Как найти наименьший положительный период функции котангенса

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

    [{T_1} = frac{T}{{left| k right|}}]

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

1) y=5sin(3x-п/8).

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| 3 right|}} = frac{{2pi }}{3}.]

    [2)y = frac{2}{7}cos (frac{pi }{5} - frac{x}{{11}})]

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| { - frac{1}{{11}}} right|}} = 2pi  cdot 11 = 22pi .]

    [3)y = 0,3tg(frac{{5x}}{9} - frac{pi }{7})]

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {frac{5}{9}} right|}} = frac{{9pi }}{5}.]

    [4)y = 9ctg(0,4x - 7)]

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {0,4} right|}} = frac{{10pi }}{4} = frac{{5pi }}{2}.]

Как найти наименьший положительный период функции

Наименьший положительный период функции в тригонометрии обозначается f. Он характеризуется наименьшим значением положительного числа T, то есть меньше его значение T уже не будет являться периодом функции.Как найти наименьший положительный период функцииВам понадобится

Обратите внимание на то, что периодическая функция не всегда имеет наименьший положительный период. Так, к примеру, в качестве периода постоянной функции может быть абсолютно любое число, а значит, у нее может и не быть наименьшего положительного периода. Встречаются также и непостоянные периодические функции, у которых нет наименьшего положительного периода. Однако в большинстве случаев наименьший положительный период у периодических функций все же есть.

Наименьший период синуса равен 2?. Рассмотрите доказательство этого на примере функции y=sin(x). Пусть T будет произвольным периодом синуса, в таком случае sin(a+T)=sin(a) при любом значении a. Если a=?/2, получается, что sin(T+?/2)=sin(?/2)=1. Однако sin(x)=1 лишь в том случае, когда x=?/2+2?n, где n представляет собой целое число. Отсюда следует, что T=2?n, а значит, наименьшим положительным значением 2?n является 2?.

Наименьший положительный период косинуса тоже равен 2?. Рассмотрите доказательство этого на примере функции y=cos(x). Если T будет произвольным периодом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим положительным значением T, при котором cos(x)=1, есть 2?.

Учитывая тот факт, что 2? – период синуса и косинуса, это же значение будет и периодом котангенса, а также тангенса, однако не минимальным, поскольку, как известно, наименьший положительный период тангенса и котангенса равен ?. Убедиться в этом сможете, рассмотрев следующий пример: точки, соответствующие числам (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, наименьший положительный период котангенса и тангенса равен ?.

Объяснение и обоснование

Напомним, что . Таким образом, областью определения функции y=будут все значения аргумента, при которых , то есть все значения x, kZ. Получаем

Этот результат можно получить и геометрически. Значения тангенса – это ордината соответствующей точки  на линии тангенсов (рис.91). Поскольку точки Aи B единичной окружности лежат на прямых ОА и ОВ, параллельных линии тангенсов, мы не сможем найти значение тангенса дляx, kZ.

Для всех других значений аргумента мы можем найти соответствующую точку на линии тангенсов и ее ординату — тангенс. Следовательно, все

Значенияx входят в область определения функции y=tgx.

Для точек единичной окружности (которые не совпадают с точками А и В) ординаты соответствующих т

очек на линии тангенсов принимают

все значения до +, поскольку для любого действительного числа

мы можем указать соответствующую точку на оси ординат, а значит, и соответствующую точку на оси тангенсов. Учитывая, что точка О лежит

внутри окружности, а точка   вне ее (или на самой окружности), получаем, что прямая  имеет с окружностью хотя бы одну общую точку

(на самом деле их две). Следовательно, для любого действительного числа

найдется аргумент х, такой, что tan x равен данному действительному числу.

Поэтому область значений функции y= tg x — все действительные числа,

то есть R. Это можно записать так: E (=tgx) = R. Отсюда следует, что наибольшего и наименьшего значений функция tan x не имеет.

Как было показано в § 13, тангенс — нечетная функция:tg(-x)=tg x, следовательно, ее график симметричен относительно начала координат.

Тангенс — периодическая функция с наименьшим положительным периодом

Поэтому при построении графика

этой функции достаточно построить график на любом промежутке длиной π,

а потом полученную линию перенести параллельно вправо и влево вдоль оси

Ox на расстоянияkT = πk, где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат,

напомним, что на оси Oy значение x = 0. Тогда соответствующее значение

y = tg 0 = 0, то есть график функции y = tg x проходит через начало координат.

На оси Ox значение y = 0. Поэтому необходимо найти такие значения x,

при которых tg x, то есть ордината соответствующей точки линии тангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при x = πk, k ∈ Z.

