшее значения: Показательная функция, её график и свойства с примерами решения

Пример №45

Постройте график функции Показательная функция, её график и свойства с примерами решения

Решение:

Функция Показательная функция, её график и свойства с примерами решения — чётная (проверьте). График чётной функции симметричен относительно оси Показательная функция, её график и свойства с примерами решения поэтому достаточно построить график заданной функции для Показательная функция, её график и свойства с примерами решения и отобразить его симметрично относительно оси Показательная функция, её график и свойства с примерами решения Если Показательная функция, её график и свойства с примерами решения Построим график функции Показательная функция, её график и свойства с примерами решения для Показательная функция, её график и свойства с примерами решения и отобразим его симметрично относительно оси Показательная функция, её график и свойства с примерами решения (рис. 23).

Показательная функция, её график и свойства с примерами решения

  • Производные показательной и логарифмической функций
  • Показательно-степенные уравнения и неравенства
  • Показательные уравнения и неравенства
  • Логарифмические уравнения и неравенства
  • Техника дифференцирования
  • Дифференциальная геометрия
  • Логарифмическая функция, её свойства и график
  • Логарифмические выражения

  Степенная функция. В данной статье мы рассмотрим вычисление максимума (минимума) указанной функции. В предыдущей статье  мы с вами рассмотрели задачи на нахождение максимума (минимума) функции с числом «е». Здесь представлены примеры без числа «е». Некоторые примеры, в которых требуется найти наибольшее или наименьшее значение функции, вообще можно решить без нахождения производной.

В любом случае, советую вам ознакомится с этой  статьёй, если вы ещё этого не сделали. Рассмотрим задачи:

Найдите точку максимума функции у = (х – 2)2(х – 4)+5

Для этого найдём производную, приравняем её к нулю, найдём корни полученного уравнения:

Исследование функций. Задачи в14

Обратите  внимание, что мы сразу представили результат в виде произведения, рекомендую делать именно так. Зачем вам упрощать его до многочлена, а затем снова раскладывать его на множители?  Для дальнейших действий проще сразу представить в виде произведения.

Находим нули производной:

Полученные точки разбивают числовую ость на интервалы.

Посмотрим, как ведёт себя график функции на этих интервалах. Возьмём значения из них, подставим их в производную и определим знак:

На интервале (–∞;2) функция возрастает, на интервале (2;10/3) функция убывает.  Значит  х = 2  это точка максимума.

Второй способ:

Перебираем значения  х от – 5 до 5  подставляем  в функцию и вычисляем. Затем по полученным значениям функции определяем точку максимума.

Почему берём интервал от  – 5 до 5? Потому, что большинство ответов на ЕГЭ в подобных задачах лежат в этих пределах. Если будет необходимо, то берите интервал шире. Для наглядности можете построить график.

Решите предложенным способом самостоятельно, а затем посмотрите решение.

*Данный способ использовать осторожно, в будущем возможно изменение типов заданий входящих в ЕГЭ и такой подход может не сработать.

Ответ: 2

Найдите точку максимума функции  у = (х – 3)2(х – 10) – 9

Это аналогичная задача.

Для этого найдём производную, приравняем её к нулю, найдём корни полученного уравнения:

Находим нули производной:

Полученные точки разбивают числовую ость на интервалы.

Посмотрим, как ведёт себя график функции на этих интервалах. Возьмём значения из интервалов, подставим их в производную и определим знак:

На интервале (–∞;3) функция возрастает, на интервале (3;23/3) функция убывает.  Значит,  х = 3  это точка максимума.

Вторым способом попробуйте решить сами.

Ответ: 3

Найдите наименьшее значение функции у = (х–3)2(х–6)–1 на отрезке [4;6].

Так как интервал дан (при чём он небольшой), то здесь рекомендую подставить целые значения из него  (4, 5 и 6) в функцию:

Наименьшее значение функции на заданном отрезке равно  – 5.

Ответ:  – 5

Решите самостоятельно:

Посмотреть решение 

Найдите наибольшее значение функции  у=(х+6)2(х–1)–6 на отрезке [– 9;–2].

Данную задачу можно решать любым из двух способов. Интервал здесь маленьким не назовёшь, но и в то же время он невелик.

Решим её подстановкой всех значений из интервала.

Подставим – 9, – 8, – 7, – 6, – 5, – 4, – 3, –2.

Наибольшее значение функции равно  – 6.

Ответ:  – 6

Решите самостоятельно:

Посмотреть решение

Подведём итог. Как  видите, задачи  решаются по простому алгоритму. Важно для успешного решения знать таблицу производных, правила дифференцирования и производную сложной функции, свойства производной для исследования графиков функций.

Конечно, когда используем метод подстановки значений из интервала, то знать всё это, казалось бы, не обязательно, но такой подход помогает не всегда. Советую использовать его лишь как дополнительный инструмент.

Мы продолжим рассматривать задачи в этой рубрике, не пропустите!

Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают доступ ко многим исследованиям. Л.Эйлер

Свойства показательной функции и её график

В курсе алгебры рассматривалась степень с действительным показателем. Напомним основные свойства степени. Пусть a>0, b>0, х,Показательная функция и Показательная функция — любые действительные числа. Тогда

Показательная функция

Эйлер Леонард (1707—1783) — математик, механик, физик и астроном, академик Петербургской Академии Наук. Научные труды Л. Эйлера относились ко всем областям естествознания, к которым можно применить математические методы.

Кроме того, в курсе алгебры рассматривались функции Показательная функция Показательная функцияи т. д., т. е. степенные функции Показательная функция, где r — заданное число, а х — переменная.

В практике используются также функции Показательная функцияПоказательная функция т. е. Функция вида Показательная функция

где а — заданное число, а х — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основание степени — заданное число.

Показательной функцией называется функция Показательная функция, где а — заданное число, Показательная функция

Показательная функция обладает следующими свойствами:

1) Область определения показательной функции — множество R всех действительных чисел.

Это свойство следует из того, что степень Показательная функция, где а > 0, определена для всех Показательная функция

2) Множество значений показательной функции — множество всех положительных чисел.

