Как найти накопленные частоты в вариационном ряду


Загрузить PDF


Загрузить PDF

В статистике абсолютная частота показывает, какое количество раз конкретное значение появляется в наборе данных. В отличие от нее, накопительная частота показывает сумму (или нарастающий итог) всех частот вплоть до текущей точки в наборе данных. Не беспокойтесь, если поначалу это кажется не совсем понятным: возьмите ручку и лист бумаги, и вы быстро во всем разберетесь!

  1. Изображение с названием Calculate Cumulative Frequency Step 01

    1

    Отсортируйте набор данных. «Набор данных» — это просто изучаемый вами список числовых значений. Отсортируйте его так, чтобы числа располагались по возрастанию.[1]

    • Пример: предположим, список чисел представляет собой количество книг, которые каждый студент прочитал за последний месяц. После сортировки у вас получился следующий набор чисел: 3, 3, 5, 6, 6, 6, 8.
  2. Изображение с названием Calculate Cumulative Frequency Step 02

    2

    Посчитайте абсолютную частоту каждой величины. Частота значения показывает, сколько раз данное значение появляется в наборе данных. Это число можно называть абсолютной частотой, чтобы не путать его с накопительной частотой. Наиболее простой способ заключается в том, чтобы составить таблицу. Вверху левой колонки напишите «Значение» (или укажите, что измеряется данными числами). Вверху второй колонки напишите «Частота». Заполните таблицу для всех значений из списка.[2]

    • Пример: вверху левой колонки напишите «Количество книг», а вверху правой колонки — «Частота».
    • Во второй строке напишите первое количество прочитанных книг, то есть число 3.
    • Посчитайте, сколько раз число 3 встречается в списке данных. В списке есть два числа 3, поэтому во второй строке колонки «Частота» запишите цифру 2.
    • Повторите данную процедуру для всех значений списка, пока не заполните таблицу:
      • 3  |  Ч = 2
      • 5  |  Ч = 1
      • 6  |  Ч = 3
      • 8  |  Ч = 1
  3. Изображение с названием Calculate Cumulative Frequency Step 03

    3

    Найдите накопительную частоту для первого значения. Накопительная частота отвечает на вопрос «сколько раз встречается в списке данное значение или меньшая величина?». Всегда начинайте с наименьшего значения в наборе данных. Поскольку в нашем примере нет меньших значений, для данной величины накопительная частота равна абсолютной.[3]

    • Пример: наименьшее значение равно 3. Количество прочитавших 3 книги студентов составляет 2. Никто из студентов не прочитал меньшее число книг, поэтому накопительная частота равна 3. Впишите это значение в третью колонку таблицы:

      • 3  |  F = 2  |  НЧ=2
  4. Изображение с названием Calculate Cumulative Frequency Step 04

    4

    Найдите накопительную частоту для следующей величины. Перейдите к следующему значению списка. Выше мы определили, сколько раз встречается в списке наименьшая величина. Чтобы определить накопительную частоту для второго значения списка, необходимо прибавить его абсолютную частоту к накопительной частоте предыдущего значения. Иными словами, следует взять последнюю накопительную частоту и прибавить к ней абсолютную частоту данной величины.[4]

    • Пример:

      • 3  |  Ч = 2  |  НЧ = 2
      • 5  |  Ч = 1  |  НЧ = 2+1 = 3
  5. Изображение с названием Calculate Cumulative Frequency Step 05

    5

    Повторите процедуру для остальных значений. Постепенно продвигайтесь к более высоким числам. При этом каждый раз прибавляйте текущую абсолютную частоту к последней накопительной частоте.

    • Пример:

      • 3  |  Ч = 2  |  НЧ = 2
      • 5  |  Ч = 1  |  НЧ = 2 + 1 = 3
      • 6  |  Ч = 3  |  НЧ = 3 + 3 = 6
      • 8  |  Ч = 1  |  НЧ = 6 + 1 = 7
  6. Изображение с названием Calculate Cumulative Frequency Step 06

    6

    Проверьте полученные результаты. В итоге вы сложите абсолютные частоты всех значений списка. Конечная накопительная частота должна соответствовать числу значений в списке. Есть два способа проверить, так ли это:

    • Сложите абсолютные частоты всех значений: 2 + 1 + 3 + 1 = 7, в результате у вас получится накопительная частота.
    • Посчитайте число значений в наборе данных. В нашем примере список имел следующий вид: 3, 3, 5, 6, 6, 6, 8. В этом списке семь величин, и итоговая накопительная частота также равна 7.

    Реклама

  1. Изображение с названием Calculate Cumulative Frequency Step 07

    1

    Поймите разницу между дискретными и непрерывными данными. Дискретные данные можно посчитать, они не дробятся на более мелкие составляющие. Непрерывные данные часто не поддаются конечному счету, между двумя произвольными величинами обязательно найдутся другие возможные значения. Ниже приведена пара примеров:[5]

    • Количество собак является дискретным множеством. Нет такого понятия, как половина собаки.
    • Глубина снега представляет собой непрерывное множество. Она возрастает постепенно и непрерывно, а не на дискретные величины. Если вы измерите глубину снега в сантиметрах, то точное значение может оказаться, например, 20,6 сантиметра.
  2. Изображение с названием Calculate Cumulative Frequency Step 08

    2

    Разбейте непрерывные данные на интервалы. Наборы непрерывных данных часто имеют большое количество значений. Если попробовать представить такой набор описанным выше методом, таблица получится слишком длинной и малопонятной. В этом случае удобно разбить данные на отдельные интервалы. Эти интервалы должны быть одинаковой длины (например, 0—10, 11–20, 21–30 и так далее) независимо от того, сколько значений попадает в каждый интервал. Ниже приведена возможная таблица для непрерывного набора данных:[6]

    • Набор данных: 233, 259, 277, 278, 289, 301, 303
    • Таблица (в первой колонке интервал значений, во второй частота, в третьей накопительная частота):
      • 200–250 | 1 | 1
      • 251–300 | 4 | 1 + 4 = 5
      • 301–350 | 2 | 5 + 2 = 7
  3. Изображение с названием 4486870 09

    3

    Постройте линейный график. После того как вы рассчитаете накопительную частоту, возьмите лист миллиметровой бумаги. Отложите по горизонтальной оси (ось x) значения из набора данных, а по вертикальной (ось y) — накопительную частоту, и постройте график. Это значительно облегчит последующие вычисления.[7]

    • Например, если набор данных включает числа от 1 до 8, отложите по горизонтальной оси 8 делений. Над каждым делением отметьте точкой соответствующее ему значение накопительной частоты. Соедините получившиеся точки линией.
    • Если какое-либо значение не встречается, его абсолютная частота составляет 0. В этом случае прибавьте 0 к последней величине накопительной частоты и поставьте точку на том же уровне, что и в предыдущий раз.
    • Поскольку накопительная частота всегда растет с продвижением к большим значениям, с перемещением вправо линия будет оставаться на той же самой высоте или подниматься. Если в какой-то точке линия опустилась вниз, значит, вы допустили ошибку (например, вместо накопительной частоты взяли абсолютную).
  4. Изображение с названием Calculate Cumulative Frequency Step 10

    4

    Найдите по графику медиану. Медиана — это значение, расположенное точно посередине набора данных. Половина значений находится выше медианы, а вторая половина расположена ниже нее. Медиану можно найти по графику следующим образом:

    • Посмотрите на последнее значение в самом правом конце графика. Для него величина y соответствует суммарной накопительной частоте, которая равна общему числу точек в наборе данных. Предположим, эта величина равна 16.
    • Умножьте эту величину на ½ и найдите соответствующее значение на оси y. В нашем примере получится 8. Найдите число 8 на оси y.
    • Найдите точку на линии графика, значение y которой соответствует найденной величине. Проведите от цифры 8 на оси y горизонтальную прямую и определите точку ее пересечения с линией графика. Именно эта точка делит набор данных точно пополам.
    • Найдите значение x в данной точке. Проведите из точки вертикальную прямую до пересечения с осью x. Точка пересечения определит медиану для изучаемого набора данных. Например, если получилось 65, значит половина данных расположена ниже 65, а вторая половина лежит выше этого значения.
  5. Изображение с названием Calculate Cumulative Frequency Step 11

    5

    Найдите по графику квартили. Квартили делят набор данных на четыре части. Эта процедура очень похожа на определение медианы. Единственное различие заключается в нахождении значений y:

    • Чтобы определить величину y для нижнего квартиля, умножьте максимальное значение накопительной частоты на ¼. В результате вы получите значение x, ниже которого будет лежать ровно ¼ всех данных.
    • Чтобы найти величину y для верхнего квартиля, умножьте максимальное значение накопительной частоты на ¾. В результате вы получите значение x, ниже которого будет лежать ¾, а выше — ¼ всех данных.

    Реклама

Советы

  • С помощью интервалов можно представлять любые большие, в том числе и дискретные наборы данных.

Реклама

Об этой статье

Эту страницу просматривали 73 075 раз.

Была ли эта статья полезной?

Содержание:

В результате статистической обработки материалов, полученных при измерении величины явления, можно подсчитать число единиц, обладающих конкретным значением того или иного признака.

Допустим, что в качестве изучаемого признака взят вес детали. Будем обозначать этот признак X. Измерения веса, например, 50 деталей дали следующие результаты (в г): 83, 85, 81, 82, 84, 82, 79, 84, 80, 81, 82, 82, 80, 82, 80, 82, 83, 84, 79, 79, 83, 82, 83, 85, 82, 82, 81, 80, 82, 82, .83,80, 82, 85, 81, 83, 81, 81, 83, 82, 81, 85, 83, 79, 81, 85, 81, 84, 81, 82.

Условились каждое отдельное значение признака обозначать Вариационный ряд - определение и вычисление с примерами решения

Если мы расположим отдельные значения признака (варианты) в возрастающем или убывающем порядке и укажем относительно каждого варианта, как часто он встречался в данной совокупности, то получим распределение признака, или вариационный ряд.

Вариационные ряды и их характеристики

Построим вариационный ряд для приведенного выше примера. Для этого находим наименьший вариант, равный 79 г, и, располагая варианты в возрастающем порядке, подсчитываем их частоту. Так, вариант 79 г встречается 4 раза, вариант 80 г — 5 раз и т. д. Расположим полученные варианты следующим образом (см. табл. 1).

Такой ряд называется вариационным рядом; он характеризует изменение (варьирование) какого-нибудь количественного признака (в нашем примере варьирование веса деталей). Следовательно, вариационный ряд представляет собой две строки (или колонки). В одной из них приводятся варианты, а в другой частоты.

Вариационный ряд - определение и вычисление с примерами решения

Виды вариации

Вариация признака может быть дискретной и непрерывной. Дискретной вариацией признака называется такая, при которой отдельные значения признака (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число), т. е. даны в виде прерывных чисел. Непрерывной называется вариация, при которой значения признака могут отличаться одно от другого на сколь угодно малую величину. В качестве примера можно привести: для дискретной вариации признака — число станков, обслуживаемых одним рабочим, число семян в 1 кг и т. д.; для непрерывной вариации признака— процент выполнения рабочим нормы выработки, вес одного семени и т. д.

При непрерывной вариации распределение признака называется интервальным. Частоты относятся не к отдельному значению признака, как это бывает при дискретной вариации, а ко всему интервалу. Часто за значение интервала принимают его середину, т. е. центральное значение. В качестве примера можно привести интервальный вариационный ряд по проценту выполнения норм выработки.

Пример 1.

Распределение рабочих по проценту выполнения норм выработки.
Вариационный ряд - определение и вычисление с примерами решения

Частость

Нередко вместо абсолютных значений. частот используют относительные величины. Для этой цели можно использовать долю частоты того или иного варианта (а также интервала) в сумме всех частот. Такая величина называется частостью и обозначается Вариационный ряд - определение и вычисление с примерами решения

Мы имеем частоты Вариационный ряд - определение и вычисление с примерами решения

Для получения суммы всех частот их нужно сложить
Вариационный ряд - определение и вычисление с примерами решения
В математике используется знак Вариационный ряд - определение и вычисление с примерами решения (греческая буква сигма заглавная), означающий суммирование.

Следовательно, можно записать:
Вариационный ряд - определение и вычисление с примерами решения
где значки 1=1 и i=n под и над Вариационный ряд - определение и вычисление с примерами решения показывают, что суммированию подлежат все Вариационный ряд - определение и вычисление с примерами решения при условии, что i принимает все целые значения от 1 до n.

В дальнейшем в подобных случаях (т. е. при суммировании по подстрочному номеру i) мы не будем записывать значения, принимаемые i, но будем помнить смысл записи Вариационный ряд - определение и вычисление с примерами решения (уже без указания значений, принимаемых i).

Для получения частости каждого варианта или интервала-нужно его частоту разделить на Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения  Вариационный ряд - определение и вычисление с примерами решения и т.д.,
где Вариационный ряд - определение и вычисление с примерами решения — частость первого варианта или интервала, Вариационный ряд - определение и вычисление с примерами решения— второго и т. д.

Вычислим частости, используя данные табл. 1:Вариационный ряд - определение и вычисление с примерами решения

Сумма всех частостей равна 1:

Вариационный ряд - определение и вычисление с примерами решения

В нашем примере
0,08+0,1+0,2+0,28+0,16+0,08+0,1 = 1,00.
Частости можно выражать и в процентах (тогда сумма всех частостей равна 100%).

Границы интервалов

В интервальном вариационном ряду в каждом интервале различают нижнюю и верхнюю границы интервала:

При построении интервальных вариационных рядов в каждый интервал включаются варианты, числовые значения которых больше нижней границы и меньше или равны верхней грани це. Так, в табл.12 в интервал 95—100% попадают все рабочие, выполнившие нормы выработки от 95 до 100% включительно. Рабочие, выполнившие план на 100,01%, попадают в следующий интервал. Разумеется надо стремиться строить интервалы так, чтобы избегать попадания значительного числа случаев на границы интервалов.

Интервальные вариационные ряды бывают с одинаковыми и неодинаковыми интервалами. В последнем случае чаще всего встречаются интервалы последовательно увеличивающиеся.

Пример 2.

Вариационный ряд с равными интервалами:

Вариационный ряд - определение и вычисление с примерами решения

Пример 2а.

Вариационный ряд с последовательно увеличивающимися интервалами:

Вариационный ряд - определение и вычисление с примерами решения

Свойства сумм

Как видно (и из дальнейшего изучения материала), нам приходится иметь дело с суммами. Рассмотрим некоторые свойства сумм.

1)    Сумма ограниченного числа слагаемых, имеющих одну и ту же величину (сумма постоянной), равна произведению величины слагаемых на их число:Вариационный ряд - определение и вычисление с примерами решения

2)    Постоянный множитель может быть вынесен из-под знака суммы и введен под знак суммы:

Вариационный ряд - определение и вычисление с примерами решения

3)    Сумма алгебраической суммы нескольких переменных равна алгебраической сумме сумм каждой переменной:

Вариационный ряд - определение и вычисление с примерами решения

(легко обобщается на большее число слагаемых).

