Как найти наименьшую силу тока

0.

Что представляет собой электрическая цепь?

Ответ: электрическая цепь представляет собой совокупность источников и приемников электрической энергии, а также соединяющих их проводников.

Каким прибором и в каких единицах СИ измеряется сила тока?

Ответ: сила тока измеряется амперметром; в амперах.

1.

1. Что обозначают знаки «+» и «-» возле клемм амперметра?

Эти знаки обозначают полюса источника тока, к которым нужно подключать прибор.

2. Какова цена деления шкалы амперметра?

Если шкала имеет такой вид: 0 l l l l 5 l l l l 10 , то необходимо от большего значения отнять меньшее и разделить на количество промежутков (палочек) между цифрами.

3. Какую наименьшую и наибольшую силу тока можно измерить данным амперметром?

$I_{max}= 2A$.

$C = 0.05 A$; $I_{min} = frac{0.05}{2} = 0.025 A$.

2.

1. Соберите электрическую цепь согласно рисунку. Проверьте правильность сборки с учителем! Замкните цепь.

2. Начертите схему цепи и сплошной стрелкой укажите на ней направление тока в цепи, а пунктирной — направление дви­жения носителей заряда.

3. Измените на противоположное направление тока в цепи. Проверьте цепь с учителем! Напишите, как вы это сделали и повлияло ли изменение направления тока на силу тока и на свечение лампочки.

Поменяли местами провода на источнике тока и амперметре. Сила тока не изменилась.

4. Измерьте и занесите в таблицу значения силы тока I1, проте­кающего между клеммой «-» источника тока и ключом (уча­стки 1,2); силы тока I3, протекающего между ключом и лампочкой (участок 3); силы тока I4, протекающего между лампоч­кой и клеммой «+» источника тока (участок 4). Сделайте вы­вод о значении силы тока на различных участках цепи.

$I_4 = 1.25 A$;

$I_2 = 0.5 A$;

$I_3 = 0.5 A$;

$I_1 = 0.5 A$.

5. Начертите схемы электрических цепей при измерениях силы токов $I_3$ и $I_4$.

Схема 2 и Схема 3

6. Замените в последней цепи лампочку сначала резистором на панельке, затем резистором на держателях. Измерьте и запишите в таблицу значения силы токов в них $I_4’$ и $I_4’$.

7. Сравните значения силы токов $I_4$, $I_4’$ и $I_4»$ и сделайте выводы.

Включение амперметра в различных точках цепи не изменяет силы тока, а замена лампочки на резистор изменяет силу тока.

3.

1. Почему сила тока в различных участках рассмотренной цепи одинакова?

Потому что в разных участках цепи ток проходит за одинаковое время.

2. Отразится ли на свечении лампочки исключение из электрической цепи ам­перметра? Почему?

Нет, не отразится. Потому что амперметр имеет маленькое сопротивление и практически не потребляет электричества.

3. Какой заряд прошел через поперечное сечение нити спирали лампочки за 1 мин свечения?

Т.к. сила тока лампочки равняется $0.5$ А, умножив это значение на количество секунд получим $30$ Кулон. Общая формула $q = I · t$.

4.

Перенесите провод 3 с клеммы $C$ ключа на клемму $B$. Освободившуюся клемму $C$ ключа соедините дополнительным проводом с клеммой «+» источника. Включив (только с разрешения учителя!) цепь, объясните, как влияет положение ключа на режим работы лампочки и амперметра.

Поскольку амперметр и лампа ни к чему не подсоединены, а ключ подсоединён к клемме «+», положение ключа не повлияет на режим работы лампочки и амперметра.

Присоединяйтесь к Telegram-группе @superresheba_8,
делитесь своими решениями и пользуйтесь материалами, которые присылают другие участники группы!

Как разными способами найти силу тока

Содержание

  • 1 Зачем нужно находить силу тока
  • 2 Вычисление тока, если известны мощность и напряжение
  • 3 Определение мощности прибора
  • 4 Вычисление тока при известных значениях напряжения и сопротивления
  • 5 Использование мощности и сопротивления
  • 6 Непосредственное измерение силы тока
  • 7 Видео по теме

Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.