Чтобы убедиться в этом, нужно показать, что уравнение Показательная функция, где
а > 0, Показательная функция, не имеет корней, если Показательная функция, и имеет корень при любом b > 0. По свойству степени (6) это уравнение не имеет корней, если Показательная функция

То, что это уравнение имеет корень при любом b > 0, доказывается в курсе высшей математики. Это означает, что любая прямая у = b, где
b > 0, пересекается с графиком показательной функции.

3) Показательная функция Показательная функцияявляется возрастающей на множестве всех действительных чисел, если а> 1, и убывающей, если 0<а<1.

Пусть а> 1 и Показательная функция. Покажем, что Показательная функция, т. е. Показательная функция

Так как Показательная функция, то Показательная функция и по свойству степени (7) имеем Показательная функция т. е. Показательная функция

Отсюда, учитывая, что Показательная функцияполучаем Показательная функция

Пусть 0<а<1 и Показательная функцияПокажем, что Показательная функция, т. е. Показательная функция

Так как 0<а<1, то Показательная функция и поэтому Показательная функция

т. е.Показательная функция откуда Показательная функция

Показательная функция

Построим графики функций Показательная функцияи Показательная функция используя
рассмотренные свойства, по нескольким точкам, принадлежащим
графику (рис. 1 и 2 ).
Отметим, что график функции Показательная функция проходит через точку
(0; 1) и расположен выше оси Ох. Если х < 0 и убывает, то график быстро приближается к оси Ох (но не пересекает ее); если х > 0
и возрастает, то график быстро поднимается вверх. Такой же
вид имеет график любой функции Показательная функция, если а > 1 (рис. 3).
График функции Показательная функция также проходит через точку (0; 1)
и расположен выше оси Ох. Если x > 0 и возрастает, то график
быстро приближается к оси Ох (не пересекая ее); если х < 0 и
убывает, то график быстро поднимается вверх. Такой же вид
имеет график любой функции Показательная функция, если 0 < а < 1

Показательная функция

Показательная функции часто используется при описании
различных физических процессов. Как радиоактивный распад
вписывается формулой

Показательная функция

где m (t) и Показательная функция — масса радиоактивного вещества соответственно в момент момент времени t и в начальный момент t=0. T —
период полураспада (промежуток примени, за который первоначальное количество вещества уменьшается вдвое).
С помощью показательной функции выражается давление
воздуха в зависимости от высоты подъема, ток самоиндукции
в катушке после включения постоянного напряжения и т. д.

Задача:

Решить уравнение Показательная функция
По свойству показательной функции данное уравнение
имеет корень, так как 27 > 0 . Одним из корней является число
х = 3, так как Показательная функция

Других корней нет, так как функция Показательная функциявозрастает на всей числовой прямой, и поэтому Показательная функция при х > 3 и Показательная функция при
х < 3 и (рис. 5). ▲

Задача:

Период полураспада плутония равен 140 суткам.
Сколько плутония останется через 10 лет, если его начальная
масса равна 8 г?

Показательная функция

Воспользуемся формулой (8). В данной задаче t = 10*365
(считаем, что в году 365 дней), T = 140. Показательная функция

Вычисления проведем на микрокалькуляторе МК-54 по программе

Показательная функция

Ответ. Через 10 лет плутония останется примерно Показательная функция

Показательные уравнения и неравенства

Рассмотрим несколько примеров показательных уравнений
и неравенств
, т. е. уравнений и неравенств, в которых неизвестное содержится в показателе степени.

  1. Уравнения
    Решение показательных уравнений часто сводится к решению
    уравнения

где Показательная функция , х — неизвестное. Это уравнение имеет единствен­ный корень х = b, так как справедлива следующая теорема:
Теорема. Если а > 0 , Показательная функциято Показательная функция

О Предположим, что равенство Показательная функцияне выполняется, т. е.
Показательная функция или Показательная функция

Пусть, например, Показательная функция. Тогда если а > 1, то показательная функция Показательная функциявозрастает и поэтому должно вы­полняться неравенство Показательная функцияесли 0 < а < 1, то функция убывает и должно выполняться неравенство Показательная функция

В обоих случаях получилось противоречие с условием Показательная функция

Задача:

Решить уравнение Показательная функция

Запишем уравнение в виде Показательная функция откуда x+2 = 0.
Ответ. x = — 2.

Задача:

Решить уравнение Показательная функция

Так как Показательная функция то уравнение можно записать в виде Показательная функция или в виде Показательная функция Отсюда х = 2.

Ответ. х = 2.

Задача:

Решить уравнение Показательная функция

Вынося в левой части за скобки общий множитель Показательная функция

получаем Показательная функцияПоказательная функция откуда Показательная функция
х — 2 = 0, х=2.
Ответ. х = 2.

Задача:

Решить уравнение Показательная функция
Так как Показательная функция то уравнение можно записать в виде Показательная функция откуда Показательная функция х = 0.
Ответ. x = 0.

Задача:

Решить уравнение Показательная функцияПоказательная функция

Запишем уравнение в виде Показательная функция

откуда Показательная функцияПоказательная функция Показательная функция Показательная функция Показательная функция Показательная функция
Ответ. х = 2.

Задача:

Решить уравнение Показательная функция

Заменой Показательная функцияданное уравнение сводится к квадратному
уравнению Показательная функция

Решая это уравнение, находим его корни: Показательная функция откуда Показательная функция

Уравнение Показательная функция имеет корень х = 2, а уравнение Показательная функция не имеет корней, так как показательная функция не может принимать отрицатель­ные значения.
О т в е т. х = 2

Неравенства

Решение показательных неравенств часто сводится к решению
неравенств
Показательная функция или Показательная функция. Эти неравенства решаются с
помощью свойства возрастания или убывания показательной
функции.