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции тангенс положительны (то есть ордината соответствующей точкилинии тангенсов положительна) в І и ІІІ четвертях. Следовательно, tgx > 0 при

а также, учитывая период, при всех

Значения функции тангенс отрицательны (то есть ордината соответствующей точки линии тангенсов отрицательна) во ІІ и ІV четвертях. Такимобразом,

Промежутки возрастания и убывания.          

 Учитывая периодичность функции tgx (период T = π), достаточно исследовать ее на возрастание и убывание на любом промежутке длиной π,

например на промежутке . Если x (рис. 92), то при увеличении аргумента x (x2>x1) ордината соответствующей точки линии

тангенсов увеличивается (то есть tgx2>tgx1). Таким образом, на этом

промежутке функция tgx возрастает. Учитывая периодичность функции

tgx, делаем вывод, что она возрастает также на каждом из промежутков

Проведенное исследование позволяет обоснованно построить график

функции y = tg x. Учитывая периодичность этой функции (с периодом π),

сначала построим график на любом промежутке длиной π, например на промежутке . Для более точного построения точек графика воспользуемся также тем, что значение тангенса — это ордината соответствующей точки

линии тангенсов. На рисунке 93 показано построение графика функции

y = tg x на промежутке.

Далее, учитывая периодичность тангенса (с периодом π), повторяем вид

графика на каждом промежутке длиной π (то есть параллельно переносим

график вдоль оси Ох на πk, где k — целое число).

Получаем график, приведенный на рисунке 94, который называется тангенсоидой.

14.4. СВОЙСТВА ФУНКЦИИ y = ctg x И ЕЕ ГРАФИК

Объяснение и обоснование

Так как  =, то областью определения котангенса будут все значения аргумента, при которых sin х ≠ 0, то есть x ≠ πk, k ∈ Z. Такимобразом,

D (ctg x): x ≠ πk, k Z.

Тот же результат можно получить, используя геометрическую иллюстрацию. Значение котангенса — это абсцисса соответствующей точки на линии

котангенсов (рис. 95).

 Поскольку точки А и В единичной окружности лежат на прямых ОА

и ОВ, параллельных линии котангенсов, мы не можем найти значение котангенса для x = πk, k ∈ Z. Длядругихзначенийаргументамыможемнайтисоответствующуюточкуна линии котангенсов и ее абсциссу — котангенс. Поэтому все значения x ≠ πk входят в область определения функции у = ctg х.

Для точек единичной окружности (которые не совпадают с точками А и В) абсциссы соответствующих точек на линии котангенсов принимают все значения от –× до +×, поскольку для любого действительного числа мы можем указать соответствующую точку на оси абсцисс, а значит, и соответствующую точку Qх на оси котангенсов. Учитывая, что точка О лежит внутри окружности, а точка Qх — вне ее (или на самой окружности), получаем, что прямая ОQх имеет с окружностью хотя бы одну общую точку (на самом деле их две). Следовательно, для любого действительного числа найдется аргумент х, такой, что сtg x равен данному действительному числу. Таким образом, область значений функции y = ctg x — все действительные числа, то есть R.

Это можно записать так: E (ctgx) = R.Из приведенных рассуждений также вытекает, что наибольшего и наименьшего значений функция ctgxне имеет.

Как было показано в § 13, котангенс — нечетная функция: ctg (-x) = -ctgx, поэтому ее график симметричен относительно начала координат.

Там же было обосновано, что котангенс — периодическая функция с наи­меньшим положительным периодом T= : ctg (x+ ) = ctg x, поэтому через промежутки длиной п вид графика функции ctgxповторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Oyзначение x= 0. Но ctg0 не существует, значит, график функции y= ctg x не пересекает ось Oy.

На оси Оx значение y= 0. Поэтому необходимо найти такие значения x, при которых ctgx, то есть абсцисса соответствующей точки линии котанген­сов, равна нулю. Это будет тогда и только тогда, когда на единичной окруж­ности будут выбраны точки C или D(рис. 95), то есть при

Промежутки знакопостоянства. Как было обосновано в § 13, значения функции котангенс положительны (то есть абсцисса соответствующей точки линии котангенсов положительна) в I и III четвертях (рис. 96). Тогда ctgx> 0 при всех . Учитывая период, получаем, что ctgx> 0 при всех

         Значения функции котангенс отрицательны (то есть абсцисса соответ­ствующей точки линии котангенсов отрицательна) во II и IV четвертях, та­ким образом, ctgx< 0 при .