Зависимости между основными электрическими величинами

Зависимости между основными электрическими величинами

Зачем нужно находить силу тока

Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.

Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.

Электроток выраженный через заряд и время

Электроток, выраженный через заряд и время

Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.

Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.

Вычисление тока, если известны мощность и напряжение

Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:

Вычисление электротока при известных значениях напряжения и мощности

Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:

Формула электротока для однофазной сети

Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:

Расчет для трехфазной сети

При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.

Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.

Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:

Вычисление силы тока для однофазной и трехфазной сети

Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.

Определение мощности прибора

Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:

  • Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
  • На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.

Задняя панель прибора с указанием основных данных

Задняя панель прибора с указанием основных данных

  • Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.

Мощность разных приборов

Мощность разных приборов

При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.

Вычисление тока при известных значениях напряжения и сопротивления

Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:

Вычисление электротока согласно закону Ома

Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:

Определение электротока через эдс

Использование мощности и сопротивления

Как известно, мощность можно находить по формуле.

Определение мощности

Применив в данном выражении закон Ома, можно привести его к следующему виду:

Преобразованная формула мощности

Теперь силу тока можно выразить так:

Вычисление электротока если известны мощность и сопротивление

Следовательно, вычислить силу тока можно разными способами.

Непосредственное измерение силы тока

Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.

Использование амперметра и вольтметра

Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.

Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.

Видео по теме

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Аналоговый амперметр

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U  = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

  • I1 = U/R1 =100/5 = 20 А;
  • I2 = U/R2 =100/25 ≈ 4 А;
  • I3 = U/R3 =100/50 = 2 А.

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях:  I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или

A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Как найти силу тока

Передвижение положительно заряженных частиц, перемещающихся в едином направлении, в физике именуют силой тока. По собственной сущности это физическая величина, демонстрирующая заряд, происходящий в определенный промежуток времени через особый проводник. Отыскать силу тока можно несколькими методами. 1-ый — это расчет величины по выведенным готовым формулам при наличии начальных данных. 2-ой — это внедрение особых измерительных устройств.

Для чего нужна сила тока

Работа хоть какой электротехники впрямую связана с физической величиной заряженных частиц. Познание того, как отыскать силу тока, позволяет осознавать аспекты работы такового оборудования, отдельной цепи или схемы. Расчет подобного значения у реального специалиста не вызовет особенных проблем, а вот у начинающих электриков это может вызвать некоторые препядствия. Для этого стоит знать определенные расчетные формулы либо иметь под рукою особый измерительный устройство.

По собственной сущности различают несколько разновидностей тока — это неизменный (находящийся в аккумуляторных батарейках) и переменный (находящийся в розетке). Конкретно 2-ой вид отвечает за освещение в помещении, работу электроприборов. Особенность переменного тока заключается в резвой передаче и трансформации, броским примером тому может служить работа люминесцентных лампочек (движение токовых частиц при включении).

Расчет величины по формулам

Так как самым распространенным видом тока, использующимся в быту, является переменный, то для его расчета применяется популярная каждому школьнику формула расчета «Закон Ома». Смотрится она следующим образом — I = U / R (отыскать ток можно, разделив напряжение на сопротивление), где:

  • I — это переменное токовое значение;
  • U — это напряжение;
  • R — это сопротивление.

Как измерить ток

Из этой формулы тока можно вывести и другие, более полезные вычисления, дозволяющие найти другие значения, имея только фактические характеристики 2-ух других величин (R = U / I и U = I * R). При расчете рекомендуется применять главные единицы измерения — амперы, вольты и омы. Данная расчетная формула в большинстве случаев применяется для вычисления силы в цепях с активной нагрузкой, к примеру, нагревательных устройствах, электрочайниках, светодиодах и т. д.