Задача:

Решить неравенствоПоказательная функция

Запишем неравенство в видеПоказательная функция Так как 3 > 1 , то
функция Показательная функция является возрастающей. Следовательно, при x>4 выполняется неравенство Показательная функция, а при Показательная функция выполняется неравенство Показательная функция. Таким образом, при х < 4 неравенство Показательная функцияявляется верным, а при Показательная функция — неверным, т. е.
неравен­ство Показательная функциявыполняется тогда и только тогда, когда
х < 4 .
Ответ. х < 4

Задача:

Решить неравенство Показательная функция

Запишем неравенство в виде Показательная функция или Показательная функция

Так как Показательная функция— убывающая функция, то Показательная функция

Ответ.Показательная функция

Задача:

Решить неравенство Показательная функция

Обозначим Показательная функция тогда получим квадратное неравенство Показательная функция Это неравенство выполняется при t < — 2 и при
t > 1 . Так как Показательная функция, то получим два неравенства Показательная функция
Первое неравенство не имеет реше­ний, так как Показательная функция при всехПоказательная функция
Второе неравенство можно записать в виде Показательная функция, откуда x >0.
Ответ. x > 0.

Задача:

Решить графически уравнение Показательная функция

Построим графики функций Показательная функция и Показательная функция(рис- 6 )
Из рисунка видно, что графики этих функций пересекаются в точке с абсциссой Показательная функция. Проверка показы­вает, что x = 1 — корень данного уравнения:

Показательная функция
Показательная функция

Покажем, что других корней нет. Функция Показательная функция
убы­вающая, а функция Показательная функция— возрастающая. Следовательно, при х > 1 значения первой функции меньше Показательная функция, а второй — больше Показательная функция; при x < 1, наоборот, значения первой функции больше Показательная функция, а второй — меньше Показательная функция. Геометрически
(рис. 6) это означает, что графики этих функций при x > 1 и x < 1 «расхо­дятся» и потому не могут иметь точек пересечения при Показательная функция

Заметим, что из решения этой задачи, в частности, следует, что неравенство Показательная функция выполняется при х < 1, а неравенство Показательная функция при х > 1.

Системы уравнений

Задача:

Решить систему уравнений

Показательная функция

Решим эту систему способом подстановки:

Показательная функция

откуда Показательная функция Показательная функция Показательная функция

Найдем значения х:
Показательная функция Показательная функция
Ответ. ( — 7 ; 3), (1; — 1 ) .

Задача:

Решить систему уравнений

Показательная функция

Обозначим Показательная функция

Тогда система запишется так:

Показательная функция

Решим эту систему способом подстановки
Показательная функция Показательная функция

Найдем значе­ния u: Показательная функция Показательная функция

Возвратимся к принятым обозначениям:
1) Показательная функцияПоказательная функция Так как первое из этих уравнений кор­ней не имеет, то решений системы в этом случае нет.
2) Показательная функция откуда х = 2, у = 1.
О т в е т. (2; 1 ).

Показательная функция

Показательной функцией называется функция, заданная формулой y=a x , где a > 0 и a ≠ 1

Порядок роста и убывания функции

Функция — это основной математический инструмент для изучения связей, зависимостей между различными величинами. Чем большим запасом функций мы располагаем, тем шире и богаче наши возможности математического описания окружающего мира.

Вслед за линейными мы подробно изучали квадратичные зависимости. Так, путь при равноускоренном движении квадратично зависит от времени; энергия падающего тела квадратично зависит от его скорости; количество теплоты, выделяемой током, текущим по проводнику, квадратично зависит от силы тока и т. п.

Степенные зависимости более высокого порядка также встречаются на практике. Например, по закону Стефана — Больц-мана излучательная способность абсолютно черного тела пропорциональна четвертой степени его температуры. Масса шара является кубической функцией его радиуса.

Если мы изобразим на одном чертеже (схема IX) графики степенных функций вида Показательная функция при положительных значениях k, то увидим, что, чем больше k, тем быстрее при больших значениях х растут эти функции. Степенные функции образуют естественную шкалу, позволяющую сравнивать рост различных функций со стандартными, степенными функциями.

Показательная функция

Аналогичная картина наблюдается и с убывающими функциями. Простейшая убывающая функция задается обратно пропорциональной зависимостью Показательная функция Изображая на одном чертеже (рис. 104) графики функций Показательная функциявидим, что, чем больше k, тем быстрее убывают эти функции при больших значениях х.

Показательная функция

Гильберт Давид (1862—1943) —

немецкий математик, основатель Геттин-генской математической школы. Гильберт завершил начатое Евклидом. Ему принадлежит глубокое обобщение евклидовой геометрии (гильбертовы пространства), он получил важнейшие результаты в математической логике.

«Арифметические знаки — это записанные геометрические фигуры, а геометрические фигуры — это нарисованные формулы».

Д. Гильберт

В естествознании и технике встречаются процессы, рост или затухание которых происходит быстрее, чем у любой степенной функции. С примерами быстро растущих функций человек столкнулся очень давно. В древней легенде об изобретателе шахмат говорится, что он потребовал за первую клетку шахматной доски одно пшеничное зерно, а за каждую следующую — вдвое больше, чем за предыдущую. Человеку трудно представить себе порядок величины Показательная функция(общее число зерен, плату за изобретение шахмат). Если грубо заменить Показательная функция

Показательная функция

Достаточно сказать, что расстояние от Земли до Солнца в миллиметрах приблизительно равно Показательная функция, так что, считая диаметр зерна за 1 мм, можно этим зерном 100 тысяч раз уложить путь до Солнца.

Поразительное явление быстрого роста членов геометрической прогрессии, т. е. чисел вида cqn, отражено во многих старинных задачах. Однако лишь с конца XVII в. стали систематически рассматриваться зависимости типа y = cqx, в которых переменная х принимает не только целые значения. Такие функции называются показательными.

Показательные функции, к изучению которых мы переходим в этой главе, обладают замечательным свойством: скорость их роста пропорциональна значению самой функции. Они как костер, который, чем больше разгорается, тем больше в него надо подкладывать дров.

Мы знаем, что скорость роста линейной функции постоянна, квадратичной функции линейна и вообще производная степенной функции, являясь меньшей степенью, растет медленнее, чем сама функция. Необходимость изучения функций, у которых производная пропорциональна самой функции, возникла с обнаружением различных законов естествознания, таких, как законы размножения, законы радиоактивного излучения, законы движения в тормозящей среде и т. д. Как эти законы связаны с показательными функциями, мы обсудим в главе, посвященной интегралу.