 

     Промежутки возрастания и убывания

 Учитывая периодичность функции ctg x (наименьший положительный период T = ), достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке (0; ). Если (0; ) (рис. 97), то при увеличении аргумента x (x2>x1) аб­сцисса соответствующей точки линии котангенсов уменьшается (то есть ctgx2<ctgx1), следовательно, на этом промежутке функция ctg x убывает. Учитывая периодичность функции y= ctgx, делаем вывод, что она также убывает на каждом из промежутков

 Проведенное исследование позволяет построить график функции y= ctg x аналогично тому, как был построен график функции y= tg x. Но график функции у = ctg x можно получить также с помощью геометрических пре­образований графика функции у = tg х. По формуле, приведенной на с. 172, , то есть Поэтому график функции у = ctg x можно получить из графика функции у = tg х параллельным переносом вдоль оси Ох на (− ) и симметричным отображением полученного графика относительно оси Ох. Получаем график, который называется котангенсоидой (рис. 98).

как найти период функции

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

1) y=5sin(3x-п/8).

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

www.uznateshe.ru

Периодичность функций

В этой статье обсуждаем периодичность функций: как определить, периодична ли  функция, и каков ее период.

Функция периодична, если  некоторый набор ее значений повторяется раз за разом, и точки с одинаковыми значениями функции расположены на числовой оси с равными промежутками. Это расстояние и будем называть периодом. Периодичная функция может иметь и несколько периодов, самый маленький положительный из них будем называть основным.

Тогда, если мы знаем период, мы можем, зная все значения функции на протяжении данного периода, достроить функцию, либо узнать ее значения в любой точке числовой оси – то есть при любом аргументе.

Периодичная функция

Пример 1: функция имеет период, равный 2: и при . Найдите значение выражения .

Раз наша функция принимает форму части параболы на отрезке [-2; 0] при периоде, равном 2, значит, такую же форму она будет иметь и на следующем отрезке – [0;2], и на отрезке [2;4]. Изобразим ее:

Определение значения периодичной функции

Видно, что функция принимает одинаковые значения в точках, отстоящих друг от друга на 2, 4, 6  единиц и т.д., тогда . Найдем эти значения функции. В точке (-1) функция принимает значение , в точке (3,5) функция принимает значение .

Теперь найдем значение искомого выражения: .

Строго говоря, функция периодична, если есть такое число Т, что .

Попробуем научиться определять, периодична ли функция или нет. Для этого рассмотрим несколько примеров.

Пример 2. Проверим, периодична ли функция .

Установим, выполняется ли условие: , то есть ? Очевидно, что данное условие не выполняется. Значит, функция непериодична.

Пример 3. Проверим, периодична ли функция .

Функцию для удобства представим в виде: .

Установим, выполняется ли условие: , то есть ? Очевидно, что данное условие не выполняется: . Значит, функция непериодична.

Пример 4. Проверим, периодична ли функция . Если функция периодична, то будет выполняться условие: , то есть . Поскольку нам все равно, в какой точке числовой оси мы проведем свое исследование, то очень удобно начать с точки . Тогда  , или . Это означает, что либо  , либо ,  то есть либо ,  либо ,  а так как главным считается наименьший  положительный период, то .

Определение периода функции

В данном примере делать проверку необязательно, но проверка бывает очень полезна в более сложных задачах, поэтому сделаем ее здесь для тренировки: .

Пример 5. Определить периодичность функции .

Если Т – период, то .

В это равенство подставим какие-нибудь «удобные» точки, например, . Получим:

Далее есть два пути отыскания периода, первый – решение этого уравнения, второй – составление еще одного уравнения такого же вида. Если функция имеет период Т, то верно и следующее: . Подставим  «удобную» точку :

Пользуясь четностью косинуса  и нечетностью синуса можем записать:

Имеем систему:

Уравнения сложим, и получим

, откуда

, при получим  – ведь нам нужен наименьший период.

Теперь испробуем второй путь, решим это уравнение: . Из основного тригонометрического тождества:

Оставим в левой части только корень:

Возведем в квадрат:

Тогда либо , либо и .

Это уравнение имеет два решения, одно из которых (второе) – посторонний корень, появившийся при возведении в квадрат. Проверка подстановкой его в исходное уравнение позволит нам выявить его и отбросить. Таким образом, получаем:

и наименьшим будет период при , то есть .

Здесь также необходимо сделать проверку. Подставим полученный период в условие  :

, то есть

период данной функции – .

Определение периода функции

Пример 6. Определить периодичность функции и найти ее основной период.