В других же случаях применяется другая вычислительная формула, содержащая внутри себя мощность и напряжение. Смотрится она следующим образом — I = P / U. Также сила тока рассчитывается по формуле I = q / t, где q — это заряд, идущий по проводнику, измеряющийся в кулонах, а t — это время прохождения электрического заряда, вычисляющееся в секундах.

Вычисление значений приборными системами

Кроме формул при отсутствии точных характеристик нужных значений применяются особые приборные системы. Преимущество такового способа заключается в быстроте и точности получаемых данных, минус — в необходимости брать требуемые устройства. К главным методам, как найти силу тока, стоит отнести:

Прибор для измерения силы тока

  • Магнитоэлектрический способ вычисления, отличающийся высочайшей чувствительностью, точностью показаний, наименьшим потреблением электроэнергии. Применяется он часто для определения значения силы неизменного тока.
  • Электромагнитный, главным вычислительным элементом которого становится магнитомодульный датчик, на который из магнитного поля поступает сигнал. Таким методом можно выяснить силу неизменного и переменного тока.
  • Косвенный, где по старинке применяется вольтметр, определяющий показания напряжения на определенном сопротивлении.

Необходимо отметить, что подобные способы изредка используются самими электрикам, так как они отымают много времени. Еще проще применять особые приборы, а не приборные системы.

Измерение амперметром

Чем измеряют силу тока

Самым обычным методом выяснить силу тока является измерение показаний амперметром. Особенности его применения заключаются в подключении устройства к разрывам электрической цепи. Для этого выбирается подходящее место, после этого остается дождаться, когда на дисплее амперметра высветится значение силы тока (заряда), прошедшего через кабельное сечение через определенный промежуток времени.

Кроме традиционного устройства применяются похожие на них аналоги, созданные для того, дабы стремительно отыскать силу тока малого электричества — это миллиамперметры, микроамперметры, гальванометры. Процедура подключения установки не много чем отличается от обыденных измерительных устройств, их необходимо зафиксировать на том участке цепи, где нужна выяснить значение заряда. Подключение осуществляется несколькими способами — последовательным и параллельным. Условно весь процесс можно поделить на несколько шагов:

Амперметр описание прибора

  1. подготовка устройства, из которого выходит провод с 2-мя кабелями питания;
  2. выставление нужного измерительного спектра на вычислительной установке;
  3. прикладывание 1-го щупа к проводу питания устройства;
  4. подключение второго щупа к хоть какому контакту электропитания;
  5. подсоединение оставшегося провода ко второму щупу;
  6. включение измерительного устройства;
  7. получение величины токовой силы, показанной на измерителе.

При измерении токовой силы нельзя забывать о том, что необыкновенную роль в данном деле играет его вид (переменный или неизменный). Повышенное внимание следует уделить неизменному типу тока, к примеру, если снутри устройства установлен блок питания, снижающий сетевое напряжение до наименьших значений.

В таком случае нужно определять токовую силу в той части цепи, где установлен выпрямляющий мост диодов.

Немаловажную роль в измерении играет напряжение, в таком случае измерительные щипы устройства прикладываются не к разрыву цепи, а к параллельным контактам электропитания. Здесь также стоит уделить внимание типу напряжения, которое бывает переменным и неизменным.

Что такое сила тока, формулы

Электрическим током является упорядоченное движение заряженных частиц под воздействием электрического поля.

Заряженными частичками могут быть электроны, протоны, ионы и прочее. К примеру, в проводниках – это электроны.

Таким макаром, силой тока является направленное движение заряженных частиц.

Главные понятия

Силой электрического тока является величина, характеризующая движение электрических зарядов и равная числу заряда (δq) , протекающего через сечение проводника (S) в единицу времени (δt) :
(I=<δqover δt>)
Другими словами, для определения силы тока (I) нужно поделить заряд (δq) , прошедший через определённое сечение проводника на время (δt) , за которое он пересек это сечение.

Величина силы тока находится в зависимости от количества заряда, который переносят все частички, площади сечения проводника и скорости их направленного движения.