Величина интервала

Для выбора оптимальной величины интервала, т. е. такой величины интервала, при которой вариационный ряд не будет очень громоздким и в нем не исчезнут особенности явления, можно рекомендовать формулу:

Вариационный ряд - определение и вычисление с примерами решения

где n — число единиц в совокупности.

Так, если в совокупности 200 единиц наибольший вариант равен 49,961, а наименьший — 49,918, то

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, в данном случае оптимальной величиной интервала может служить величина 0,005.

Плотность распределения

В качестве характеристики ряда распределения применяют плотность распределения, которую вычисляют как отношение-частот или частостей к величине интервала.  

Различают абсолютную плотность распределения:

Вариационный ряд - определение и вычисление с примерами решения

и относительную плотность распределения:
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения -— плотности распределения, абсолютная (со значком А) и относительная (со значком О).

Пример 3.

По данным примера 2 вычислим относительную плотность распределения. Для первого интервала

Вариационный ряд - определение и вычисление с примерами решения
для второго интервалаВариационный ряд - определение и вычисление с примерами решения

Расщепление интервалов

Часто возникает необходимость в расщеплении интервалов. Для этой цели можно воспользоваться следующим методом для интервальных вариационных рядов с равными интервалами.

Расщепление производится при предположении, что плотность вариационного ряда изменяется по параболе второго порядка. Имеется в виду, что весь интервал разбивается на две части: первую, составляющую долю Вариационный ряд - определение и вычисление с примерами решения в величине интервала, и вторую 1—Вариационный ряд - определение и вычисление с примерами решения. Соответственно частость расщепляемого интервала F распадается на Вариационный ряд - определение и вычисление с примерами решения В этом случае:

Вариационный ряд - определение и вычисление с примерами решения
где А —    частость интервала, предшествующего расщепляемому;

В —    частость расщепляемого интервала;

С —    частость интервала, последующего за расщепляемым;

Вариационный ряд - определение и вычисление с примерами решения—    приращение частости интервала, предшествующего расщепляемому (Вариационный ряд - определение и вычисление с примерами решения);

Вариационный ряд - определение и вычисление с примерами решения —    второе приращение частостей Вариационный ряд - определение и вычисление с примерами решения — (В—А)=С—2В+А].

Пример 4.

По данным примера 2 произведем расщепление интервала 100—125% на две части, выделим часть интервала 100—120% и определим удельный вес рабочих, выполняющих норму выработки от 100 до 120%.

Имеем:Вариационный ряд - определение и вычисление с примерами решения

Получаем частость по соответствующей формуле: Вариационный ряд - определение и вычисление с примерами решения

В случае неравных интервалов вычисление усложняется.

Графические методы изображения вариационных рядов

Большое значение для наглядного представления вариационного ряда имеют графические методы его изображения. Вариационный ряд графически может быть изображен в виде полигона, гистограммы, кумуляты и огивы.

Полигон распределения (Дословно — многоугольник распределения) строится в прямоугольной системе координат. Величина признака откладывается на оси абсцисс, частоты или частости (точнее — плотности распределения) — по оси ординат.

На оси абсцисс отмечаются точки, соответствующие, величине вариантов, и из них восстанавливаются ординаты (перпендикуляры), длина которых соответствует численности этих вариантов. Вершины ординат соединяются прямыми линиями. Чаще всего полигоны применяются для изображения дискретных вариационных рядов, но могут быть применены и для интервальных рядов. В этом случае ординаты, пропорциональные частоте или частости интервала, восстанавливаются перпендикулярно оси абсцисс в точке, соответствующей середине данного интервала. Для замыкания крайние ординаты соединяются с •серединой интервалов, в которых частоты или частости равны нулю.

Пример 5.

По данным примера 1 строим полигон.
Вариационный ряд - определение и вычисление с примерами решения
 

Гистограмма распределения строится аналогично полигону в прямоугольной системе координат. В отличие от полигона при построении гистограммы на оси абсцисс берутся не точки, а отрезки, изображающие интервал, а вместо ординат, соответствующих частотам или частостям отдельных вариантов, строят прямоугольники с высотой, пропорциональной частотам или частостям интервала.

Вариационный ряд - определение и вычисление с примерами решения

В случае неравенства интервалов гистограмма распределения строится не по частотам или частостям, а по плотности интервалов (абсолютной или относительной). При этом общая площадь гистограммы равна численности совокупности, если построение производится по абсолютной плотности, или единице, если гистограмма построена по относительной плотности.

Если соединить прямыми линиями середины верхних сторон прямоугольников, то получим полигоны распределения.

Разбивая интервалы на несколько частей и исходя из того, что вся площадь гистограммы должна остаться при этом неизменной, можно получить мелкоступенчатую гистограмму, которая в пределе (за счет уменьшения величины интервала) перейдет в плавную кривую, называемую кривой распределения.

Пример 6.

Имеются данные о диаметре 200 валиков (см. табл. 4).

Чтобы по этим данным построить вариационный ряд с равными интервалами, изобразить его с помощью гистограммы, а затем превратить ее в мелкоступенчатую, производим следующие действия:

а) Выбираем наименьший вариант, а затем наибольший и находим между ними разность. Делим полученную разность на число проектируемых интервалов и получаем величину каждого интервала.

Так, наименьший интервал 49,918, наибольший — 49,961. Разность 49,961—49,918=0,043.

Допустим, мы хотим получить пять интервалов, тогда величина каждого интервала равна
Вариационный ряд - определение и вычисление с примерами решения
Следовательно, будем иметь такие интервалы:

49,918—49,928; 49,928—49,938 и т. д.

Строим рабочую таблицу, в которой подсчитываем численность каждого интервала путём . разноски данных из табл. 4 в рабочую табл. 5 и проставления черточек, соответствующих единице счета. По мере накопления четырех черточек перечеркиваем их одной чертой и ведем счет пятками (см. табл. 5).

На основании рабочей таблицы получаем следующий вариационный ряд (см. табл. 6).

б) По полученному вариационному ряду строим гистограмму распределения: на оси абсцисс откладываем диаметры валиков, начиная с 49,918 до 49,968, а на оси ординат проставляем масштаб; далее строим прямоугольники с высотой, пропорциональной количеству валиков в каждом интервале.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Соединяем прямыми линиями середины верхних сторон прямоугольников и получаем полигон (см. график 2).

Для получения мелкоступенчатой гистограммы разбиваем интервалы на две равные части и получаем:

Вариационный ряд - определение и вычисление с примерами решения

Если построить гистограмму по новому вариационному ряду, с уменьшенными интервалами, то получим гистограмму с более мелкими ступенями. Учет требования о неизменности площади гистограммы приводит к необходимости увеличить масштаб оси ординат вдвое.
Вариационный ряд - определение и вычисление с примерами решения

Можно продолжить процесс расчленения интервалов и дальше, получая все более и более мелкоступенчатую гистограмму.

Кумулятивная кривая (кривая сумм — кумулята) получается при изображении вариационного ряда с накопленными частотами или частостями в прямоугольной системе координат. При построении кумуляты дискретного признака на ось абсцисс наносятся значения признака (варианты). Ординатами служат вертикальные отрезки, длина которых пропорциональна накопленной частоте или частости того или иного варианта. Соединением вершин ординат прямыми линиями получаем ломаную (кривую) кумуляту.

Пример 7.