Если Т – период, то

Подставим , имеем

,

Или , , наименьший период при , .

Проверим:

Определение периода функции

Пример 7. Определим период функции .

Запишем условие периодичности:

, если , то

, откуда  , . При , , при , . Проверкой можно показать, что периодом не является. Тогда . Действительно:

Определение периода функции

Пример 8.

Доказать, что периодом функции является .

Тогда:

Пример 9. Доказать, что периодом функции является .

Тогда:

Если , то

, а  так как и –  одна и та же точка на единичной окружности, то равенство выполняется.

Удачи вам в учебе и надеюсь, эта статья вам помогла.

easy-physic.ru

Периодичность тригонометрических функций

Тригонометрические функции sin(x) и cos(x) являются периодическими, с наименьшим периодом равным 2*π. Тригонометрические функции tg(x) и ctg(x) являются периодическими, с наименьшим периодом равным π.

Величины углов (аргументы функций): ( alpha )

Тригонометрические функции:
( sin alpha ),
( cos alpha ),
( tan alpha ),
( cot alpha ),
( sec alpha ),
( csc alpha )

Целые числа: ( n )

Периодической называется функция, которая повторяет свои значения через какой-то регулярный интервал, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода функции): существует такое ненулевое число (T) (период), что на всей области определения функции выполняется равенство ( f(x)=f(x+T) ).

Тригонометрические функции (синус, косинус, тангенс, котангенс) являются периодическими.

( sin x,;cos x ) — периодические функции с наименьшим положительным периодом ( 2pi: )

( sin(x+2kpi)=sin x,;cos(x+2kpi)=cos x,;kinmathbb{Z}. )

( text{tg}x,;text{ctg}x ) — периодические функции с наименьшим положительным периодом ( pi: )

( text{tg}(x+kpi)=text{tg}x,;text{ctg}(x+kpi)=text{ctg}x,;kinmathbb{Z}. )

Тригонометрические функции ( sin alpha ) и ( cos alpha ) являются периодическими, с наименьшим периодом равным ( 2 pi ).

Тригонометрические функции ( tan alpha ) и ( cot alpha ) являются периодическими, с наименьшим периодом равным ( pi ).

Наименьший период функции синус составляет ( 2pi ) или ( 360^circ ):

( sin left( {alpha pm 2pi n} right) = sin alpha )

Наименьший период функции косинус составляет ( 2pi ) или ( 360^circ ):

( cos left( {alpha pm 2pi n} right) = cos alpha )

Наименьший период функции тангенс равен ( pi ) или ( 180^circ ):

( tan left( {alpha pm pi n} right) = tan alpha )

Наименьший период функции котангенс равен ( pi ) или ( 180^circ ):

( cot left( {alpha pm pi n} right) = cot alpha )

Наименьший период функции секанс составляет ( 2pi ) или ( 360^circ ):

( sec left( {alpha pm 2pi n} right) = sec alpha )

Наименьший период функции косеканс составляет ( 2pi ) или ( 360^circ ):

( csc left( {alpha pm 2pi n} right) = csc alpha )

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Не можешь написать работу сам?

Доверь её нашим специалистам

от 100 р.стоимость заказа

2 часамин. срок

Узнать стоимость

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

calcsbox.com

Как найти наименьший положительный период функции

Минимальный позитивный период функции в тригонометрии обозначается f. Он характеризуется наименьшим значением позитивного числа T, то есть поменьше его значение T теснее не будет являться период ом функции .

Вам понадобится

  • – математический справочник.

Инструкция

1. Обратите внимание на то, что период ическая функция не неизменно имеет минимальный правильный период . Так, к примеру, в качестве период а непрерывной функции может быть безусловно всякое число, а значит, у нее может и не быть наименьшего позитивного период а. Встречаются также и непостоянные период ические функции , у которых нет наименьшего правильного период а. Впрочем в большинстве случаев минимальный правильный период у период ических функций все же есть.

2. Минимальный период синуса равен 2?. Разглядите подтверждение этого на примере функции y=sin(x). Пускай T будет произвольным период ом синуса, в таком случае sin(a+T)=sin(a) при любом значении a. Если a=?/2, получается, что sin(T+?/2)=sin(?/2)=1. Впрочем sin(x)=1 лишь в том случае, когда x=?/2+2?n, где n представляет собой целое число. Отсель следует, что T=2?n, а значит, наименьшим позитивным значением 2?n является 2?.

3. Минимальный правильный период косинуса тоже равен 2?. Разглядите подтверждение этого на примере функции y=cos(x). Если T будет произвольным период ом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим позитивным значением T, при котором cos(x)=1, есть 2?.