Разглядим главные формулы на примере проводника с поперечным сечением (S) . Обозначим буковкой (q_0) заряд всех частиц. Если ограничить объём проводника 2-мя сечениями, то в нем будет содержаться (nSδl) частиц, где n является их концентрацией. Тогда их общий заряд будет рассчитываться по формуле:
(q=q_0 nSδl)

Не отыскали что находили?

Просто напиши и мы поможем

Если частички движутся со средней скоростью v, то за время δt=δI/v они пройдут весь данный объем. В этом случае сила тока рассчитается таким макаром:

где (I) – сила тока, А (Ампер);
(q_0) – заряд, Кл (Кулон).
Силу тока определяют с помощью амперметра, принцип деяния которого основан на магнитном действии тока.

Скорость упорядоченного движения электронов, проходящих через площадь поперечного сечения медного проводника, размером 1 мм квадратный, приравнивается 0,1 мм/с.

Чем сила тока отличается от напряжения

При исследовании электрического тока различают понятие силы тока и напряжения. Это различные характеристики, но связанные между собой. От их исследования зависит осознание механизмов работы электрических цепей.

Силой тока является определенное количество электричества, а напряжение обозначает меру возможной энергии. Данные величины зависят одна от другой. К факторам, которые оказывают влияние на величину силы тока и напряжения относятся материал проводника, температура и наружняя среда.

Ток и напряжение получают разными методами. Если при воздействии на электрические заряды появляется напряжение, то ток создаётся при всем этом благодаря потенциалу между точками. Напряжение охарактеризовывает потенциальную энергию, а сила тока – кинетическую.

Вычисление силы тока

Силу тока определяют с помощью особых устройств либо с внедрением формул, когда есть другие характеристики работы электрической цепи. Основная формула для расчета силы тока:

Электрический ток бывает неизменным либо переменным. Примером неизменного тока есть батарейка, а переменного – ток в штепсельной розетке. Все приборы и освещение происходит за счет деяния переменного тока. Переменный ток отличается от неизменного тем, что он лучше трансформируется.

Переменный ток более почаще применяется как в быту, так и на промышленных предприятиях. Согласно закону Ома силу тока участка цепи рассчитывают следующим образом:

Другими словами сила тока прямо пропорционально находится в зависимости от напряжения (U) , и назад пропорционально находится в зависимости от сопротивления участка цепи (R) .

Трудно разобраться самому?

Попробуй обратиться за помощью к педагогам

Сила тока в замкнутой цепи рассчитывается следующим методом:

где (E) – электродвижущая сила, В;
(R) – наружное сопротивление, Ом;
(r) – внутреннее сопротивление, Ом;

Главные методы определения силы тока при помощи устройств:

  • магнитоэлектрический измерительный способ. Обладает высочайшей чувствительностью и точностью показаний при маленьком энергопотреблении. Данный способ используют только для определения неизменного тока;
  • электромагнитный метод. Данный способ состоит в определении силы переменного либо неизменного тока средством преобразования сигнала электромагнитного поля в магнитный сигнал, который улавливается датчиком;
  • косвенный способ. Состоит в определении напряжения устройством вольтметром с последующим расчётом силы тока с помощью формул.

Для определения силы тока в большинстве случаев на практике применяют амперметр. Данный устройство включают в разрыв электрической цепи в точке, где нужно измерить силу тока.

Для определения силы тока маленькой величины применяют миллиамперметр либо микроамперметр. Также существует таковой устройство, как гальванометр. При всем этом приборы подключают параллельно либо последовательно.

На практике силу тока нужна определять не так нередко, как напряжение либо сопротивление. Но без определения её величины нереально высчитать потребляемую мощность.

Не отыскали подходящую информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматом разошлет в течение 59 секунд. Изберите подходящего профессионала, и он освободит вас от морок с учёбой.

Гарантия низких цен

Все работы производятся без посредников, потому цены вас приятно изумят.

Доработки и консультации включены в цена

В пределах задания они бесплатны и производятся в обсужденные сроки.

