Как найти наименьший общий делитель двух чисел

НОК и НОД

Рассмотрим выражение:

(45:9)

Можем сказать, что 45 – делимое, а 9 – делитель данного выражения.

Мы знаем, что 45 делится нацело на число 9. В таком случае, если мы захотим описать, чем эти числа являются друг другу, то мы скажем, что

9 – делитель числа 45

45 – кратно числу 9

Иногда при решении задач нужно находить общие кратные или общие делители двух чисел.

Наименьший делитель двух чисел – всегда единица. Такой делитель нет смысла искать, поэтому ищут наибольший общий делитель.

А кратных наоборот – бесконечно много, невозможно искать наибольшее из них, поэтому ищут, наименьшее общее кратное.

НОД:

Наибольший общий делитель (НОД) двух чисел – это наибольшее число, на которое каждое из этих чисел можно поделить без остатка.

Пример №1:

Рассмотрим числа 30 и 45.

  1. Найдем все их существующие делители, т.е. числа, на которые каждое из них поделится нацело:

  1. Мы видим, что у этих двух чисел есть несколько общих делителей. Наибольший из них – 15 – является самым большим. Это и есть НОД.

Значит и число 45 и число 30 можно нацело поделить на 15. Записывают это так:

(НОД (30;45) = 15)

Ответ: 15.

Пример №2:

Найдем (НОД (20;36):)

  1. Выпишем все делители этих чисел.

Так же делители можно сразу записывать парой. Если 20 нацело делится на 2, то

(20 : 2 = 10)

Значит 10 – тоже делитель числа 20. Запишем делители 2 и 10 парой:

  1. Выделим все общие делители и найдем наибольший из них. В данном случае

(НОД(20;35) = 4.)

Ответ: 4.

НОК:

Наименьшее общее кратное (НОК) двух чисел – это наименьшее число, которое можно поделить на каждое из этих чисел без остатка.

Пример №3:

Найдем (НОК (10;12).)

  1. Возьмем наименьшее число. В данном случае – 10.

Будем умножать его на натуральные числа по порядку, пока не получим число, кратное 12, то есть такое, на которое нацело поделится и 10, и 12. Оно и будет НОК этих двух чисел. Такой метод называется методом подбора.

(10 bullet 1 = 10; 10 НЕ кратно 12)

(10 bullet 2 = 20; 20 НЕ кратно 12)

(10 bullet 3 = 30; 30 НЕ кратно 12)

(10 bullet 4 = 40; 40 НЕ кратно 12)

(10 bullet 5 = 50; 50 НЕ кратно 12)

(10 bullet 6 = 60; 60 кратно 12)

  1. Первое число, которое будет кратно обоим числам и является их наименьшим общим кратным.

Общих кратный, в отличии от делителей, бесконечно много, поэтому обычно выбирают наименьший их них.

Ответ: 60.

Также можно находить НОК через разложение на множители:

Пример №4:

Найдём (НОК (6;8):)

  1. Разложим числа 6 и 8 на простейшие множители, т.е. представим каждое число как произведения простых чисел. Множители большего числа запишем сверху:

8: (1 bullet 2 bullet 2 bullet 2)

6: (1 bullet 2 bullet 3)

  1. Видим, что множители 1 и 2 повторяются у обоих чисел, поэтому для меньшего числа их уберем. Останется:

  1. Перемножим все оставшиеся числа. Их произведение и будет НОК:

(НОК (6; 8) = 1 bullet 2 bullet 2 bullet 2 bullet 3 = 24)

Ответ: 24.

Пример №5:

Найдем (НОК (10;12)) разложением на множители:

  1. Разложим оба числа на простые множители. Сверху запишем большее число:

12: 1, 2, 2, 3

10: 1, 2, 5

  1. Для меньшего числа зачеркнем те множители, которые уже есть у большего числа:

  1. Перемножим все оставшиеся числа:

(НОК (10; 12) = 1 bullet 2 bullet 2 bullet 3 bullet 5 = 60)

Наш ответ совпал с ответом, где мы использовали метод подбора.

Ответ: 60.

ВЗАИМОСВЯЗЬ НОК И НОД:

Произведение НОК и НОД некоторых чисел равно произведению самих этих чисел:

(НОК(a; b) bullet НОД(a; b) = a bullet b)

Докажем эту формулу на примере.