4. Рассматривая тот факт, что 2? – период синуса и косинуса, это же значение будет и период ом котангенса, а также тангенса, впрочем не минимальным, от того что, как знаменито, минимальный правильный период тангенса и котангенса равен ?. Удостовериться в этом сумеете, разглядев дальнейший пример: точки, соответствующие числам (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, минимальный правильный период котангенса и тангенса равен ?.

Периодической функцией именуется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции именуется число, при добавление которого к доводу функции значение функции не меняется.

Вам понадобится

  • Знания по элементарной математике и началам обзора.

Инструкция

1. Обозначим период функции f(x) через число К. Наша задача обнаружить это значение К. Для этого представим, что функция f(x), пользуясь определением периодической функции, приравняем f(x+K)=f(x).

2. Решаем полученное уравнение касательно незнакомой K, так, как словно x – константа. В зависимости от значения К получится несколько вариантов.

3. Если K>0 – то это и есть период вашей функции.Если K=0 – то функция f(x) не является периодической.Если решение уравнения f(x+K)=f(x) не существует ни при каком K не равном нулю, то такая функция именуется апериодической и у неё тоже нет периода.

Видео по теме

Обратите внимание!
Все тригонометрические функции являются периодическими, а все полиномиальные со степенью огромнее 2 – апериодическими.

Полезный совет
Периодом функции, состоящей из 2-х периодический функций, является Наименьшее всеобщее кратное периодов этих функций.

Если рассматривать точки на окружности, то точки x, x + 2π, x + 4π и т.д. совпадают друг с ином. Таким образом, тригонометрические функции на прямой периодически повторяют свое значение. Если знаменит период функции , дозволено возвести функцию на этом периоде и повторить ее на других.

Инструкция

1. Период – это число T, такое что f(x) = f(x+T). Дабы обнаружить период, решают соответствующее уравнение, подставляя в качестве довода x и x+T. При этом пользуются теснее вестимыми периодами для функций. Для функций синуса и косинуса период составляет 2π, а для тангенса и котангенса – π.

2. Пускай дана функция f(x) = sin^2(10x). Разглядите выражение sin^2(10x) = sin^2(10(x+T)). Воспользуйтесь формулой для понижения степени: sin^2(x) = (1 – cos 2x)/2. Тогда получите 1 – cos 20x = 1 – cos 20(x+T) либо cos 20x = cos (20x+20T). Зная, что период косинуса равен 2π, 20T = 2&#960. Значит, T = π/10. Т – минимальный правильный период, а функция будет повторяться и через 2Т, и через 3Т, и в иную сторону по оси: -T, -2T и т.д.

Полезный совет
Пользуйтесь формулами для понижения степени функции. Если вам теснее знамениты периоды каких-нибудь функций, пробуйте свести имеющуюся функцию к знаменитым.

Функция, значения которой повторяются через определенное число, именуется периодической . То есть сколько бы периодов вы ни прибавили к значению х, функция будет равна одному и тому же числу. Всякое изыскание периодических функций начинается с поиска наименьшего периода, дабы не исполнять лишнюю работу: довольно исследовать все свойства на отрезке, равном периоду.

Инструкция

1. Воспользуйтесь определением периодической функции . Все значения х в функции замените на (х+Т), где Т – минимальный период функции . Решите полученное уравнение, считая Т незнакомым числом.

2. В итоге вы получите некое тождество, из него испробуйте подобрать наименьший период. Скажем, если получилось равенство sin(2T)=0,5, следственно, 2Т=П/6, то есть Т=П/12.

3. Если равенство получается правильным только при Т=0 либо параметр Т зависит от х (скажем, получилось равенство 2Т=х), делайте итог о том, что функция не периодична.

4. Для того дабы узнать минимальный период функции , содержащей лишь одно тригонометрическое выражение, воспользуйтесь правилом. Если в выражении стоит sin либо cos, периодом для функции будет 2П, а для функций tg, ctg ставьте минимальный период П. Учтите при этом, что функция не должна быть возведена в какую-нибудь степень, а переменная под знаком функции не должна быть умножена на число, хорошее от 1.

5. Если cos либо sin внутри функции построены в четную степень, уменьшите период 2П в два раза. Графически вы можете увидеть это так: график функции , расположенный ниже оси ох, симметрично отразится вверх, следственно функция будет повторяться в два раза почаще.

