Как найти наименьшую точку функции на графике

Рассмотрим примеры, в которых дан график производной и требуется определить, в какой точке данного отрезка функция принимает наименьшее значение.

№1

На рисунке изображён график производной функции f(x), определённой на интервале (-10;8). В какой точке отрезка [-8;-1] функция f(x) принимает наименьшее значение?

grafik-proizvodnoj-naimenshee-znachenie-funkciiРешение:

Выделяем отрезок [-8;-1].

На этом отрезке производная f'(x) принимает положительные значения.

Значит, на [-8;-1] функция f(x) возрастает, то есть бо́льшему значению аргумента соответствует бо́льшее значение функции:

x1,x2 ∈[-8;-1], x2>x1, ⇒ f(x2)>f(x1).

Следовательно, наименьшее значение f(x) принимает при наименьшем значении аргумента, то есть на левом конце отрезка, при x=-8.

Ответ: -8.

№2

На рисунке изображён график производной функции f(x), определённой на интервале (-6;8). В какой точке отрезка [-3;6] функция f(x) принимает наименьшее значение?

naimenshee-znachenie-funkcii-po-grafiku-proizvodnojРешение:

Выделяем отрезок [-3;6].

На этом отрезке f'(x)<0, поэтому f(x) убывает, то есть бо́льшему значению аргумента соответствует меньшее значение функции:

x1,x2 ∈[-3;6], x2>x1, ⇒ f(x2)<f(x1).

Поэтому наименьшее значение функция f(x) в этом случае принимает при наибольшем значении аргумента, то есть на правом конце отрезка, при x=6.

Ответ: 6.

№3

Функция y=f(x) определена на промежутке (-9;6). На рисунке изображён график её производной. Найти абсциссу точки, в которой функция y=f(x) принимает наименьшее значение.

najti-abscissu-funkciya-prinimaet-naimenshee-znachenieРешение:

В точке с абсциссой x=2 производная меняет знак с минуса на плюс.

Значит, x=2 — точка минимума.

Производная f'(x) существует на всём интервале (-9;6), следовательно, функция f(x) на (-9;6) непрерывна.

Если непрерывная функция f(x) имеет на заданном интервале (a;b) только одну точку экстремума xo и это точка минимума, то на (a;b) функция принимает своё наименьшее значение в точке xo.

Таким образом, наименьшее значение функция f(x) принимает в точке с абсциссой x=2.

Ответ: 2.

№4

Функция y=f(x) определена и непрерывна на отрезке [-4;9]. На рисунке изображён график её производной. Найти точку xo, в которой функция принимает наименьшее значение, если f(9)≤f(-4).

najti-tochku-funkciya-prinimaet-naimenshee-znachenieРешение:

На промежутках (-4;-3) и (2;9) производная f'(x) принимает положительные значения, поэтому функция f(x) на этих промежутках возрастает.

На промежутке (-3;2) производная f'(x)<0, поэтому функция f(x) убывает.

Так как функция определена и непрерывна на отрезке [-4;9], то точки -4, -3, 2 и 9 можно включить в промежутки монотонности.

Следовательно, функция f(x) возрастает на промежутках [-4;-3] и [2;9] и убывает на [-3;2].

На промежутках возрастания своё наименьшее значение функция принимает на левом конце отрезка. На отрезке [2;9] наименьшее значение f(x) принимает в точке x=2 (точке минимума), на [-4;-3] — в точке x=-4.

Так как на [2;9] функция f(x) возрастает, то f(2)<f(9).

По условию, f(9)≤f(-4). Значит, f(2)<f(-4).

Таким образом, наименьшее значение функция f(x) принимает в точке x=2.

Ответ: 2.

Исследование графика функции

На рисунке изображен график функции y=fleft( x right). Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции;
  • область значений функции;
  • нули функции;
  • промежутки возрастания и убывания;
  • точки максимума и минимума;
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса — это координата точки по горизонтали.
Ордината — координата по вертикали.
Ось абсцисс — горизонтальная ось, чаще всего называемая ось X.
Ось ординат — вертикальная ось, или ось Y.

Аргумент — независимая переменная, от которой зависят значения функции. Чаще всего обозначается x.
Другими словами, мы сами выбираем x, подставляем в формулу функции и получаем y.

Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует.
Обозначается: D(f) или D(y).