Пример №6:

Рассмотрим пару чисел 24 и 60.

  1. Найдем их НОД:

(НОД (24;60) = 12)

  1. Найдем их НОК:

(НОК (24; 60) = 1 bullet 2 bullet 2 bullet 2 bullet 3 bullet 5 = 120)

  1. Рассмотрим поближе НОК. Чтобы его получить, мы переменожили все простые множители чисел 60 и 24 за исключением множителей 1, 2, 2, 3. Найдем отдельно их произведение:

(1 bullet 2 bullet 2 bullet 3 = 12)

Если перемножить все простые множители числе 60 и 24 мы получим просто их произведение, при этом оно будет состоять из НОК и числа 12, которое в свою очередь равно НОД:

Нахождение НОК и НОД двух натуральных чисел

Содержание:

  • Что такое НОК и НОД двух натуральных чисел
  • Особенности вычисления, алгоритм Евклида
  • Правило нахождения наибольшего общего делителя (НОД)
  • Правило нахождения наименьшего общего кратного (НОК)

Что такое НОК и НОД двух натуральных чисел

Натуральными числами называют числа, которые используются при счете – 1, 2, 3, 16, 25, 101, 2560 и далее до бесконечности. Ноль, отрицательные и дробные или нецелые числа не относятся к натуральным.

Наименьшее общее кратное (НОК) двух натуральных чисел a и b – это наименьшее число, которое делится без остатка на каждое из рассматриваемых чисел.

Наибольший общий делитель (НОД) двух натуральных чисел a и b – это наибольшее число, на которое делится без остатка каждое рассматриваемое число.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Свойства НОК и НОД для натуральных чисел a и b

  • (НОД (a, b) = НОД (b, a);)
  • (НОК (a, b) = НОК (b, a);)
  • (НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.)

Особенности вычисления, алгоритм Евклида

Рассмотрим два способа определения НОД и НОК с помощью алгоритма Евклида:

  • Способ деления.

При делении целых чисел с остатком, где a — делимое, b – делитель (b не равно 0) находят целые числа q и r согласно равенству (a=btimes) q+r, в котором q – неполное частное, r – остаток при делении (не отрицательное, по модулю меньше делителя).

Чтобы вычислить НОД, первоначально нужно выбрать наибольшее из двух чисел и поделить его на меньшее. Пока остаток не станет равным нулю, повторяется цикл деления делителя на остаток от деления в соответствии с формулой.

Пример №1

Вычислим НОД для чисел 12 и 20. Делим 20 на 12 и получаем 1 и 8 в остатке. Запишем иначе:

(20=12times1+8), так как остаток не равняется нулю, продолжаем деление. Делим 12 на 8 и получаем 1 и 4 в остатке. Записываем: (12=8times1+4) и по аналогии делим 8 на 4 и получаем 2 и 0 в остатке. НОД равен остатку, предшествующему нулю.

НОД (12;20) = 4

НОК получаем согласно свойству (НОК (a, b) = НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.) Подставляем числовые значения:

НОК (12; 20) = (12times20div4=60)

НОК (12;20) = 60

  • Способ вычитания.

Здесь повторяется цикл вычитания из наибольшего числа меньшего числа до момента, пока разность не станет равна нулю. НОД равен предшествующей нулю разности.

Пример №2

Вычислим НОД для тех же чисел, 12 и 20.

20 – 12 = 8 (разность не равна нулю, продолжаем)

12 – 8 = 4

8 – 4 = 4

4 – 4 = 0

НОД (12;20) = 4

НОК находим также, как и при методе деления.

Правило нахождения наибольшего общего делителя (НОД)

Для нахождения наибольшего общего делителя воспользуемся пошаговым алгоритмом:

  1. Разложить числа на простые множители.
  2. Найти общий множитель одного и другого числа.
  3. Перемножить общие множители, если их несколько, и их произведение будет НОД.

Пример №3

Возьмем натуральные числа 24 и 36.

(24=2times2times2times3)

(36=2times2times3times3)

Правильно записать следующим образом:

(НОД (24;36)=2times3=6)

Примечание

В случае, когда одно или оба числа относятся к простым, т.е. делятся только на единицу и на само себя, то их НОД равняется 1.