6. Дабы обнаружить минимальный период функции при том, что угол х умножен на какое либо число, действуете так: определите типовой период этой функции (скажем, для cos это 2П). После этого поделите его на множитель перед переменной. Это и будет желанный минимальный период. Уменьшение периода отменно видно на графике: он сжимается ровно во столько раз, на сколько умножен угол под знаком тригонометрической функции .

7. Обратите внимание, если перед х стоит дробное число поменьше 1, период возрастает, то есть график, наоборот, растягивается.

8. Если в вашем выражении две периодические функции умножены друг на друга, обнаружьте минимальный период для всякой по отдельности. После этого определите минимальный всеобщий множитель для них. Скажем, для периодов П и 2/3П минимальный всеобщий множитель будет 3П (он делится без остатка как на П, так и на 2/3П).

Расчет размера средней заработной платы работников нужен для начисления пособий по временной нетрудоспособности, оплаты командировок. Средний заработок экспертов исчисляется, исходя из реально отработанного времени, и зависит от оклада, надбавок, премий, указанных в штатном расписании.

Вам понадобится

  • – штатное расписание;
  • – калькулятор;
  • – право;
  • – производственный календарь;
  • – табель учета рабочего времени либо акт исполненных работ.

Инструкция

1. Для того дабы сделать расчет средней заработной платы работника, вначале определите период, за тот, что нужно ее исчислить. Как водится, таким периодом выступает 12 календарных месяцев. Но если работник трудится на предприятии менее года, к примеру, 10 месяцев, то вам необходимо обнаружить средний заработок за время, которое эксперт исполняет свою трудовую функцию.

2. Сейчас определите сумму заработной платы, которая была реально начислена ему за расчетный период. Для этого используйте расчетные ведомости, по которым работнику выдавались все положенные ему выплаты. Если немыслимо воспользоваться этими документами, то месячный оклад, премии, надбавки умножьте на 12 (либо то число месяцев, которое работник трудится на предприятии, если он оформлен в компании менее года).

3. Рассчитайте среднедневной заработок. Для этого сумму заработной платы за расчетный период поделите на среднее число дней в месяце (в текущее время оно составляет 29,4). Полученный итог поделите на 12.

4. После этого определите число реально отработанного времени. Для этого используйте табель учета рабочего времени. Данный документ должен заполнять табельщик, кадровый служащий либо другой работник, у которого это прописано в должностных обязанностях.

5. Число реально отработанного времени умножьте на среднедневной заработок. Полученная сумма является средней заработной платой эксперта за год. Итог поделите на 12. Это будет среднемесячным заработком. Такой расчет используется для работников, у которых начисление заработной платы зависит от реально отработанного времени.

6. Когда работнику установлена сдельная оплата труда, то тарифную ставку (указанную в штатном расписании и определенную трудовым договором) умножьте на число произведенных изделий (используйте акт исполненных работ либо иной документ, в котором это фиксируется).

Обратите внимание!
Не путайте функции y=cos(x) и y=sin(x) – имея идентичный период, эти функции изображаются по-различному.

Полезный совет
Для большей наглядности изобразите тригонометрическую функцию, у которой рассчитывается минимальный правильный период.

jprosto.ru

Как найти период тригонометрической функции

Содержание

  1. Инструкция

Тригонометрические функции периодичны, то есть повторяются через определенный период. Благодаря этому достаточно исследовать функцию на этом промежутке и распространить найденные свойства на все остальные периоды.

Инструкция

  • Если вам дано простое выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-либо число, а она сама не возведена в какую-либо степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec смело ставьте период 2П, а если в уравнении есть tg, ctg – то П. Например, для функции у=2 sinх+5 период будет равен 2П.
  • Если угол х под знаком тригонометрической функции умножен на какое-либо число, то, чтобы найти период данной функции, разделите стандартный период на это число. Например, вам дана функция у= sin 5х. Стандартный период для синуса – 2П, разделив его на 5, вы получите 2П/5 – это и есть искомый период данного выражения.
  • Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для четной степени уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в любой степени периодичны П.
  • Если вам дано уравнение, содержащее произведение или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих периодов. Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.
  • Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет ответ задачи.

completerepair.ru

удовлетворяющих системе неравенств:

sin t > 0,

0 6 t 6 4π.

б) Рассмотрим множество чисел на числовой оси, удовлетворяющих системе неравенств:

sin x 6 0,

0 6 x 6 20π.

Найдите сумму длин отрезков, из которых состоит это множество.

§ 7. Простейшие формулы

В § 3 мы установили для острых углов α такую формулу:

sin2 α + cos2 α = 1.