На нашем рисунке область определения функции y=fleft( x right) — это отрезок left[ -6; 6 right]. Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции — это множество значений, которые принимает переменная y. На нашем рисунке это отрезок left[ -3; 7 right] — от самого нижнего до самого верхнего значения y.

Нули функции — точки, где значение функции равно нулю, то есть y=0. На нашем рисунке это точки x=-4 и x=1.

Значения функции положительны там, где y textgreater 0. На нашем рисунке это промежутки left[ -6; -4 right] и left[ 1; 6 right].
Значения функции отрицательны там, где y textless 0. У нас это промежуток (или интервал) от -4 до 1.

Важнейшие понятия — возрастание и убывание функции на некотором множестве M. В качестве множества M можно взять отрезок left[ a; b right], интервал left( a; b right), объединение промежутков или всю числовую прямую.

Функция y=fleft( x right) возрастает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textgreater fleft( x_1 right).

Иными словами, чем больше x, тем больше y, то есть график идет вправо и вверх.

Функция y=fleft( x right) убывает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textless fleft( x_1 right).

Для убывающей функции большему значению x соответствует меньшее значение y. График идет вправо и вниз.

На нашем рисунке функция fleft( x right) возрастает на промежутке left[ -2; 4 right] и убывает на промежутках left[ -6; -2 right] и left[ 4; 6 right].

Определим, что такое точки максимума и минимума функции.

Точка максимума — это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума — такая точка, значение функции в которой больше, чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке x=4 — точка максимума.

Точка минимума — внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума — такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке x= -2 — точка минимума.

Точка x= -6 — граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и x=6 на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции. В нашем случае это x=4 и x= -2.

А что делать, если нужно найти, например, минимум функции y=fleft ( x right ) на отрезке left[ -4; 0 right]? В данном случае ответ: y= -3. Потому что минимум функции — это ее значение в точке минимума.

Аналогично, максимум нашей функции равен 4. Он достигается в точке x=4.

Можно сказать, что экстремумы функции равны 4 и -3.

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке left[ -6; 6 right] равно -3 и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно 7. Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Исследование графика функции» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Как найти точки минимума и максимума функции

Содержание:

  • Минимум и максимум функции

    • Точка минимума, минимум функции
    • Точка максимума, максимум функции
  • Исследование функций на экстремумы
  • Примеры задач

Минимум и максимум функции

Минимумом и максимумом функции, другими словами экстремумами, называют точки, в которых функция меняет характер монотонности (с возрастания на убывание и наоборот). Важно понимать, что экстремумы это не максимальные и минимальные значения функции. Обозначаются следующим образом: 

  • (y_{min}, y_{max}) — минимум, максимум функции или экстремумы;
  • (x_{min}, x_{max}) — точки минимума, максимума функции;
  • (y_{наиб}, y_{наим}) — наибольшее (максимальное), наименьшее (минимальное) значение функции.

Точка минимума, минимум функции

Точка минимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)geq f(x_0))

Минимум функции — значение функции в точке минимума (x_0)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Простыми словами, точка минимума — это та, где убывание функции меняется на возрастание.

Точка максимума, максимум функции

Точка максимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)leq f(x_0))

Максимум функции — значение функции в точке максимума (x_0)

Простыми словами, точка максимума — это та, где возрастание функции меняется на убывание.

Точки максимума и минимума на графике:

Точка экстремума

Источник: school-collection.edu.ru

Исследование функций на экстремумы

Теорема. Если функция f(x) имеет экстремум в точке (x=x_0,) то в ней производная либо равна 0, либо не существует.

Алгоритм нахождения экстремумов с помощью производной:

  1. Найти область определения функции — D(y).

  2. Определить производную — f ‘(x).

  3. Определить стационарные точки f(x), т.е. те, которые принадлежат D(y), f ‘(x) в них обращается в ноль, отыскать критические точки, в которых производной не существует (пример: (f^,(x)=frac1{2sqrt x}), производной не существует при x = 0).

  4. Исследовать характер изменения функции (x) и знак f ‘(x) в промежутках, на которые найденные критические точки делят область определения (при отрицательном знаке производной функция убывает, при положительном — возрастает).

  5. Относительно каждой критической точки определить, является ли она точкой максимума, минимума  (возрастание меняется на убывание — точка максимума, убывание на возрастание — минимума) или не является точкой экстремума (то есть, меняется ли знак производной при переходе через исследуемую точку).