По данным табл. 4 построить кумуляту.
Вариационный ряд - определение и вычисление с примерами решения

Составляем дискретный вариационный ряд с накопленными частотами (при наличии частостей можно для построения кумуляты пользоваться ими; см. табл. 8).

Накопленная частота определенного варианта получается суммированием всех частот вариантов, предшествующих данному, с частотой этого варианта.

Используя накопленные частоты, строим кумуляту.

Вариационный ряд - определение и вычисление с примерами решения
При построении кумуляты- интервального вариационного ряда нижней границе первого интервала соответствует частота, равная нулю, а верхней границе — вся частота интервала. Верхней границе второго интервала соответствует накопленная частота первых двух интервалов (т. е. сумма частот этих интервалов) и т. д. Верхней границе последнего (максимального) интервала соответствует накопленная частота, равная сумме всех частот.

Пример 8.

По данным табл. 7 построить кумуляту.

Составляем интервальный вариационный ряд с накопленными частотами (см. табл. 9). По полученным накопленным частотам строим кумуляту (см. график 5).

Огива строится аналогично кумуляте с той лишь разницей, что на ось абсцисс наносят накопленные частоты, а на ось ординат — значения признака. Если лист бумаги, на котором изображена кумулята, повернуть на 90° и посмотреть на него с обратной стороны на свет, то можно увидеть огиву.

Вариационный ряд - определение и вычисление с примерами решения

График 5. Кумулята интервального вариационного ряда

Пример 9. По данным табл. 9 построим огиву (см. график 6)-

Накопленные частоты можно получать не только в восходящем порядке, но и в нисходящем, тогда частоты вариантов суммируются снизу вверх.

Пример 10.

По данным табл. 7. вычислить накопленные частоты в нисходящем порядке.
Вариационный ряд - определение и вычисление с примерами решения

Средние величины

В качестве одной из важнейших характеристик вариационного ряда применяют среднюю величину. Математическая статистика различает ряд типов средних величин: арифметическую, геометрическую, гармоническую, квадратическую, кубическую и др. Все перечисленные типы средних могут быть исчислены для случаев, когда каждый из вариантов вариационного ряда встречается только один раз, — тогда средняя называется простой или невзвешенной, — и для случаев, когда варианты или интервалы повторяются различное число раз. При этом число повторений вариантов или интервалов называют частотой или статистическим весом, а среднюю, вычисленную с учетом статистического веса, —взвешенной средней.

Выбор одного из перечисленных типов средних для характеристики вариационного ряда производится не произвольно, а в зависимости от особенностей изучаемого явления и цели, для которой средняя исчисляется.

Практически при выборе того или другого типа средней следует исходить из принципа осмысленности результата при суммировании или при взвешивании. Только тогда средняя применена правильно, когда в результате взвешивания или суммирования получаются величины, имеющие реальный смысл.

Обычно затруднения при выборе типа средней возникают лишь в использовании средней арифметической или гармонической. Что же касается геометрической и квадратической средних, то их применение ограничено особыми случаями (см. далее).

Следует иметь в виду, что средняя только в том случае является обобщающей характеристикой, если она применяется к однородной совокупности., В случае использования средней для неоднородных совокупностей можно прийти к неверным выводам. Научной — основой статистического анализа является метод статистических группировок, т. е. расчленения совокупности на качественно однородные группы.

Степенная средняя

Все указанные типы средних величин могут быть получены из формул степенной средней. Если имеются варианты Вариационный ряд - определение и вычисление с примерами решениято средняя из вариант тов может быть исчислена по формуле простой невзвешенной степенной средней порядка z

Вариационный ряд - определение и вычисление с примерами решения
При наличии соответствующих частот Вариационный ряд - определение и вычисление с примерами решения средняя исчисляется по формуле взвешенной степенной средней
Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — степенная средняя;

z — показатель степени, определяющий тип средней;

х — варианты;

m — частоты или статистические веса вариантов.

Средняя арифметическая получается из формулы степенной средней при подстановке z=1

Вариационный ряд - определение и вычисление с примерами решения

средняя арифметическая невзвешенная и

Вариационный ряд - определение и вычисление с примерами решения

средняя арифметическая взвешенная.

Пример 11.

Измерения 20 единиц продукции дали следующие результаты (колонки 1 и 2):

Вариационный ряд - определение и вычисление с примерами решения

Вычислить средний размер единицы продукции.

Находим среднюю арифметическую. Для этого исчисляем в табл. 11 колонку 3

Вариационный ряд - определение и вычисление с примерами решения

Здесь умножение значения признака на вес и суммирование этих произведений дает общий размер продукции, т. е. имеет реальный смысл.

Средняя гармоническая получается при подстановке в формулу степенной средней значения z =—1.

Средняя гармоническая простая

Вариационный ряд - определение и вычисление с примерами решения

Средняя гармоническая взвешенная
Вариационный ряд - определение и вычисление с примерами решения
Средняя гармоническая вычисляется в тех случаях, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, т. е. когда суммированию подлежат не сами варианты, а обратные им величины

Вариационный ряд - определение и вычисление с примерами решения

или

Вариационный ряд - определение и вычисление с примерами решения

Пример 12.

По следующим данным о работе 22 рабочих в течение 6 часов вычислить среднюю гармоническую взвешенную.Вариационный ряд - определение и вычисление с примерами решения

В данном случае взвешивание состоит в делении по каждой группе количества рабочих (m) на затраты времени по изготовлению одной детали (х). Для проверки правильности выбора типа средней осмыслим результат взвешивания. Исходя из того, что все рабочие работали по 6 часов, количество рабочих можно рассматривать как величину, определяющую общие затраты времени. Тогда результат деления представит вполне осмысленную величину:

Вариационный ряд - определение и вычисление с примерами решения

Таким образом, средняя гармоническая в данном примере применена правильно. При использовании средней гармонической для упрощения расчетов целесообразно пользоваться таблицами обратных чисел (см. приложение VIII).

Средняя квадратическая получается из формулы степенной средней при подстановке z=2    

Вариационный ряд - определение и вычисление с примерами решения    

средняя квадратическая невзвешенная и 

Вариационный ряд - определение и вычисление с примерами решения
средняя квадратическая взвешенная.

Средняя квадратическая используется только в тех случаях, когда варианты представляют собой отклонения фактических величин от их средней арифметической или от заданной нормы.

Пример 13.

Имеются результаты измерения отклонений фактической длины изделий от заданной нормы.
Вариационный ряд - определение и вычисление с примерами решения

Вычислим среднюю величину отклонений.

Находим среднюю квадратическую взвешенную; для этого исчисляем в табл. 13 колонки 3 и 4:

Вариационный ряд - определение и вычисление с примерами решения

Значит, средняя величина отклонений фактической длины изделий от заданной нормы составляет 1,08 мм. В данном случае средняя арифметическая была бы непригодна, так как в результате мы получили бы нуль

Вариационный ряд - определение и вычисление с примерами решения
Средняя геометрическая получается из формулы степенной средней при подстановке z=0:

Вариационный ряд - определение и вычисление с примерами решения

Для раскрытия неопределенности этого вида прологарифмируем обе части равенства: Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения
Теперь при подстановке z в правую часть равенства получаем неопределенность вида Вариационный ряд - определение и вычисление с примерами решения Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной z, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Таким образом:
Вариационный ряд - определение и вычисление с примерами решения   
Потенцируя, находим среднюю:
Вариационный ряд - определение и вычисление с примерами решения
Это и есть формула средней геометрической невзвешенной, которая записывается сокращенно так:

Вариационный ряд - определение и вычисление с примерами решения

где П — знак произведения;

n — число вариантов.