Определение степени с произвольным показателем

В основе определения показательной функции лежит понятие степени. Как надо понимать выражение Показательная функция? Его определение строится постепенно. Сначала надо вспомнить, что такое степень с натуральным показателем, т. е. рассмотреть случай, когда t — натуральное число. Запись Показательная функциямы понимаем как произведение 10 одинаковых множителей, каждый из которых равен 2. В общем виде если t = n — натуральное число, то запись Показательная функцияозначает произведение п множителей, каждый из которых равен а.

Если t — отрицательное целое число, то его можно записать в виде t= — n, где n — натуральное число. Тогда Показательная функция определяется так: Показательная функция Например, Показательная функция по определению равно Показательная функция.

Если t=0, то Показательная функция принимается равным единице, т. е. а°=1. Заметим, что Показательная функция при t ≤ 0 не определено при а—0. Тем самым мы определили степень с произвольным целым показателем. Дальнейшее обобщение понятия степени требует положительности основания а. Рассмотрим случай, когда t — рациональное число. Его можно записать в виде дроби Показательная функция, где m — целое число, n — натуральное число. По определению Показательная функция =Показательная функция В частности,

Показательная функция

Степень с произвольным вещественным показателем t определяется следующим образом. Для числа t выбирается последовательность рациональных чисел t1, t2…, tn,…. задающая приближение числа t с любой степенью точности. Строится последовательность степеней с рациональными показателями Показательная функцияПоказательная функция …, . Оказывается, что эта последовательность задает приближение некоторого числа с с любой степенью точности. Это число и называется степенью Показательная функция.

Таким образом, мы определили степень Показательная функция для положительного основания а и любого показателя t. Замечания.

  1. Степень числа с натуральным показателем имеет смысл не только для положительного, но и для любого основания, так как эта степень определяется с помощью операции умножения, а умножать можно любые числа. Поэтому имеют смысл равенства

Показательная функция

Показательная функция = 0 и т. п. Степень с целым отрицательным показателем может быть определена для любого числа, кроме нуля, так как ее вычисление сводится к операциям умножения и деления. Определение же степени с рациональным показателем требует операции извлечения корня, которая выполнима, как правило, только для положительных чисел. Поэтому мы с самого начала считаем основание степени положительным числом.

2. Степень с иррациональным показателем вычисляется приближенно. Сначала мы задаем приближения к числу t с помощью рациональных чисел, затем вычисляем степени с рациональным показателем. У нас остался невыясненным вопрос: как, зная погрешность приближения числа t с помощью рационального числа tn, оценить погрешность приближения Показательная функция к числу Показательная функция?

Свойства степени

Операция возведения в натуральную степень имеет хорошо известные свойства. Перечислим их.

  1. Показательная функция, т. е. при умножении степеней с одинаковым основаниями показатели складываются.

2. Показательная функцият. е. при делении степеней с одинаковыми основаниями показатели вычитаются.

3. Показательная функция т. е. при возведении степени в степень показатели перемножаются.

Для натуральных показателей эти свойства выводятся из определения степени и свойств умножения. Аналогичные свойства сохраняются для степеней с произвольными вещественными показателями:

Показательная функция

Доказательство свойств степени с произвольным вещественным показателем проводится, начиная со случая натурального показателя и переходя последовательно к целым, рациональным и любым показателям.

В приведенных выше свойствах основание степени было одним и тем же, а менялись показатели степени. Можно сформулировать свойства степеней с одинаковыми показателями, но разными основаниями:

Показательная функция

Исследование показательной функции

Определение:

Показательной функцией называется функция вида у = Показательная функция, где а — фиксированное положительное число.

При исследовании показательной функции будем считать, что основание а ≠ 1, так как при а= 1 функция получается постоянной.

Перечислим основные свойства показательной функции.

  1. Область определения: множество всех вещественных чисел R.
  2. Монотонность: при а>1 функция у = Показательная функция строго возрастает, при 0<а<1 функция у = Показательная функция строго убывает (схема X).
  3. Положительность: значения функции у = Показательная функцияположительны (при любом основании а>0) .
  4. Область значений: множество всех положительных чисел, т. е. промежуток (0; + ∞).

Свойство 1 подчеркивает, что степень Показательная функция определена при любом вещественном показателе х. Доказательство свойств 2 и 3 показательной функции проводится так: эти свойства проверяются последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на произвольные вещественные показатели.

Свойства показательной функции позволяют построить ее график. Графики показательных функций при различных основаниях показаны на рисунке 105.

Рассмотрим показательную функцию у = Показательная функция. С ростом х значения этой функции возрастают очень быстро. Так, Показательная функцияПоказательная функцияи т. д. Если же брать отрицательные значения х, то Показательная функция будет быстро приближаться к нулю: Показательная функция Показательная функцияи т. д. Это свойство показательной функции быстро увеличиваться, с одной стороны, и быстро приближаться к нулю, с другой, хорошо видно на графике.

Вместе с функцией у = Показательная функция показательной функцией считают и функцию вида у = сПоказательная функция, где с — постоянная. К такому виду можно привести, например, функцию у=Показательная функция, сделав преобразование:

Показательная функция

Производная показательной функции

Вычислим среднюю скорость роста показательной функции у=Показательная функция на отрезке [х; х+ ∆х]:

Показательная функция

Мы видим, что средняя скорость роста показательной функции на отрезке [х; x + ∆х] равна значению этой функции в точке х, умноженному на числоПоказательная функция. Исследуем, как ведет себя это число при маленьких значениях ∆х. Так как а°=1, то значение Показательная функцияпри маленьких значениях ∆х близко к 1. Если на графике функции проведем секущую, проходящую через точки (0; 1) и ( ∆х; Показательная функция), то ее угловой коэффициент будет равен числу Показательная функция=tg a (рис. 106).

При Показательная функция секущая будет приближаться к касательной к

графику функции в точке (0; 1). Это означает, что Показательная функциябудет

приближаться к произведению Показательная функция на значение производной при х=0. Итак, для нахождения производной функции у=Показательная функция надо знать только значение этой производной в нуле. Если мы его обозначим через k, то получим формулу

Показательная функция

т. е. производная показательной функции пропорциональна самой функции.