  6. Вычислить значения функции в точках экстремума.

Примеры задач

Задача 1

Исследовать на экстремумы функцию (f(x)=x^3-3x^2.)

Решение задачи по алгоритму:

1) (D(y): xin(-infty;+infty)), т.е. x — любое число.

2) Производная: (f'(x)=3x^2-6x) .

3) Из пункта 1 следует, что критических точек нет. Найдем стационарные:

Приравниваем f ‘(x) к 0, решаем квадратное уравнение (3x^2-6x=0), получаем (x_1=0),(;x_2=2.)

4) Отметим на горизонтальной оси координат точки 0 и 2. Подставим любое x из интервала ((-infty;0)) в f'(x), например, пусть x = -1, тогда (f'(x)=3{(-1)}^2-6(-1)=3+6=9). Получаем f ‘(x)>0, значит на исследуемом интервале f(x) возрастает. Аналогично рассмотрим оставшиеся интервалы. Итого, на отрезке (0;2) производная отрицательна, функция убывает, а на интервале ((2;+infty)) производная положительна, возрастает. Из этого следует, что x=0 — точка максимума, а x=2 — минимума.

5) Найдем значение экстремумов функции.

(f(0)=0-3times0=0)

(f(2)=2^3-3times2^2=8-12=-4)

Ответ: (x_{min}=2,;y_{min}=-4;;x_{max}=0,;y_{max}=0) или (0;0) — минимум функции, (2;-4) — максимум.

Задача 2

Найти промежутки монотонности функции (f(x)=frac x{x^2-4}).

1) (D(y): xinmathbb{R},;)кроме(;pm2)

2) (f'(x)=frac{1(x^2-4)-xtimes2x}{{(x^2-4)}^2}=-frac{x^2+4}{{(x^2-4)}^2})

3) Итак, как выяснилось в пункте 1, критические точки 2 и -2. Если мы приравняем f ‘(x) к 0, чтобы найти стационарные точки, то увидим, что уравнение не будет иметь корней. Значит, стационарных точек нет. Из этого следует, что функция монотонна на всей области определения. Проверим, возрастает она или убывает. Для этого решаем неравенство (-frac{x^2+4}{{(x^2-4)}^2}leq0) и получим, что неравенство верно при любом x, значит функция убывает.

Не забываем, что в ответе, указывая промежуток, обязательно нужно исключить критические точки -2 и 2 т.к. в них функция не определена.

Ответ: f(x) убывает на промежутке ((-infty;-2)cup(-2;2)cup(2;+infty)).

Задача 3

Докажите, что функция (f(x)=x^5+2x^3-4) возрастает на всех числовой прямой.

1) (D(y): xinmathbb{R}), значит критических точек нет.

2) (f'(x)=5x^4+6x)

3) Приравняем f'(x) к 0 и найдем корень: x = 0. Отметим 0 на числовой прямой и определим знак производной на промежутках ((-infty;0)) и ((0;+infty)). Получим, что производная положительна на обоих промежутках, следовательно функция возрастает на всей числовой прямой.

Утверждение доказано

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    — если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    — если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    — если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Экстремумы функции

Для того чтобы ввести понятие наибольшего и наименьшего значения функций, вначале познакомимся с таким понятием, как экстремумы функций. Это понятие нам будет необходимо не для самого определения значений таких функций, а для построения схемы нахождения таких промежутков для конкретно заданных функций.

Определение 1

Точка $x’$ входящая в область определения функции называется точкой экстремума, если она либо будет точкой максимума, либо будет точкой минимума для функции $f(x)$.

Определение 2

Точка $x’$ будет называться точкой максимума для введенной функции $f(x)$, если у она имеет такую окрестность, что для всех точек $x$, которые входят в эту окрестность, будет верно $f(x)le f(x'{rm })$.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 3

Точка $x_0$ будет называться точкой минимума для введенной функции $f(x)$, если она имеет такую окрестность, что для всех точек $x$, которые входят в эту окрестность, будет верно $f(x)ge f(x'{rm })$.

Чтобы полностью разобраться в данном понятии, далее введем понятие критической точки функции.