Правило нахождения наименьшего общего кратного (НОК)

Для нахождения наименьшего общего кратного воспользуемся подробным алгоритмом:

  1. Наибольшее из чисел, а затем остальные разложить на простые множители.
  2. Выделить те множители, которые отсутствуют у наибольшего.
  3. Перемножить множители п. 2 и множители наибольшего числа, получить НОК.

Пример №4

Возьмем натуральные числа 9 и 12.

(12=2times2times3)

(9=3times3) (видим, что у числа 12 отсутствует одна тройка)

Правильно записать следующим образом:

(НОК (9;12)=2times2times3times3=36)

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 4)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

План урока:

Наибольший общий делитель

Взаимно простые числа

Минутка истории

Наибольший общий делитель

Встречаются ситуации, когда хочется понимать, на какое максимальное количество делится одновременно несколько числовых значений.

Например:

В городском парке проводился ежегодный марафон. Для участия в марафоне пришло 36 мальчиков, 24 девочки. По условиям соревнования, всех участников необходимо поделить на команды, в которые войдут  и мальчики, и девочки. Сколько одинаковых команд можно сформировать из данного количества детей?

erer

Чтобы ответь на вопрос задачи, вычислим максимальное числовое значение, являющееся делителем для количества всех ребят одновременно.

Выполним необходимые вычисления – определим существующие множители. Вычисления запишем в столбик.

Начнем с 36.

2

36 | 2

18

Полученное частное – 18, оно четное. Делитель остается прежним:

36 | 2

18 | 2

9

9 – нечетное, поэтому берем следующий делитель – 3:

36 | 2

18 | 2

9  | 3

3

Частное – простое числовое значение, делится само на себя:

36 | 2

18 | 2

9  | 3

3  | 3

1

Частное – единица, разложение окончено.

Выпишем составляющие:

36 = 2×2×3×3

Переходим к 24.

24 заканчивается четной цифрой, значит, кратно двум:

242

12

Делитель оставляем прежним, частное 12 – четное:

242

122

6

Результат деления 6, снова делим на 2:

24 | 2

12 | 2

6  | 2

3

Получили простое числовое значение, которое делится само на себя:

24 | 2

12 | 2

6  | 2

3  | 3

1

Разложение окончено. Запишем полученные компоненты:

24 = 2 × 2 × 2 × 3.

В финале выполненных вычислений мы получили:

36 = 2 × 2 × 2 × 3× 3;

24 = 2 × 2 × 2 × 3.

Давайте выберем одинаковые составляющие. Видно, что в каждом выражении такими составляющими будут: 2 ×2 × 3.

Перемножим выделенные компоненты:

2 ×2 × 3 = 12.

12 – самое большое числовое значение, на которое можно разделить оба делимых.

Мы выяснили, что всех участников можно распределить на 12 одинаковых команд.

Решая задачу, нашли самый большой делитель двух данных чисел. В арифметике число, являющееся самым большим делителем, одновременно для нескольких делимых, называют наибольшим общим делителем.

3

Для определения наибольшего общего делителя, нужно придерживаться определенного порядка выполнения математических действий:

4

Выполним задание.

Определите НОД (наибольший общий делитель) 66 и 44.

Чтобы выполнить задание будем придерживаться рассмотренного алгоритма действий.

Определим компоненты, входящие в состав числового значения.

5

Значит:

66 | 2

33

Результат деления оканчивается нечетной цифрой, проверяем по признакам делимости на 3:

6

66 | 2

33 | 3

11

Мы получили простое числовое значение

7

66 | 2

33 | 3

11 | 11

 1

     В итоге вычислений – 1, разложение окончено.

Переходим ко второму известному значению.

  • 1) Определим составляющие, входящие в состав:

Проверяем по признакам делимости. Данное числовое значение заканчивается четной цифрой, значит, оно делится на 2.

44 | 2

          22

Частное снова делится на 2:

          44 | 2    

          22 | 2

          11

В результате простое число, делим само на себя:

44 | 2    

22 | 2

11 | 11

1

Разложение окончено.

  • 2) Выпишем компоненты обоих делимых, определим одинаковые:

66 = 2 × 3 × 11

44 = 2 ×2 × 11

  • 3) Перемножим выделенные составляющие:

2 × 11=22

Выходит, что наибольший общий делитель – 22.