Как же найти коэффициент пропорциональности k? Мы знаем, что он равен угловому коэффициенту касательной, проведенной в точке (0; 1). Можно приближенно по графику вычислить этот коэффициент. Так, известно, что для а=10 значение k ≈2,3, поэтому Показательная функция

С помощью знака предела коэффициент k можно записать так:

Показательная функция

3. Число е

Посмотрим на графики показательных функций при различных а (рис. 105). Все они проходят через точку М (0; 1). Проведем в этой точке касательные к графикам. Мы видим, что, чем больше основание а, тем «круче» касательная. Так, при а = 2 угловой коэффициент касательной равен 0,693, а при а=10 угловой коэффициент касательной равен 2,303. Ясно, что при непрерывном изменении а от 2 до 10 угловой коэффициент касательной в точке М будет непрерывно меняться и найдется такое значение а, для которого этот коэффициент будет равен единице. Такое основание а обозначается буквой е. Число е иррационально. Его приближенное значение таково: е ≈ 2,718.

Показательная функция

Итак, е — это такое число, что угловой коэффициент касательной к графику функции у=Показательная функцияв точке х = 0 равен единице, т. е. касательная в этой точке образует с осью абсцисс угол 45° (рис. 107).

Можно сказать иначе. Мы уже знаем, что производная любой показательной функции пропорциональна самой этой функции. Число е — это основание, для которого коэффициент пропорциональности равен единице, т. е. е — это такое число, что производная функции у = Показательная функция равна самой этой функции:

Показательная функция

Функцию у = Показательная функция часто обозначают у = ехр х (читается: «Эксп от х») и называют экспонентой. Экспонентами называют и функции более общего вида: у = Показательная функция. Подумайте, понятен ли вам смысл таких распространенных выражений: «Численность бактерий растет по экспоненте», «Сила тока затухает по экспоненте», «Его успехи растут по экспоненте».

Аксиоматическое определение показательной функции

Показательная функция y = f(x), где f(x) = Показательная функция, обладает замечательным свойством:

Показательная функция

Это свойство может быть положено в основу определения показательной функции.

Пусть функция f задана на всей числовой оси R и для любых чисел x1,x2 удовлетворяет соотношению

Показательная функция

Написанное соотношение называют функциональным уравнением. Вопрос можно поставить так: каковы функции f с областью определения R, удовлетворяющие функциональному уравнению

Показательная функция

Прежде всего функция f {х) = 0 удовлетворяет этому уравнению. Будем считать, что f не является тождественным нулем. Из функционального уравнения следует цепочка свойств функции /, которые мы перечислим в виде серии нетрудных задач с указаниями на то, как их надо решать.

1)f(0)=1 (рассмотреть f(x+O), где х — какое-либо число, для которого f(x) ≠ 0).

2) f(х) ≠ 0 для любого х (рассмотреть f (x + ( — x))).

3) f(x)>0 для любых х (рассмотреть Показательная функция)

4) Показательная функция(рассмотреть f (x + ( —x))).

Обозначим f(1) через а.

5) Показательная функция где n ∈ N (рассмотреть f (1 + 1+ …-+-1)).

6) Показательная функция, где n ∈ N (воспользоваться 4) и 5)).

7) Показательная функция где n ∈ N (рассмотреть Показательная функция.

8) f(r) = ar, где r — рациональное число.

Таким образом, мы видим, что значения всякой, не равной тождественно нулю функции, определенной на всей числовой оси и удовлетворяющей функциональному уравнению f( x1)-f( x2) = f(x1+x2), для рациональных значений аргумента г совпадают со значениями а’ при некотором а. Для того чтобы сделать вывод о том, что f (х) совпадает с Показательная функция при любом вещественном х, одного функционального уравнения мало. Надо добавить еще какое-либо свойство — монотонность или непрерывность. Вот почему, стараясь избежать трудоемкого описания значений показательной функции с помощью рациональных приближений, часто дают следующее определение показательной функции:

Показательная функция y = f (х) — это строго монотонная функция, определенная на всей числовой оси и удовлетворяющая функциональному уравнению

Показательная функция

В одном мгновеньи видеть вечность, Огромный мир — в зерне песка, В единой горсти — бесконечность И небо — в чашечке цветка.

У. Блейк, пер. С. Маршака

Дополнение к показательной функции

Показательная функция

Показательная функция

Смотрите также:

Предмет высшая математика

Показательная функция

Определение:

Показательной функцией называется функция вида Показательная функция где основание а—произвольное положительное число, отличное от единицы. От отрицательных значений а отказываются по той причине, что при этом для некоторых значений переменной х значения степени Показательная функция не существуют. Например, при Показательная функция и при Показательная функция значение Показательная функция не определено. Легко сообразить, что значение Показательная функция не определено и при Показательная функция в соответствии с определением степени с рациональным показателем.

В случае Показательная функция значение степени Показательная функция при любом х равно единице. Случай Показательная функция не рассматривают потому, что он не интересен.

Данное выше определение показательной функции позволяет находить значение у для всякого значения х.

Рассмотрим в качестве примера показательную функцию Показательная функция Эта функция определена на множестве всех целых значений х. Действительно,

Показательная функция

и, вообще,

Показательная функция (по определению).

При отрицательных целых значениях х имеем

Показательная функция

Эта функция определена также при любом рациональном х, например:

Показательная функция

Наконец, функция определена и при любом иррациональном х (здесь мы этот случай не рассматриваем).

Итак, показательная функция определена на всем множестве действительных чисел.

Найденные значения показательной функции Показательная функция запишем в виде таблицы

Показательная функция

Предлагаем читателю убедиться самостоятельно в том, что функция Показательная функцияпринимает следующие значения:

Показательная функция

Свойства показательной функции

Рассмотрим приведенные в п. 1 таблицы. Мы замечаем следующие свойства:

1.Показательные функции Показательная функция принимают только положительные значения, это вытекает из свойства степени с рациональным показателем. Любая показательная функция обладает этим свойством.

2. Показательная функция Показательная функция является монотонно возрастающей.