Если использовать частоты (m), то средняя геометрическая взвешенная примет следующий вид:

Вариационный ряд - определение и вычисление с примерами решения

Вычисления средней геометрической в значительной мере упрощаются применением логарифмирования. Для невзвешенной средней геометрической Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
Для взвешенной средней геометрической:
Вариационный ряд - определение и вычисление с примерами решения
Таким образом, логарифм средней геометрической есть средняя арифметическая, из логарифмов вариантов (см. формулы средней арифметической).

Средняя геометрическая используется главным образом при изучении динамики (см. раздел II).

Расчет средних коэффициентов и темпов. роста производится по формулам средней геометрической.

Пример 14.

Выпуск промышленной продукции производился предприятием в следующих размерах:

Вариационный ряд - определение и вычисление с примерами решения

Чтобы найти средний месячный коэффициент и темп роста промышленной продукции, определяем помесячные коэффициенты роста Вариационный ряд - определение и вычисление с примерами решения, которые в данном случае и являются вариантами:

Вариационный ряд - определение и вычисление с примерами решения

Из найденных трех помесячных коэффициентов роста (вариантов) определяем средний месячный коэффициент роста Вариационный ряд - определение и вычисление с примерами решенияпо формуле средней геометрической. Для этого найденные коэффициенты роста перемножаются и из произведения извлекается корень третьей степени

Вариационный ряд - определение и вычисление с примерами решения

Из разобранного примера можно сделать два вывода: во-первых, что произведение трех найденных коэффициентов роста можно получить без их предварительного исчисления путем деления апрельского объема продукции (12,0) на январский объем (10,2):

Вариационный ряд - определение и вычисление с примерами решения

и, во-вторых, что показатель степени корня, равный трем (число коэффициентов роста), можно получить вычитанием единицы из числа приведенных в примере месяцев (четыре).

Таким образом, наиболее удобной для исчисления среднего коэффициента роста следует считать формулу:

 Вариационный ряд - определение и вычисление с примерами решения 

где n — число приведенных дат или периодов;

Вариационный ряд - определение и вычисление с примерами решения— последний член ряда;

Вариационный ряд - определение и вычисление с примерами решения — первый член ряда.

Математические свойства средней арифметической

Из вышеуказанных средних наиболее часто применяется средняя арифметическая. Знание свойств средней арифметической позволяет упрощенно ее вычислять.

Математические свойства средней арифметической:

1) Средняя постоянной величины равна этой же постоянной

величине.

2) Сумма отклонений от средней, умноженных на веса (частоты), равна нулю:

Вариационный ряд - определение и вычисление с примерами решения (если все веса равны единице)
или    

Вариационный ряд - определение и вычисление с примерами решения

Докажем это свойство для средней взвешенной.

Имеем: варианты Вариационный ряд - определение и вычисление с примерами решения

частоты Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения откуда Вариационный ряд - определение и вычисление с примерами решения

и Вариационный ряд - определение и вычисление с примерами решения

Подводя под общий знак суммы, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Следовательно, Вариационный ряд - определение и вычисление с примерами решения

Пример 15.

Вычислить среднюю (по колонкам 1 и 2) и убедиться в правильности выведенной формулы.

Вариационный ряд - определение и вычисление с примерами решения

3)    Если у всех вариантов х частоты m равны друг другу, то средняя арифметическая взвешенная равна средней арифметической невзвешенной. 

Имеем Вариационный ряд - определение и вычисление с примерами решения

Тогда:

Вариационный ряд - определение и вычисление с примерами решения

4)    Если из всех вариантов (х) вычесть постоянную величину Вариационный ряд - определение и вычисление с примерами решения и из результатов вычитания, т. е. из отклонений вариантов от этой постоянной величины Вариационный ряд - определение и вычисление с примерами решения вычислить среднюю Вариационный ряд - определение и вычисление с примерами решения то она окажется меньше искомой средней на эту постоянную величину Вариационный ряд - определение и вычисление с примерами решения Поэтому, чтобы получить среднюю из вариантов Вариационный ряд - определение и вычисление с примерами решения нужно к найденной средней Вариационный ряд - определение и вычисление с примерами решения прибавить ту же постоянную величину:

Вариационный ряд - определение и вычисление с примерами решения

если Вариационный ряд - определение и вычисление с примерами решения

Доказательство.

Имеем отклонения от постоянной величины Вариационный ряд - определение и вычисление с примерами решения обозначенные Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения    
Находим среднюю из Вариационный ряд - определение и вычисление с примерами решения        Вариационный ряд - определение и вычисление с примерами решения

Откуда Вариационный ряд - определение и вычисление с примерами решения

Пример 16.

Вычислить среднюю путем вычитания 1000 из всех вариантов по следующим данным (колонки 1 и 2).
Вариационный ряд - определение и вычисление с примерами решения.

Пример 17.

Используя данные прёдыдущего примера, можно убедиться, что если за Вариационный ряд - определение и вычисление с примерами решения взять не 1000, а 1004, то величина средней не изменится.
Вариационный ряд - определение и вычисление с примерами решения

5) Если все варианты (х) уменьшить в одно и то же число раз, т. е. разделить на постоянную величину (k), и из частных Вариационный ряд - определение и вычисление с примерами решения вычислить среднюю, то онa окажется уменьшенной в такое же число раз, а поэтому, чтобы получить среднюю из вариантов Вариационный ряд - определение и вычисление с примерами решения нужно найденную среднюю Вариационный ряд - определение и вычисление с примерами решения умножить на ту же постоянную величину (k):
Вариационный ряд - определение и вычисление с примерами решения
Доказательство.

Имеем частные от деления вариантов х на постоянную величину k, обозначенные х’:
Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю из Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

откуда Вариационный ряд - определение и вычисление с примерами решения

Пример 18.

Вычислить среднюю путем деления всех вариантов на 100 по следующим данным (колонки 1 и 2):Вариационный ряд - определение и вычисление с примерами решения

6) При вычислении средней вместо абсолютных значений весов (m) можно использовать относительные величины структуры (частости), т. е. удельные веса отдельных частот в общей сумме всех частот (см. § 4), или относительные величины координации, которые получаются путем отношения частот всех вариантов к одной из частот, принятой за единицу

Вариационный ряд - определение и вычисление с примерами решения
Если же удельные веса частот выражены в процентах, то

Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — частость, т. е. доля частоты варианта в общей сумме частот.

Доказательство.

Вариационный ряд - определение и вычисление с примерами решения

Значит Вариационный ряд - определение и вычисление с примерами решения

Пример 19.

Вычислить средний размер детали по следующим данным (колонки 1 и 2):

Вариационный ряд - определение и вычисление с примерами решения

Предварительно найдем относительные величины структуры (колонка 3), а затем вычислим средний размер детали, используя их в качестве весов:
Вариационный ряд - определение и вычисление с примерами решения
Если теперь вычислить средний размер детали, используя в качестве весов частоты, то получим:
Вариационный ряд - определение и вычисление с примерами решения
что согласуется с результатом, полученным ранее.

Для вычисления средней можно было использовать колонку 4 :  Вариационный ряд - определение и вычисление с примерами решения

7) Если в частотах (m) имеется общий множитель (A), то его можно при вычислении средней не принимать во внимание т. е. взвешивание производить по сокращенным частотам Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения Численное значение средней от замены частот (m) на сокращенные частоты Вариационный ряд - определение и вычисление с примерами решения не изменится
Вариационный ряд - определение и вычисление с примерами решения
Доказательство.