Эта же формула

верна

и

в случае,

когда α — любое

число. В

самом де-

ле, пусть M — точка на тригонометри-

ческой окружности, соответствующая

числу α (рис. 7.1). Тогда

M имеет ко-

ординаты x = cos α, y

=

sin α. Од-

нако всякая точка (x; y), лежащая на

окружности единичного радиуса с цен-

тром в начале координат, удовлетво-

Рис. 7.1.

ряет уравнению x2 + y2

= 1, откуда

cos2 α + sin2 α = 1, что и требовалось.

Итак, формула cos2 α + sin2 α = 1 вытекает из уравнения окружности. Может показаться, что тем самым для острых углов мы дали новое доказательство этой формулы (по сравнению с указанным в § 3, где мы пользовались теоремой Пифагора). Отличие, однако, чисто внешнее: при выводе уравнения окружности x2 + y2 = 1 используется та же теорема Пифагора.

32

Для острых углов мы получали и другие формулы, напри-

мер cos α = 1/

1 + tg2 α. Для произвольных углов эта формула

в таком виде

верна быть не может: согласно общепринятому по-

p

ниманию символа , правая часть всегда неотрицательна, в то время как левая часть вполне может быть и отрицательной. Чтобы формула была верна при всех α, надо ее возвести в квадрат. Получится равенство: cos2 α = 1/(1 + tg2 α). Докажем, что эта формула верна при всех α:1

1/(1 + tg2

α) = 1

1 +

sin2 α

=

cos2 α

= cos2 α.

cos2 α

sin2 α + cos2 α

Задача 7.1. Выведите все формулы, приведенные ниже, из определений и формулы sin2 α + cos2 α = 1 (некоторые из них мы уже доказали):

sin2 α + cos2 α = 1;

tg2 α =

sin α

;

ctg α =

cos α

;

sin α

cos α

1

tg2 α

1

+ tg2

α =

;

sin2 α =

;

tg α · ctg α = 1;

cos2 α

1 + tg2 α

1

ctg2 α

1

+ ctg2

α =

;

cos2 α =

.

1 + ctg2 α

sin2

α

Эти формулы позволяют, зная значение одной из тригонометрических функций данного числа, почти найти все осталь-

ные. Пусть, например, мы знаем, что sin x = 1/2. Тогда cos2 x =

√ √

= 1−sin2 x = 3/4, так что cos x равен или 3/2, или − 3/2. Чтобы узнать, какому именно из этих двух чисел равен cos x, нужна дополнительная информация.

Задача 7.2. Покажите на примерах, что оба вышеуказанных случая возможны.

Задача 7.3. а) Пусть tg x = −1. Найдите sin x. Сколько ответов у этой задачи?

б) Пусть в дополнение к условиям пункта а) нам известно, что sin x < 0. Сколько теперь ответов у задачи?

1Для которых tg α определен, т. е. cos α 6= 0.

33

Задача 7.4. Пусть sin x = 3/5, x [π/2; 3π/2]. Найдите tg x.

Задача 7.5. Пусть tg x = 3, cos x > sin x. Найдите cos x, sin x.

Задача 7.6. Пусть tg x = 3/5. Найдите sin x + 2 cos x. cos x − 3 sin x

Задача 7.7. Докажите тождества:

а)

tg α + ctg β

=

tg α

;

б)

tg α sin α

=

tg α − sin α

;

ctg α + tg β

tg β

tg α + sin α

tg α sin α

1

1

в) sin α + cos α ctg α + sin α tg α + cos α =

+

.

sin α

cos α

Задача 7.8. Упростите выражения:

а) (sin α + cos α)2 + (sin α − cos α)2; б) (tg α + ctg α)2 + (tg α − ctg α)2;

в) sin α(2 + ctg α)(2 ctg α + 1) − 5 cos α.

§ 8. Периоды тригонометрических функций

Числам x, x+2π, x−2π соответствует одна и та же точка на тригонометрической окружности (если пройти по тригонометрической окружности лишний круг, то придешь туда, где был). Отсюда вытекают такие тождества, о которых уже шла речь в § 5:

sin(x + 2π) = sin(x − 2π) = sin x; cos(x + 2π) = cos(x − 2π) = cos x.

В связи с этими тождествами мы уже употребляли термин «период». Дадим теперь точные определения.

Определение. Число T 6= 0 называют периодом функции f, если для всех x верны равенства f(x − T ) = f(x + T ) = f(x) (подразумевается, что x + T и x − T входят в область определения функции, если в нее входит x). Функцию называют периодической, если она имеет период (хотя бы один).