Докажем, что показательная функция Показательная функция при любом Показательная функцияявляется монотонно возрастающей. Действительно, выберем два произвольных значения Показательная функция причем пусть Показательная функция Составим для них разность соответствующих значений показательной функции Показательная функция вынесем Показательная функцияза скобку:

Показательная функция

Заметим, что число Показательная функция положительно, тогда Показательная функция(положительная степень числа, большего единицы, сама больше единицы). Следовательно, разность Показательная функция положительна и, так как Показательная функция

Тем самым можно считать доказанным тот факт, что показательная функция Показательная функция при Показательная функция является монотонно возрастающей.

3.Показательная функция Показательная функция является монотонно убывающей.

Предоставляем читателю доказать, что показательная функция Показательная функция всегда является монотонно убывающей.

График показательной функции

Воспользовавшись составленными в п. 1 таблицами, построим в координатной

Показательная функция

плоскости точки с соответствующими координатами для функции Показательная функция на рис. 82 и для функции Показательная функцияна рис. 83. Эти точки намечают в каждом случае некоторую линию, расположенную выше оси абсцисс. Уменьшая шаг таблицы, можно доказать, что мы будем получать точки, попадающие на те же линии. Соединяя эти точки плавной кривой, получим графики функций Показательная функция и Показательная функция

На рис. 85 изображены графики показательной функции Показательная функция при различных основаниях Показательная функцияПоказательная функция

Рассматривая эти графики, мы видим, что показательная функция при а > 1 растет тем быстрее, чем больше а, а при основании 0 < а < 1 убывает тем быстрее, чем меньше а.

В заключение еще раз перечислим основные свойства показательной функции (в справедливости этих свойств советуем читателю убедиться, рассматривая рис. 85).

1°. Областью определения показательной функции является множество всех действительных чисел.

2°. Показательная функция принимает только положительные значения, т. е. областью ее значений является множество положительных чисел.

3°. Если а> 1, то при Показательная функция а при Показательная функцияЕсли же Показательная функция то, наоборот, при Показательная функция

Показательная функция

4°. Если Показательная функция (график показательной функции пересекает ось ординат в точке у= 1).

5°. При а> 1 показательная функция Показательная функция является монотонно возрастающей, а при Показательная функция—монотонно убывающей.

Из этого свойства показательной функции вытекает важное следствие. Если две степени одного и того же положительного числа, отличного от единицы, равны, то равны и их показатели, т. е. если Показательная функция то Показательная функция

Другими словами: показательная функция принимает каждое свое значение один раз.

6°. Если а> 1, то при неограниченном возрастании Показательная функциязначения функции Показательная функция также неограниченно растут Показательная функция При неограниченном убывании аргумента Показательная функция значения этой функции стремятся к нулю, оставаясь при этом положительными Показательная функция Если 0<а<1, то при неограниченном возрастании аргумента Показательная функция значения функции Показательная функция стремятся к нулю, оставаясь при этом положительными Показательная функция При неограниченном убывании аргумента Показательная функциязначения этой функции неограниченно растут Показательная функция

Примеры:

1. При помощи графика функции Показательная функция найти: а) значение у, соответствующее значению х = 0,5; б) при каком значении х значение у равно 4.

Решение:

а) Через точку Показательная функция проведем прямую, параллельную оси ординат до пересечения с графиком функции Показательная функция (рис. 86). Эта прямая пересечет график функции в точке Показательная функция ордината которой Показательная функция откуда Показательная функция

б) Через точку Показательная функция проведем прямую, параллельную оси абсцисс. Эта прямая пересечет график функции Показательная функция в точке абсцисса которой 2, откуда х = 2 (см. рис. 86).

Рис. 86 2. Сравнить значения выражений:

Показательная функция

Решение:

Как известно, при а > 1 показательная функция Показательная функция является монотонно возрастающей, а при 0 <а< 1—монотонно убывающей. На этом и основано сравнение значений выше приведенных выражений:

Показательная функция

но Показательная функция поэтому Показательная функция

Рекомендуем читателю убедиться в справедливости выше перечисленных неравенств, рассматривая графики функций Показательная функция(см- Рис- 85)

3.Решить уравнения и неравенства Показательная функция

Решение:

Уравнение Показательная функция можно переписать в виде Показательная функция (уравняв основания). Так как показательная функция Показательная функция принимает каждое свое значение один раз (в силу монотонности), то х = 3.

Переписав неравенство Показательная функция в виде Показательная функция и учитывая, что показательная функция Показательная функция является монотонно возрастающей, получим x > 3.

Уравнение Показательная функция не имеет корней, так как показательная функция может принимать только положительные значения. 4. Решить следующие уравнения и неравенства:

Показательная функция

Решение:

Показательная функция поэтому уравнение примет вид: Показательная функция Используя свойство монотонности показательной функции, получаем уравнение Показательная функция

Показательная функция поэтому уравнение примет вид: Показательная функция откуда Показательная функция

Показательная функция уравнение примет вид: Показательная функция откуда Показательная функцияПоказательная функция

Показательная функция уравнение примет вид Показательная функция Значит, Показательная функция откуда Показательная функция

д) Показательная фуннция с основанием а= 13 является монотонно возрастающей, поэтому Показательная функция

е) Показательная функция с основанием Показательная функция является монотонно убывающей, поэтому Показательная функция

Целая и дробная части числа

Целой частью числа х называется наибольшее целое число, не превосходящее х. Целая часть числа х обозначается символом Показательная функция Для любого х имеем

Показательная функция

Пример:

Показательная функция

Дробной частью числа х называется разность между х и его целой частью. Дробная часть числа х обозначается символом Показательная функция Значит, Показательная функция

Так как Показательная функция то можно записать, что Показательная функция т. е. дробная часть числа — это неотрицательное число, меньшее единицы.

Например:

Показательная функция

Из равенства Показательная функция следует, что Показательная функция т. е. любое число х можно записать в виде суммы его целой и дробной части. Например,

Показательная функция

Функция Показательная функция

В практике вычислений особую роль играет функция Показательная функция Покажем, что, зная значения выражения Показательная функция для Показательная функция легко вычислить значения этого выражения для любого х.