Имеем:Вариационный ряд - определение и вычисление с примерами решения

Разделим частоты на общий множитель А, содержащийся в них:

Вариационный ряд - определение и вычисление с примерами решения

Тогда
Вариационный ряд - определение и вычисление с примерами решения

Пример 20.

Вычислить среднюю по данным табл. 20 (колонки 1 и 2), произведя взвешивание вариантов по сокращенным весам.

Вычисляем среднюю по указанной формуле, предварительно сократив веса и заполнив колонки 3 и 4.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

8) Общая средняя равна-.-взвешенной средней из частных средних: 
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — частные средние, т. е. средние для отдельных групп совокупности;

Вариационный ряд - определение и вычисление с примерами решения — средняя из вариантов первой группы; 

Вариационный ряд - определение и вычисление с примерами решения — средняя из вариантов второй группы и т. д.;

Вариационный ряд - определение и вычисление с примерами решения —    частоты отдельных групп;

Вариационный ряд - определение и вычисление с примерами решения —    частота первой группы;

Вариационный ряд - определение и вычисление с примерами решения — частота второй группы и т. д.

Доказательство.

Пусть имеются частные средние:

Вариационный ряд - определение и вычисление с примерами решения

Найдем среднюю для всей совокупности:

Вариационный ряд - определение и вычисление с примерами решения

Пример 21.

В трех, партиях продукции численностью 1000, 2000 и 500 единиц найден средний вес детали (в кг): 3,3; 3,1; 3,7. Вычислить средний вес детали во всех трех партиях

Вариационный ряд - определение и вычисление с примерами решения

9) Сумма квадратов отклонений от средней меньше суммы квадратов отклонений от произвольной величины (В) на величину поправки С, равной произведению объема совокупности на квадрат разности между средней и данной произвольной величиной:

Вариационный ряд - определение и вычисление с примерами решения

для случая невзвешенной средней или

Вариационный ряд - определение и вычисление с примерами решения

для случая взвешенной средней.

Доказательство для случая невзвешенной средней.

Имеем:

Вариационный ряд - определение и вычисление с примерами решения

Пользуясь свойствами сумм (см. стр. 11), производим преобразования:

Вариационный ряд - определение и вычисление с примерами решения

На основании второго свойства средней арифметической Вариационный ряд - определение и вычисление с примерами решения а поэтому

Вариационный ряд - определение и вычисление с примерами решения

откуда

Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения

Пример 22.

По данным табл. 21 (колонки 1 и 2) убедиться в правильности указанных соотношений.

Вычисляем колонки 3, 4, 5, 6, 7, 8, 9 и находим:

Вариационный ряд - определение и вычисление с примерами решения

Подставляя полученные результаты в формулу

Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения имеем:

Вариационный ряд - определение и вычисление с примерами решения

Метод отсчета от условного нуля

Упрощенное вычисление средней, состоящее в использовании ряда ее свойств, называется методом отсчета от условного нуля и предполагает:

  1. вычитание из всех вариантов начала отсчета или «ложного нуля» Вариационный ряд - определение и вычисление с примерами решения
  2. деление всех вариантов или отклонений вариантов от начала отсчета на общий множитель, содержащийся в них (k);
  3. условное принятие центра интервала за значение признака всех единиц в данном интервале.

Кроме того, в качестве весов используют сокращенные частоты Вариационный ряд - определение и вычисление с примерами решения или относительные величины (структуры или координации).

Формула исчисления средней методом отсчета от условного нуля:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения, т. е. отклонение от начала отсчета делится на общий множитель, а исчисление средней из Вариационный ряд - определение и вычисление с примерами решения в зависимости от того, какими весами мы располагаем, производится по одной из следующих формул:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — относительные величины координации (см. табл. 19).

Пример 23.

Вычислить средний вес зерен (на Вариационный ряд - определение и вычисление с примерами решения) по данным колонок 1 и 2 табл. 22 (см. стр. 38), используя метод отсчета от условного нуля.

Используем формулу Вариационный ряд - определение и вычисление с примерами решения предварительно заполнив колонки 3, 4, 5 и 6 табл. 22:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Метод стандартизации средних

Часто сравниваемые совокупности неоднородны по своему составу, и выводы при использовании средних для подобных сравнений могут оказаться неправильными. Чтобы .этого избежать, используют метод стандартизации.

Метод стандартизации средних наиболее разработан в статистике населения (демографической) и медицинской статистике, когда производится сравнение совокупностей с различными Структурами. Стандартизация достигается элиминированием (устранением) влияния различия в структурах совокупностей. Результат сравнения характеризует различие в средних при условии, что структура сравниваемых совокупностей одинакова.

Рассмотрим применение метода стандартизации на примере из медицинской статистики. Имеются данные о двух больницах А и Б по отделениям и в целом.Вариационный ряд - определение и вычисление с примерами решения

Получается парадоксальное положение, при котором по больнице Б итоговая (общая) летальность (8,4%) ниже, чем в больнице А (9,2%), хотя по всем отделениям летальность в больнице Б выше (см. последние две колонки).

Причиной этого парадокса является отличие удельных весов разных отделений в больницах. Доля терапевтического отделения (по числу больных) с самой высокой летальностью составляет в больнице А 60%„ а в больнице Б — 20%, а доля хирургического отделения, с самой низкой летальностью, в больнице А — 20%, а в больнице Б — 60%.

Устраним влияние различия в структурах и стандартизуем распределение больных по отделениям. В качестве стандарта можно взять распределение больных по отделениям в любой больнице или привлечь данные о распределении больных нескольких других больниц. Возьмем за стандарт распределение больных в больнице А. Тогда по больнице А общая летальность (9,2%) останется без изменения. По больнице Б произведем пересчет.Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю стандартизованную летальность больных больницы Б:

Вариационный ряд - определение и вычисление с примерами решения
Таким образом, после стандартизации летальность в больнице Б оказалась значительно выше,, чем в больнице А:
Вариационный ряд - определение и вычисление с примерами решения
Следует иметь в виду, что полученное значение стандартизованной средней может служить только для сравнительных целей, абсолютное же ее значение принимать во внимание не следует.

Если за стандарт принять распределение больных в больнице Б, то получим следующую стандартизованную летальность для больницы А:

Вариационный ряд - определение и вычисление с примерами решения

а отношение стандартизованных средних почти не изменится:

Вариационный ряд - определение и вычисление с примерами решения

Мажорантность средних

Если вычислить различные типы средних для одного и того же вариационного ряда, то численные их значения будут отличаться друг от друга. При этом средние по своей величине расположатся в определенном порядке. Наименьшей из перечисленных средних окажется средняя гармоническая, затем геометрическая и т. д., наибольшей — средняя квадратическая. Порядок возрастания средних при этом определяется показателем степени z в формуле степенной средней и вытекает из «правила мажорантности».

Так,
при z= —1 получаем среднюю гармоническую,

при z= 0    »»    геометрическую,

при z= 1    »»    арифметическую,

при z= 2    »»    квадратическую:

Вариационный ряд - определение и вычисление с примерами решения
Подробное выяснение общего условия мажорантности впервые было произведено А. Я. Боярским, доказавшим, что если две средние должны удовлетворять соответственно уравнениям

Вариационный ряд - определение и вычисление с примерами решения

и    

Вариационный ряд - определение и вычисление с примерами решения
то первая из них Вариационный ряд - определение и вычисление с примерами решения мажорантна в отношении Вариационный ряд - определение и вычисление с примерами решения если при любом значении аргументаВариационный ряд - определение и вычисление с примерами решения

Для степенной средней порядка z имеем:
Вариационный ряд - определение и вычисление с примерами решения
Это отношение для положительных значений с показателем x растет вместе с показателем z.