На письме, рядом с обозначением НОД в скобочках записывают делимые, для которых определяли наибольший общий делитель:

НОД (66;44) = 22.

Разберем задачу

Выпускники на праздник последнего звонка, приготовили цветы своим учителям. Они принесли 69 роз и 46 гладиолусов и разделили поровну между всеми учителями. Сколько учителей поздравили выпускники?

8

Зная, что цветы были поделены поровну, нам необходимо найти максимальную численность учителей,на которую можно разделить и розы и гладиолусы.

Для определения НОД данных делимых, воспользуемся алгоритмом вычисления:

  • 1) Разложим на составляющие:

69 | 3               46 | 2

23 | 23             23 | 23

1                       1

  • 2) Выберем общее числовое значение находящееся в составляющих :

69 = 3 × 23

46 = 2 × 23.

Нам подходит только  23.

НОД (69;46) = 23.

Наибольшим общим делителем для данных чисел будет 23. 

Выпускники поздравили 23 учителя.

Взаимно простые числа

Рассмотрим ситуацию.

В первой банке лежало 9 декоративных камней, во второй – 14 . Сколько  предметов интерьера, можно украсить  имеющимся материалом, если на каждое изделие использовать равное, при этом, наибольшее количество,камней из первой и второй коробки?

9

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике числа, наибольшим общим множителем которых является 1, называют взаимно простыми.

10

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней, получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике, числа, наибольшим общим множителем которых является 1, называют взаимно простыми

11

Чтобы ответить на главный вопрос задачи, необходимо определить самое маленькое числовое значение, которое будет, без остатка делиться на 4, на 5, то есть будет кратно 4, 5.

Сначала, подберем значения, кратные четырем: 4,8,12,16,20,24,28.

Теперь, значения, кратные пяти: 5,10,15,20,25,30.

После этого, необходимо найти самое маленькое число, которое будет кратным 4, 5 одновременно.

Из перечисленных числовых значений,  подходит только 20. Оно делится без остатка на 4, на 5. Наименьшим общим кратным двух чисел будет 20.

Важно!

12

В математике существует специальный алгоритм для нахождения наименьшего общего кратного нескольких натуральных числовых значений:

13

Например:

Вычислим НОК для 30 и 32.

Чтобы выполнить нужные вычисления воспользуемся алгоритмом нахождения НОК.

14ris

Разберем задачу

В городе Москва, для  качественной съемки парада, приуроченного к празднику 9 Мая, организаторы подготовили квадрокоптеры с видеокамерами. Из одной точки  одновременно, будут запущены три аппарата. Время полета первого 8 минут, второго – 12.Через какое время,квадрокоптеры снова будут запущены одновременно, если по возвращению в точку запуска им меняют батарею и сразу отправляют назад.

15

Чтобы получить ответ на главный вопрос задачи, найдем наименьшее числовое значение, кратное двум данным величинам.

Для этого будем использовать рассмотренный алгоритм:

16ris

Квадрокоптеры будут одновременно запущены через 24 минуты.

Последняя задачка  на внимательность.

На уроке Ваня около доски выполнял задание. Он написал: НОК (25; 115) = 100. Подскажите Ване, верно ли он выполнил задание (не выполняя вычислений)?

17

Вначале, давайте вспомним определение НОК:

18

Из определения следует, НОК нацело делится на известные данные. Однако,видим, что 100 на 115 нацело разделить невозможно. Поэтому Ваня, допустил ошибку в своих расчетах!

Вот так легко и просто можно решить огромное количество задач, даже не совершая сложных вычислений!

Пока, вы только ученики 6 класса. Пройдет совсем немного времени и каждому придется делать главный выбор в своей жизни – «Кем стать?». Если  решите связать жизнь с программированием, интернет-ресурсами, научной деятельностью, вам нужно запомнить все правила и определения. Рассмотренные сегодня алгоритмы лежат в основе разработки, создания, компьютерных программ, сайтов, игр.

Минутка истории

1. Древнегреческий математик Эвклид, создавший алгоритм нахождения НОД, совершил множество математических открытий, аналогов которым ученые не нашли. Самым интересным, является то, что биографических сведений о самом Эвклиде не существует.

2. Среди бесконечного множества простых чисел, заканчивающихся на два и пять, существует только два: 2 и 5.