Пусть нужно найти приближенное значение выражения Показательная функция Представим показатель степени 3,78 в виде суммы целой и дробной части: Показательная функция тогда

Показательная функция

Таким образом, для отыскания приближенного значения осталось найти значение выражения Показательная функциягде Показательная функция

Рассмотрим еще один пример —найти приближенное значение выражения Показательная функция Представим показатель степени —2,85 в виде суммы целой и дробной части: Показательная функциятогда

Показательная функция

Для решения задачи осталось найти значение выражения Показательная функция где Показательная функция

Итак, зная значения выражения Показательная функция легко вычислить значения этого выражения для любого x. Значения выражения Показательная функция где Показательная функция можно приближенно найти, построив график функции Показательная функция на отрезке [0; 1]. Для этого составим таблицу ее значений с шагом 1/8:

Показательная функция

(Все вычисления выполнены по таблицам В. М. Брадиса «Четырехзначные математические таблицы», М., «Просвещение», 1969, таблица IV и затем округлены до сотых).

Далее имеем:

Показательная функция

Найденные значения выражения Показательная функция занесем в таблицу

Показательная функция

Построим в координатной плоскости точки, координаты которых указаны в таблице (причем по оси абсцисс в качестве единицы масштаба возьмем 10 см, а по оси ординат—1 см), и соединим эти точки плавной кривой (рис. 87).

Показательная функция

Построенный график позволяет находить приближенные значения функции Показательная функция для любого х. По- ^ кажем на примерах, как находить приближенные значения функции Показательная функция

Примеры. 1. Пусть х = 3,56, тогда Показательная функция По графику находим Показательная функция откуда Показательная функция

Пусть х =-1,3, тогда Показательная функция По графику находим Показательная функция откуда Показательная функция

Если требуется большая степень точности для вычисления значений выражения Показательная функцияпользуются таблицами, например четырехзначными математическими таблицами В. М. Брадиса.

Приведенная ниже таблица содержит значения функции Показательная функция для значений переменной х от 0,0000 до 0,9999. Рассмотрим начало этой таблицы.

Показательная функция

Найдем, например, значение выражения Показательная функция Прежде всего преобразуем это выражение Показательная функцияДля решения задачи надо найти значение функции Показательная функция при х =0,024. Возьмем строку «02» и столбец «4». В их пересечении стоит число 1057. Чтобы найти значение выражения Показательная функция заметим, что Показательная функция т. е. Показательная функция Значит, Показательная функция и окончательно Показательная функция

Если бы требовалось найти значение Показательная функция то к найденному в таблице числу 1057 нужно было бы прибавить 1 —поправку, помещенную в таблице справа на пересечении строки 02 и столбца «6». Таким образом, Показательная функция Аналогично можно найти Показательная функцияПоказательная функция Значение выражения Показательная функциянаходим по таблице Показательная функция откуда Показательная функция

С помощью таблицы значений функции Показательная функцияможно представить в виде степени с основанием 10 любое положительное число. Возьмем для примера число 11,09. Найдем это число в таблице. Оно находится на пересечении строки «04» и столбца «5», т. е. Показательная функция Значит, Показательная функция

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Задание 942

Найдите наименьшее значение функции $$f(x)=(x^{2}-8x+8)*e^{2-x}$$ на отрезке [1; 7].

Ответ: -4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную функции: $$f^{‘}(x)=(2x-8)e^{2-x}+(-1)e^{2-x}(x^{2}-8x+8)=$$

$$=e^{2-x}(2x-8-x^{2}+8x-8)=e^{2-x}(-x^{2}+10x-16)$$

Приравняем производную к нулю:

$$e^{2-x}(-x^{2}+10x-16)=0$$ $$e^{2-x}=0$$

решений не имеет $$(-x^{2}+10x-16)=0$$ x1=2 и x2 =8

Отметим эти точки на координатной прямой и расставим знаки производной:

Точка минимума там, где производная меняет знак с — на +, то есть в точке 2

Подставим данное значение в первоначальную функцию и получим:

$$f(2)=(2^{2}-8*2+8)*e^{2-2}=(4-16+8)*1=-4$$

Задание 979

Найдите точку максимума функции $$f(x)=ln (x+5)-2x+9$$

Ответ: -4.5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную функции и приравняем ее к нулю: $$f^{‘}(x)=frac{1}{x+5}-2=0Leftrightarrow frac{1-2x-10}{x+5}=0Leftrightarrow$$ $$ frac{-2x-9}{x+5}=0Leftrightarrow x=-4.5 ; xneq -5 $$ Отметим полученные точки на координатной прямой и расставим знаки производной. Получим, что точка -4,5 — точка максимума

Задание 1241

Найдите наибольшее значение функции $$f(x)=2^{x}(x+1)$$ , на отрезке [-1;2]

Ответ: 12

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную этой функции и приравняем ее к нулю:

$$f'(x)=2^{x}ln 2(x+1)+2^{x}$$

$$2^{x}(ln 2(x+1)+1)=0$$

$$ln 2 * x+ ln 2 + 1 = 0$$

$$x = -1 — frac{1}{ln 2}$$

Данное значение меньше -1, значит точка экстремума левее нашего промежутка, а это означает, в свою очередь, что на заданном промежутке функция монотонна. Если мы подставим ноль в производную, то получим, что на промежутке, где расположен ноль, производная больше нуля, значит функция возрастает. Поэтому наибольшее значение функции будет в конце промежутка.

$$f(2)=2^{2}(2+1)=4*3=12$$

Задание 1295

Найдите точку минимума функции $$f(x) =x^{2}-3.75x- ln (x+2)$$

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную этой функции и приравняем к нулю:

$$f'(x) =2x-3.75- frac{1}{x+2}=0 $$

$$frac{2x^{2}+4x-3.75x-7.5-1}{x+2}=0$$

$$2x^{2}+0.25x-8.5=0 $$

$$x_{1}=frac{-34}{16}$$

$$x_{2}=2 $$

Начертим координатную прямую и посмотрим какие знаки принимает производная на полученных интервалах и получим, что точка 2 — точка минимума

Задание 2737

Найдите точку минимума функции: $$y=(73-x)cdot e^{73-x}$$

Ответ: 74

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$y=(73-x)cdot e^{73-x}$$

$${y}’={(73-x)}’cdot e^{73-x}+(73-x){(e^{73-x})}’=$$ $$=- e^{73-x}+(73-x)cdot(-e^{73-x})=$$ $$-e^{73-x}(1+73-x)=0$$

$$x=74$$

Задание 2789

Найдите наибольшее значение функции $$y=10cdot ln(x+5)-10x-21$$ на отрезке [‐4,5; 0].