Пример 24.

Вычислить различные типы средних,по следующим данным (колонки 1 и 2) и убедиться в правильности порядка возрастания средних:Вариационный ряд - определение и вычисление с примерами решения

Заполняем колонки с 3-й по 8-ю и по соответствующим формулам исчисляем средние взвешенные:

Вариационный ряд - определение и вычисление с примерами решения

Порядок средних определился в соответствии с правилом мажорантности:

17,41 < 18,14 < 18,8< 19,37.

Медиана

В качестве характеристики вариационного ряда применяется медиана (Вариационный ряд - определение и вычисление с примерами решения), т. е. такое значение варьирующего признака, которое приходится на середину упорядоченного вариационного ряда. Если в вариационном ряде 2m + 1 случаев, то значение признака у случая m + 1 будет медианным. Если в ряду четное число 2m случаев, то медиана равна средней арифметической из двух срединных значений.

Формулы для исчисления медианы при нечетном и четном числе вариантов:

Вариационный ряд - определение и вычисление с примерами решения

Пример 25.

Дано девять вариантов признака х, расположенных в возрастающем порядке:

Вариационный ряд - определение и вычисление с примерами решения

Вычислить медиану.

Имеем нёчетное число вариантов:

Вариационный ряд - определение и вычисление с примерами решения

Находим медиану

Вариационный ряд - определение и вычисление с примерами решения

Пример 26.

Дано 12 вариантов признака х, расположенных в возрастающем порядке:    

Вариационный ряд - определение и вычисление с примерами решения

Ищем медиану.

Имеем четное число вариантов:

Вариационный ряд - определение и вычисление с примерами решения

При исчислении медианы интервального вариационного ряда сначала находят интервал, содержащий медиану, путем использования накопленных частот или частостей. Медианному интервалу соответствует первая из накопленных частот или частостей, превышающая половину всего объема совокупности.

Для нахождения медианы при постоянстве плотности внутри интервала, содержащего медиану, используют следующую формулу:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения—нижняя граница медианного интервала;

k — интервальная разность;

Вариационный ряд - определение и вычисление с примерами решения— накопленная частота интервала, предшествующего медианному;

Вариационный ряд - определение и вычисление с примерами решения — частота медианного интервала.

Пример 27.

По данным табл. 7 вычислить медиану.

Используем табл. 9, в которой дана колонка накопленных частот. Так как вариационный ряд содержит 200 единиц, то медиана будет 100-й единицей, входящей в интервал 49,938— 49,943 (определяется из колонки 3 табл. 9 по накопленной частоте 121, первой из накопленных частот, которая превышает половину всего объема вариационного ряда). Следовательно:

Вариационный ряд - определение и вычисление с примерами решения
Вычислим медиану:

Вариационный ряд - определение и вычисление с примерами решения

Медиана может быть определена и графически по кумуляте или огиве. Для определения медианы по кумуляте последнюю ординату, пропорциональную сумме всех частот или частостей, делят пополам. Из полученной точки восстанавливают перпендикуляр до пересечения с кумулятой. Абсцисса точки пересечения и дает значение медианы.

П р и м е р 28. По графику 5 определить медиану.

Последняя ордината, как видно из графика, равна 200. Деление этой ординаты пополам дает точку А (100). Перпендикуляр из точки А до пересечения с кумулятой дает точку В. Абсцисса точки В, равная 49,941, и будет медианой.

Медиана обладает тем свойством, что сумма абсолютных величин отклонений вариантов от медианы меньше, чем от любой другой величины (в том числе и от средней арифметической).

Вариационный ряд - определение и вычисление с примерами решения

Доказательство. Допустим, что в упорядоченном вариационном ряду, состоящем из n вариантов, в качестве начала отсчета отклонений взят вариант, расположенный так, что число вариантов меньше его m, а больше n—m.

Найденную сумму абсолютных величин отклонений от этого варианта обозначим Вариационный ряд - определение и вычисление с примерами решения

Если теперь передвинуть начало отсчета на один вариант вверх так, чтобы вариантов, величина которых меньше начала отсчета, было m—1, а больше n—m+1, то при этом сумма абсолютных величин отклонений вариантов меньших, чем начало отсчета, от начала отсчета уменьшится на m • с, где с — разность между старым и новым началами отсчета.

В то же время сумма абсолютных величин отклонений больших вариантов от нового начала отсчета отклонений увеличится на (n—m) • с. Новая сумма абсолютных отклонений окажется равной

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, при таком передвижении начала отсчета вверх новая сумма абсолютных отклонений будет уменьшаться до тех пор, пока  Вариационный ряд - определение и вычисление с примерами решения т. е. пока m больше половины n.

При Вариационный ряд - определение и вычисление с примерами решения сумма абсолютных отклонений будет, следовательно, наименьшей, а затем при дальнейшем передвижении начала отсчета начнет увеличиваться.

Теперь следует учесть, что n-й вариант, расположенный в середине вариационного ряда, и есть медиана.

Таким образом, минимальное свойство медианы будет доказано.

Это свойство медианы может быть использовано при проектировке расположения трамвайных и троллейбусных остановок, бензоколонок, ссыпных пунктов и т. д.

Например, на шоссе длиной 100 км имеется 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых ездок на заправку с каждого гаража. Результаты обследования представлены в табл, на стр. 45.

Нужно поставить бензоколонку так, чтобы общий пробег автомашин на заправку был наименьшим.

Решение: Вариант 1. Если бензоколонку поставить на середине шоссе, т. е. на 50-м километре, то пробеги с учетом числа ездок составят:
Вариационный ряд - определение и вычисление с примерами решения

а)    в одном направлении: 43 • 10 + 24 • 15 + 22 • 5 + 13 • 20 +

+ 10-5 + 4-25 = 1310 км;

б)    в противоположном направлении: 10-15 + 28-30 + 36-10 +

+ 42-65 = 4080 км.

Общий пробег в оба направления окажется равным 5390 км.

Вариант 2. Уменьшения пробега можно достигнуть, если бензоколонку поставить на 63,85-м километре (средний участок шоссе с учетом числа ездок).

В этом случае пробеги составят:

а)    в одном направлении: 56,85-10 + 37,85-15 + 35,85-5 + 26,85 -20 + 23,85-5+17,85 • 25 + 3,85 -15 = 2475,75 км;

б)    в противоположном направлении: 14,15-30 + 22,15-10 + 28,15-65 = 2475,75 км.

Общий пробег в оба направления составит 4951,5 км и окажется меньше, чем при первом варианте, на 438,5 км.

Вариант 3. Наилучший результат, т. е. минимальный общий пробег, будет получен в том случае, если мы поставим бензоколонку на 78-м километре, что будет соответствовать медиане.

Тогда пробеги составят:

а) в одном направлении: 71 • 10 + 52 • 15 + 50 • 5 + 41 • 20 + 38-5 + 32-25+ 18-15 = 3820 км;

б) в противоположном направлении: 8 • 10+14 • 65 = 990 км.

Общий пробег равен 4810 км, т. е. он оказался меньше общих пробегов, рассчитанных по предыдущим вариантам.

Мода

Модой (Вариационный ряд - определение и вычисление с примерами решения) называется вариант, наиболее часто, встречающийся в данном вариационном ряду. Для дискретного ряда мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту  с наибольшей частотой.