Вернем средства за невыполненное задание

Если эксперт не совладал – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и празднички, дабы оперативно отвечать на ваши вопросы.

Тысячи испытанных профессионалов

Мы отбираем только надёжных исполнителей – экспертов в собственной области. Они все имеют высшее образование с оценками в дипломе «хорошо» и «отлично».

Новых заказов каждый денек

computer

Гарантия возврата средств

Эксперт получил средства, а работу не выполнил?
Только не у нас!

Средства хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата средств

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Чтобы хоть немного разбираться в электрике, необходимо знать основополагающие законы. Один из них — закон Ома. С него начинают изучение электрики и не зря. Он иллюстрирует зависимость параметров электрической цепи друг от друга. 

Содержание статьи

  • 1 Как звучит закон Ома для участка цепи
  • 2 Разбираемся что такое ток и сопротивление
  • 3 Говорим о напряжении
  • 4 Что изменится для полной цепи
  • 5 Как найти сопротивление, напряжение
  • 6 Параллельное и последовательное соединение
    • 6.1 Последовательное соединение
    • 6.2 Параллельное соединение
    • 6.3 Что нам дает параллельное и последовательное соединение?

Как звучит закон Ома для участка цепи

Есть говорить об официальной формулировке, то закон Ома можно озвучить так:

Сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Это высказывание справедливо для участка цепи с каким-то определенным и стабильным сопротивлением.

Формула этой зависимости на рисунке. Тут I — это сила тока, U — напряжение, R — сопротивление.

Формула закона Ома

Формула закона Ома

  • Чем больше напряжение, тем больше ток.
  • Чем больше сопротивление, тем ток меньше.

Не так легко представить себе смысл этого выражения. Ведь электричество нельзя увидеть. Мы только приблизительно знаем что это такое. Попытаемся уяснить себе смысл этого закона при помощи аналогий.

Разбираемся что такое ток и сопротивление

Начнем с понятия электрического тока. Если говорить коротко, электрический ток применительно к металлам — это направленное движение электронов — отрицательно заряженных частиц. Их обычно представляют в виде небольших кружочков. В спокойном состоянии они передвигаются хаотически, постоянно меняя свое направление. При определенных условиях — возникновении разницы потенциалов — эти частицы начинают определенное движение в какую-то сторону. Вот это движение и есть электрический ток.

Чтобы было понятнее,  можно сравнить электроны с водой, разлитой на какой-то плоскости. Пока плоскость неподвижна, вода не движется. Но, как только появился наклон (возникла разница потенциалов), вода пришла в движение. С электронами примерно так же.

Примерно так можно себе представить электрический ток

Примерно так можно себе представить электрический ток

Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.

Если у вас есть желание проверить эту зависимость опытным путем, найдите переменный резистор, соедините последовательно резистор — амперметр — источник тока (батарейка). Еще желательно в цепь вставить выключатель — обычный тумблер.

Цепь для проверки зависимости силы тока от сопротивления

Цепь для проверки зависимости силы тока от сопротивления

Крутя ручку резистора вы изменяете сопротивление. При этом показания на амперметре, который измеряет силу тока, тоже меняются. Причем чем больше сопротивление, тем меньше отклоняется стрелка — меньше ток. Чем сопротивление меньше — тем сильнее отклоняется стрелка — ток больше.

Вместо стрелочного прибора можно использовать цифровой мультиметр в режиме измерения постоянного тока. В этом случае отслеживаются показания на жидкокристаллическом цифровом табло.

Зависимость тока от сопротивления почти линейная, то есть на графике отражается почти прямой линией. Почему почти — об этом надо говорить отдельно, но это другая история.

Говорим о напряжении

Не менее важно понять что такое напряжение. Давайте сразу начнем с аналогии и снова используем воду. Пусть в воронке находится вода. Она просачивается через узкое горлышко, которое создает сопротивление. Если представить, что на воду уложили груз, движение воды ускорится. Этот груз — и есть напряжение. И теперь тоже понятно, почему чем выше напряжение, тем сильнее ток — чем сильнее давление, тем быстрее будет двигаться вода. То есть, зависимость прямая: больше напряжение — больше ток. И именно это положение отражает закон Ома — «давление» стоит в числителе (в верхней части дроби).