34

Периодические функции естественно возникают при описании колебательных процессов. Об одном из таких процессов речь уже шла в § 5. Вот еще примеры:

1)Пусть ϕ = ϕ(t) — угол отклонения качающегося маятника часов от вертикали в момент t. Тогда ϕ — периодическая функция от t.

2)Напряжение («разность потенциалов», как сказал бы физик) между двумя гнездами розетки в сети переменного тока, ес-

ли его рассматривать как функцию от времени, является периодической функцией1.

3)Пусть мы слышим музыкальный звук. Тогда давление воздуха в данной точке — периодическая функция от времени.

Если функция имеет период T , то периодами этой функции будут и числа −T , 2T , −2T . . . — одним словом, все числа nT , где n — целое число, не равное нулю. В самом деле, проверим, например, что f(x + 2T ) = f(x):

f(x + 2T ) = f((x + T ) + T ) = f(x + T ) = f(x).

Определение. Наименьшим положительным периодом функции f называется — в соответствии с буквальным смыслом слов — такое положительное число T , что T — период f и ни одно положительное число, меньшее T , периодом f уже не является.

Периодическая функция не обязана иметь наименьший положительный период (например, функция, являющаяся постоянной, имеет периодом вообще любое число и, стало быть, наименьшего положительного периода у нее нет). Можно привести примеры и непостоянных периодических функций, не имеющих наименьшего положительного периода. Тем не менее в большинстве интересных случаев наименьший положительный период у периодических функций существует.

1Когда говорят «напряжение в сети 220 вольт», имеют в виду его «среднеквадратичное значение», о котором мы будем говорить в § 21. Само же напряжение все время меняется.

35

Рис. 8.1. Период тангенса и котангенса.

В частности, наименьший положительный период как синуса, так и косинуса равен 2π. Докажем это, например, для функции y = sin x. Пусть вопреки тому, что мы утверждаем, у синуса есть такой период T , что 0 < T < 2π. При x = π/2 имеем sin x = = 1. Будем теперь увеличивать x. В точке x + T значение синуса должно быть также равно 1. Но в следующий раз синус будет равен 1 только при x = (π/2) + 2π. Поэтому период синуса быть меньше 2π не может. Доказательство для косинуса аналогично.

Наименьший положительный период функции, описывающей колебания (как в наших примерах 1–3), называется просто периодом этих колебаний.

Поскольку число 2π является периодом синуса и косинуса, оно будет также периодом тангенса и котангенса. Однако для этих функций 2π — не наименьший период: наименьшим положительным периодом тангенса и котангенса будет π. В самом деле, точки, соответствующие числам x и x + π на тригонометрической окружности, диаметрально противоположны: от точки x до точки x + 2π надо пройти расстояние π, в точности равное половине окружности. Теперь, если воспользоваться определением тангенса и котангенса с помощью осей тангенсов и котангенсов, равенства tg(x + π) = tg x и ctg(x + π) = ctg x станут очевидными (рис. 8.1). Легко проверить (мы предложим это сделать в задачах), что π — действительно наименьший положительный период тангенса и котангенса.

36

Одно замечание по поводу терминологии. Часто слова «период функции» употребляют в значении «наименьший положительный период». Так что если на экзамене у вас спросят: «Является ли 100π периодом функции синус?», не торопитесь с ответом, а уточните, имеется в виду наименьший положительный период или просто один из периодов.

Тригонометрические функции — типичный пример периодических функций: любую «не очень плохую» периодическую функцию можно в некотором смысле выразить через тригонометрические.

Задача 8.1. Найдите наименьшие положительные периоды функций:

а) y = sin 3x;

б) y = cos

x

;

в) y = cos πx;

2

г) y = cos x + cos(1,01x).

Задача 8.2. Зависимость напряжения в сети переменного тока от времени задается формулой U = U0 sin ωt (здесь t — время, U — напряжение, U0 и ω — постоянные величины). Частота переменного тока — 50 Герц (это означает, что напряжение совершает 50 колебаний в секунду).

а) Найдите ω, считая, что t измеряется в секундах;

б) Найдите (наименьший положительный) период U как функции от t.

Задача 8.3. а) Докажите, что наименьший положительный период косинуса равен 2π;

б) Докажите, что наименьший положительный период тангенса равен π.

Задача 8.4. Пусть наименьший положительный период функции f равен T . Докажите, что все остальные ее периоды имеют вид nT для некоторых целых чисел n.

Задача 8.5. Докажите, что следующие функции не являются периодическими:

37

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти нестандартное решение проблемы
  • Как научится правильно составить таблицу
  • Как найти работу после универа
  • Как найти тойоту по вин коду
  • Как найти ошибку в смете