Определение 4

Точка $x’$ будет называться критической точкой для данной функции $f(x)$, если выполняются два следующих условия:

  1. Точка $x’$ является внутренней точкой для области определения данной функции;
  2. $f’left(x'{rm }right)=0$ или не существует.

Сформулируем без доказательства теоремы о необходимом (теорема 1) и достаточном (теорема 2) условии для существования точки экстремума.

Если $y=f(x)$ имеет экстремум в точке $x_0$, то либо её производная в ней равняется нулю, либо производная в ней не существует.

«Точки экстремума, наибольшее и наименьшее значение на промежутке» 👇

Теорема 2

Пусть точка $x’$ будет критической для $y=f(x)$ и принадлежит интервалу $(a,b)$, причем на каждом интервале $left(a,x'{rm }right) и (x'{rm },b)$ производная $f'(x)$ существует и сохраняет один и тот же знак. В этом случае:

  1. Если в $(a,x'{rm })$ $f’left(xright) >0$, а в $(x'{rm },b)$ $f’left(xright)
  2. Если в $(a,x'{rm })$ $f’left(xright)0$, то $x’$ —будет точкой минимума для этой функции.
  3. Если и в $(a,x'{rm })$, и в $(x'{rm },b)$ производная $имеет один и тот же постоянный знак$, то $x’$ не будет точкой экстремума для этой функции.

На рисунке 1 мы можем наглядно увидеть смысл теоремы 2.

Рисунок 1.

Примеры точек экстремумов вы можете видеть на рисунке 2.

Рисунок 2.

Правило исследования на экстремум

  1. Найти $D(f)$;
  2. Найти $f'(x)$;
  3. Найти точки, где $f’left(xright)=0$;
  4. Найти точки, где $f'(x)$ не будет существовать;
  5. Отметить на координатной прямой $D(f)$ и все найденные в 3 и 4 пункте точки;
  6. Определить знак $f'(x)$ на полученных промежутках;
  7. Используя теорему 2, сделать заключение по поводу всех найденных точек.

Понятие наибольшего и наименьшего значений

Определение 5

Функция $y=f(x)$, которая имеет областью определения множество $X$, имеет наибольшее значение в точке $x’in X$, если выполняется

[fleft(xright)le f(x’)]

Определение 6

Функция $y=f(x)$, которая имеет областью определения множество $X$, имеет наименьшее значение в точке $x’in X$, если выполняется

[fleft(xright)ge f(x’)]

Чтобы найти наименьшее и наибольшее значение заданной функции на каком либо отрезке необходимо произвести следующие действия:

  1. Найти $f'(x)$;
  2. Найти точки, в которых $f’left(xright)=0$;
  3. Найти точки, в которых $f'(x)$ не будет существовать;
  4. Выкинуть из точек, найденных в пунктах 2 и 3 те, которые не лежат в отрезке $[a,b]$;
  5. Вычислить значения в оставшихся точках и на концах $[a,b]$;
  6. Выбрать из этих значений наибольшее и наименьшее.

Примеры задач

Пример 1

Найти наибольшее и наименьшее значения на [0,6]: $fleft(xright)=x^3-3x^2-45x+225$

Решение.

  1. $f’left(xright)=3x^2-6x-45$;
  2. $f’left(xright)=0$;
  3. [3x^2-6x-45=0]
  4. [x^2-2x-15=0]
  5. [x=5, x=-3]
  6. $f'(x)$ существует на всей $D(f)$;
  7. $5in left[0,6right]$;
  8. Значения:

    [fleft(0right)=225] [fleft(5right)=50] [fleft(6right)=63]

  9. Наибольшее значение равняется $225$, наименьшее равняется $50.$

Ответ: $max=225, min=50$.

Пример 2

Найти наибольшее и наименьшее значения на [-1,1]:$fleft(xright)=frac{x^2-4x+4}{x-2}$

Решение.

[fleft(xright)=frac{x^2-4x+4}{x-2}=frac{{(x-2)}^2}{x-2}=x-2, xne 2]

  1. $f’left(xright)=(x-2)’=1$;

    Точек экстремума нет.

  2. Значения:

    [fleft(-1right)=-3] [fleft(1right)=-1]

Ответ: $max=-1, min=-3$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как проверить код нашел
  • Как найти работу тестировщика без опыта работы
  • Как найти твою страницу
  • Подводная крепость майнкрафт как найти команда
  • Знакомства как найти любимого человека