3. Результат суммирования  цифр числа 18, в два раза меньше этого числа. Существует только одно число такого плана.

4. Однажды, математик Абрахам де Муавр, живший в Англии, находясь в преклонном возрасте, выяснил, что временной период, занимающий сон, увеличивается ежедневно на четвертую часть часа. Проведя вычисления, он определил день, когда длительность сна достигнет суток. По его расчетам это должно произойти двадцать седьмого ноября 1754 года. Именно эта дата стала датой смерти английского ученого.

Нахождение НОД и НОК чисел

Онлайн-калькулятор «Нахождение НОД и НОК чисел«. Наш калькулятор поможет вам найти наибольший общий делить (НОД) и наименьшее общее кратное (НОК) чисел. Особенностью данного калькулятора является то, что он может находить НОК и НОД не только двух чисел, но и трех или четырех чисел. Введите натуральные числа и нажмите кнопку «Вычислить» и наш калькулятор не просто выдаст ответ, но и представит подробное решение, где последовательно будет изложен порядок нахождения НОД и НОК чисел.

Выберите количество чисел, для которых требуется найти НОД и НОК:

2 числа    
3 числа    
4 числа

Первое число Второе число

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое эти числа делятся без остатка. Наибольший общий делитель обозначается следующим образом: НОД (18; 48) = 6

Наименьшее общее кратно нескольких чисел – это самое меньшее число, которое делится на каждое из этих чисел без остатка. Например: НОК (18; 48) = 144

Это следует знать!
Как определить, что число делится на 3 без остатка? Очень просто – на 3 делятся только те числа, сумма цифр которых делится на 3. Например: число 795 делится на 3, так как сумма его цифр 7 + 9 + 5 = 21 делится на 3.
21 : 3 = 7

Как найти НОД и НОК

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Как найти НОД и НОК

Чтобы найти наименьшее общее кратное (НОК) и наибольший общий делитель (НОД) двух чисел воспользуйтесь нашим онлайн калькулятором:

Введите числа: и
НОК:

0

НОД:

0

Определить

Просто введите числа и получите результат.

Как найти НОК двух чисел

Наименьшее общее кратное (НОК) двух или нескольких чисел – это самое маленькое число, которое можно разделить на каждое из этих чисел без остатка.

Для того чтобы найти наименьшее общее кратное (НОК) двух чисел можно воспользоваться следующим алгоритмом (5 класс):

  1. Оба числа разложим на простые множители (сначала наибольшее число).
  2. Сравним множители большего числа с множителями меньшего. Выделим все множители меньшего числа, которых нет у большего.
  3. Добавим выделенные множители меньшего числа к множителям большего.
  4. Найдём НОК, перемножив ряд множителей, полученных в пункте 3.

Пример

Для примера определим НОК чисел 8 и 22.

1) Раскладываем на простые множители:

22 = 2⋅11

8 = 2⋅2⋅2

2) Выделим все множители 8-ми, которых нет у 22-х:

8 = 2⋅22

3) Добавим выделенные множители 8-ми к множителям 22-х:

НОК (8; 22) = 2 · 11 · 2 · 2

4) Вычисляем НОК:

НОК (8; 22) = 2 · 11 · 2 · 2 = 88

Как найти НОД двух чисел

Наибольший общий делитель (НОД) двух или нескольких чисел – это наибольшее натуральное целое число, на которое эти числа можно разделить без остатка.

Чтобы найти наибольший общий делитель (НОД) двух чисел, для начала необходимо разложить их на простые множители. Затем нужно выделить общие множители, которые имеются и у первого числа и у второго. Перемножаем их – это и будет НОД. Чтобы лучше понять алгоритм рассмотрим пример:

Пример

Для примера определим НОД чисел 20 и 30.

20 = 2⋅2⋅5

30 = 2⋅3⋅5

НОД(20,30) = 2⋅5 = 10

Если одно или несколько из рассматриваемых чисел являются простыми, то НОД этих чисел будет равен 1.

См. также

Понравилась статья? Поделить с друзьями:
  • Как найти в лесу ужасы
  • Remote side unexpectedly closed network connection как исправить
  • Как составить анкету ребенку в школу
  • Как проверить слово нашел букву
  • Как найти список паролей в гугл