Ответ: 19

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$${y}’=frac{10}{x+5}-10=0$$ $$frac{10-10x-50}{x+5}=0$$ $$Leftrightarrow$$ $$frac{-10x-40}{x+5}=0$$ $$x=4$$ $$xneq -5$$ $$y=10cdot ln(-4+5)-10cdot(-4)-21=19$$

Задание 3117

Найдите точку максимума функции: $$y=(x^{2}-15x+15)cdot e^{x+3}$$

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$y’=(2x-15)cdotexp^{x+3}+(x^{2}-15x+15)cdotexp^{x+3}=exp^{x+3}(x^{2}-13x)=0$$ $$x=0$$ $$x=13$$

Задание 3288

Найдите точку максимума функции $$y=0,5x^{2}-11x+28*ln x + 9$$

Ответ: 4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$y’=x-11+frac{28}{x}=0$$ $$frac{x^{2}-11x+28}{x}=0$$ $$x=7 ; x=4 ; xneq 0$$ Начертим координатную прямую и отметим полученные точки. На интервале от 0 до 4 производная имеет положительные значения, от 4 до 7 — отрицательные и от 7 до плюс бесконечности — положительные, значит: 7 — точка минимума 4 — точка максимума

Задание 3375

Найдите точку минимума функции $$f(x)=x^{8}cdot e^{5x+6}$$

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$f'(x)=(x^{8})’cdotexp^{5x+6}+x^{8}cdot(exp^{5x+6})’=$$ $$=8x^{7}cdotexp^{5x+6}+x^{8}cdotexp^{5x+6}cdot5=$$ $$=exp^{5x+6}cdot x^{7}cdot(8+5x)=0$$ $$x=0$$ или $$x=-frac{8}{5}=-1,6$$

Задание 5239

Найдите наименьшее значение функции $$y=(x^{2}-4x+4)cdot e^{2}$$ на отрезке $$[-1;3]$$

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную данной функции и приравняем ее к нулю: $$y’=(2x-4)e^{x}+e^{x}*(x^{2}-4x+4)=0$$ $$e^{x}(2x-4+x^{2}-4x+4)=0$$ Число $$e^{x}$$ всегда положительно, поэтому можем его убрать: $$x^{2}-2x=0$$ Тогда $$x=0 ; x=2$$ Начертим координатную прямую, расставим знаки производной и получим, что $$x=2$$ — точка минимума, то есть в ней будет наименьшее значение функции на заданном в условии отрезке: $$y(2)=(2^{2}-4*2+4)e^{2}=0$$

Задание 5287

Найдите точку максимума функции $$y=(x-4)^{2}cdot e^{x}$$

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную этой функции и приравняем ее к нулю:

$$y’=((x-4)^{2})’e^{x}+(e^{x})'(x-4)^{2}=0$$

$$y’=2(x-4)e^{x}+e^{x}(x-4)^{2}=0$$

$$e^{x}(x-4)(2+x-4)=0$$

$$x=4 ; x=2$$

Начертим координатную прямую, отметим полученные точки и расставим знаки, которые принимает производная на полученных промежутках.

Тогда x=2 — точка максимума

Задание 6181

Найдите наименьшее значение функции $$y=log_{3} (x^{2}-6x+10)+2$$

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$y=log_{3}(x^{2}-6x+10)+2$$ Найдем минимальное значение функции; $$y_{min}$$ при $$x^{2}-6x+10rightarrow min$$ Минимальное значение квадратичная функция принимает в вершине параболы (ветви вверх): $$x_{0}=-frac{-6}{2}=3Rightarrow$$ $$y_{0}=9-6*3+10=1$$ Тогда минимальное значение функции: $$y_{min}=log_{3}(1)+2=2$$

Задание 6276

Найдите наибольшее значение функции $$y=sqrt{2lg x-1}-lg x$$

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$${y}’=frac{1}{2sqrt{2lg x-1}}*frac{2}{xln 10}-frac{1}{xln10}=0$$

$$frac{1}{xln 10}(frac{1}{2sqrt{2lg x-1}})=0$$

$$left{begin{matrix}xneq 0 \sqrt{2lg x-1}=1(1)end{matrix}right.$$

$$(1): sqrt{2lg x-1}=1Leftrightarrow$$ $$2lg x-1leq 1Leftrightarrow$$ $$2lg x=2Leftrightarrow$$ $$lg x=1Leftrightarrow x=10$$

$$y(10)=y=sqrt{2lg 10-1}-lg 10=1-1=0$$

Задание 6466

Найдите точку максимума функции $$y=6ln x — (x-2)^{2}$$

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

     Так как дан логарифм, то будет ОДЗ: $$x>0$$

     Найдем производную данной функции: $${y}’=frac{6}{x}-2(x-2)$$

     Приравняем производную к нулю: $$frac{6-2x^{2}+4x}{x}=0$$

$$2x^{2}-4x+6=0Leftrightarrow$$$$x^{2}-2x+3=0Leftrightarrow$$$$(x-3)(x+1)=0$$

     Тогда производная имеет вид: $${y}’=frac{-2(x-3)(x+1)}{x}$$. При этом, с учетом ОДЗ и знаков производной на полученных промежутках ((0;3) и $$(3;infty)$$) получим, что $$x(3)=x_{max}$$

Задание 6614

Найдите наибольшее значение функции $$y=frac{50}{2^{x}+3^{x}}$$ на промежутке [1;7]

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Функция $$f(x)=2^{x}$$ — возрастает, $$g(x)=3^{x}$$ — возрастает, тогда $$m(x)=2^{x}+3^{x}$$ — возрастает на всем промежутке, тогда $$y=frac{40}{2^{x}+3^{x}}$$ — убывает. Следовательно, $$y_{max}=y(1)=frac{40}{2+3}=8$$

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние на карте по долготе
  • Как в excel найти строки по цвету
  • Как найти среднегодовой объем производства
  • Как в вайбере найти слово в переписке
  • Как найти сертификат в реестре росаккредитации