Можно попробовать представить напряжение по-другому. Есть все те же электроны, которые скопились на одном краю источника питания. На втором краю их мало. Так как каждый из электронов имеет какой-то заряд, там, где их много, суммарный заряд больше, где мало — меньше. Разница между зарядами и есть напряжение. Это тоже несложно представить. С точки зрения электричества — это более корректное представление, хоть и не точное.

На тему закона Ома есть немало забавных картинок, позволяющих чуть лучше понять все эти явления. Одна из них перед вами и иллюстрирует, как ток зависит от напряжения и сопротивления. Смотрите что получается: сопротивление старается уменьшить ток (обратная зависимость), а с ростом напряжения он увеличивается (прямая зависимость). Это и есть закон Ома, но переданный простыми словами.

Благодаря картинке просто понять зависимость тока от напряжения и сопротивления

Благодаря картинке просто понять зависимость тока от напряжения и сопротивления

Если вы хотите убедиться и в этой зависимости, тоже надо создать простенькую цепь. Но нужен будет либо регулируемый источник питания, либо несколько батареек, которые выдают разное напряжение. Или можно последовательно включать несколько батареек — тоже вариант. Но менять/подпаивать батарейки надо при разорванной цепи (выключенном тумблере).

В этой схеме используются два измерительных прибора: амперметр включается последовательно с нагрузкой (резистор на схеме ниже), вольтметр параллельно нагрузке.

Схема для иллюстрации закона Ома

Схема для иллюстрации закона Ома

Так как другие параметры цепи остаются в норме, при увеличении напряжения мы увидим увеличение силы тока. Чем больше напряжение подаем, тем больше отклоняются стрелки вольтметра и амперметра. Если задаться целью построить график, он будет в виде прямой. Если поставить другое сопротивление, график также будет в виде прямой, но угол наклона ее изменится.

Что изменится для полной цепи

В ситуации выше рассмотрен только некоторый участок цепи, обладающий каким-то фиксированным сопротивлением. Мы предполагаем, что при определенных условиях электроны начнут движение. Причина этого движения — тот самый груз на картинке. В реальных условиях это — источник тока. Это может быть батарейка, генератор постоянного тока, подключенный шнур блока питания и т.д. При подключении источника питания к проводнику в нем начинает протекать ток. Это мы тоже знаем и наблюдаем, когда включаем лампу в сеть, ставим заряжаться мобильный телефон и т.д.

Полная цепь включает в себя источник питания

Полная цепь включает в себя источник питания

Участок цепи имеет какое-то сопротивление. Это понятно. Но источник  питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).

Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:

Сила тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника тока.

Вроде не слишком сложно, но можно попробовать еще проще:

  • Чем выше ЭДС источника тока, тем больше ток.
  • Чем больше суммарное сопротивление, тем ток меньше.

Как найти сопротивление, напряжение

Зная формулу закона Ома для участка цепи, мы можем рассчитать напряжение и сопротивление. Напряжение находится как произведение силы тока и сопротивления.

Формула напряжения и сопротивления по закону Ома

Формула напряжения и сопротивления по закону Ома

Сопротивление можно найти, разделив напряжение на ток. Все действительно несложно. Если мы знаем, что к участку цепи было проложено определенное напряжение и знаем какой при этом был ток, мы можем рассчитать сопротивление. Для этого напряжение делим на ток. Получаем как раз величину сопротивления этого куска цепи.

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

  • Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
  • Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга. Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя. Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

    Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

    Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

В общем, это наиболее распространенные варианты использования этих соединений.

Понравилась статья? Поделить с друзьями:
  • Как найти работников в оренбурге
  • Как найти толщину слоя в физике
  • Как найти максимум спектра
  • Как найти человека воткинске
  • Как составить резюме для преддипломной практики