         В случае интервального распределения с равными интервалами модальный интервал (т. е. содержащий моду) определяется пр наибольшей частоте, а при неравных интервалах — по наибольшей плотности.

Вычисление моды производится по следующей формуле:
Вариационный ряд - определение и вычисление с примерами решения

где
Вариационный ряд - определение и вычисление с примерами решения— нижняя граница модального интервала;

k—интервальная разность;

Вариационный ряд - определение и вычисление с примерами решения— частота модального интервала;

Вариационный ряд - определение и вычисление с примерами решения — частота интервала, предшествующего модальному;

Вариационный ряд - определение и вычисление с примерами решения — частота интервала, последующего за модальным.

Пример 29.

По данным табл. 7 находим моду.

Наибольшая частота, равная 49 (колонка 2, табл. 7), соответствует интервалу 49,938—49,943, который и будет модальным.

Следовательно:

Вариационный ряд - определение и вычисление с примерами решения

Подставляя в формулу найденные значения, вычислим моду

Вариационный ряд - определение и вычисление с примерами решения

Как видно из разобранного примера и примера 27, для данного вариационного ряда мода и медиана очень близки друг к другу.

Симметричные вариационные ряды

Вариационные ряды, в которых частоты вариантов, равно отстоящих от средней, равны между собой, называются симметричными. Особенностью симметричных вариационных рядов является равенство трех характеристик: средней арифметической, моды и медианы:

Вариационный ряд - определение и вычисление с примерами решения

Этим пользуются для распознания симметричности вариации в тех случаях, когда она затушевана тем, что средняя приходится не на середину интервала и не на границу между двумя интервалами, т. е. в результате сдвига интервалов группировки ряд частот как таковых оказывается не вполне симметричным.

Пример 30.

По данным табл. 7 определить среднюю и сопоставить с модой и медианой, вычисленными по этим же данным в примерах 27 и 29.

Вычисляем среднюю (см. табл. 26):

Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения

Найденную среднюю сопоставляем с модой и медианой, вычисленными ранее:
Вариационный ряд - определение и вычисление с примерами решения (из примера 27);

Вариационный ряд - определение и вычисление с примерами решения (из примера 29);

Вариационный ряд - определение и вычисление с примерами решения

Полученные характеристики по своей величине близки друг к другу, что дает нам основание считать данный вариационный ряд не очень отклоняющимся от симметричного.

Асимметричные вариационные ряды

Вариационные ряды, в которых расположение вариантов вокруг средней неодинаково, т. е. частоты по обе стороны от средней изменяются по-разному, называются асимметричными или скошенными. Различают левостороннюю и правостороннюю асимметрию.

Меры колеблемости (вариации) признака

Средние величины, характеризуя вариационный ряд одним числом, не учитывают вариацию признака, между тем эта вариация существует. Для измерения вариации признака математическая статистика применяет ряд способов.

Вариационный размах (R) (или широта распределения) есть разность между экстремальными (крайними) значениями вариационного ряда. Он представляет собой величину неустойчивую, чрезвычайно зависящую от случайных обстоятельств; применяется в качестве приблизительной оценки вариации.

В последнее время вариационный размах стал применяться в ряде отраслей промышленности при статистическом изучении качества продукции.

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — наибольший вариант вариационного ряда;

Вариационный ряд - определение и вычисление с примерами решения — наименьший вариант вариационного ряда.

Среднее линейное отклонение или простое среднее отклонение (р —ро) представляет собой среднюю арифметическую из абсолютных значений отклонений вариантов от средней.

В зависимости от отсутствия или наличия частот вычисляют среднее линейное отклонение невзвешенное или взвешенное:
Вариационный ряд - определение и вычисление с примерами решения
где прямые скобки, в которых заключены разности между вариантами и средней, показывают, что непосредственное суммирование и суммирование после взвешивания производится без учета знаков.

Средний квадрат отклонения — дисперсия (обычно обозначаемый Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения) наиболее часто применяется и в теории и на практике в качестве меры колеблемости признака. Если дисперсию вычисляют для всей совокупности, то ее обозначают а и называют общей дисперсией:

Вариационный ряд - определение и вычисление с примерами решения

Дисперсия невзвешенная

Вариационный ряд - определение и вычисление с примерами решения

Дисперсия взвешенная

Таким образом, общая дисперсия есть средняя арифметическая из квадратов отклонений вариантов от их средней арифметической.

Среднее квадратическое отклонение (Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения) представляет собой квадратный корень из дисперсии:

Вариационный ряд - определение и вычисление с примерами решения

Среднее квадратическое отклонение невзвешенное

Вариационный ряд - определение и вычисление с примерами решения

Среднее квадратическое отклонение взвешенное

Достоинством этого показателя по сравнению со средним линейным отклонением (Вариационный ряд - определение и вычисление с примерами решения) является то, что при его вычислении никакого условного допущения о необходимости суммирования отклонений вариантов от средней без учета их знаков мы не делаем, а используем формулу средней квадратической (см. формулу на стр. 25), по которой при возведении отклонений в квадрат их знак безразличен.

Учитывая, что среднее линейное отклонение и среднее квадратическое отклонение представляют собой абсолютные величины, выраженные в тех же единицах измерения, что и варианты, для характеристики колеблемости признака используют относительные показатели — коэффициенты вариации (V), представляющие собой отношение среднего линейного отклонения или среднего квадратического отклонения к средней, выраженное в процентах (или в долях единицы):

Вариационный ряд - определение и вычисление с примерами решения

Коэффициент вариации по среднему линейному отклонению

Вариационный ряд - определение и вычисление с примерами решения

Коэффициент вариации по среднему квадратическому отклонению
Видоизмененный показатель коэффициента вариации по среднему линейному отклонению (Вариационный ряд - определение и вычисление с примерами решения) представляет собой показатель неровноты (Н). Он применяется в текстильной промышленности в. качестве меры колеблемости при изучении неровноты пряжи (по толщине, весу и другим показателям)

Вариационный ряд - определение и вычисление с примерами решения

Показатель неровноты невзвешенный

Вариационный ряд - определение и вычисление с примерами решения

Показатель неровноты взвешенный

Вариационный ряд - определение и вычисление с примерами решения — общая средняя;

Вариационный ряд - определение и вычисление с примерами решения — количество вариантов, величина которых меньше, чем общая средняя;

n — объем вариационного ряда;

Вариационный ряд - определение и вычисление с примерами решения—средняя из вариантов меньших, чем общая средняя;

Вариационный ряд - определение и вычисление с примерами решения — сумма частот вариантов, меньших общей средней;

Вариационный ряд - определение и вычисление с примерами решения—сумма частот всех вариантов.

 Доказательство (для показателя неровноты невзвешенного) .

Подставляя в формулу Вариационный ряд - определение и вычисление с примерами решения вместо Вариационный ряд - определение и вычисление с примерами решения его значение  Вариационный ряд - определение и вычисление с примерами решения

получаем:

Вариационный ряд - определение и вычисление с примерами решения (без умножения на 100).

Разделим весь вариационный ряд на две части. Пусть в первую часть включены варианты меньшие, чем общая средняя, а во вторую — большие, чем общая средняя.

Тогда

Вариационный ряд - определение и вычисление с примерами решения

где

Вариационный ряд - определение и вычисление с примерами решения —сумма отклонений вариантов, больших, чем общая средняя, от общей средней дает положительную величину;

Вариационный ряд - определение и вычисление с примерами решения— сумма отклонений вариантов меньших, чем общая средняя, от общей средней дает отрицательную величину.

Но так как Вариационный ряд - определение и вычисление с примерами решения представляет сумму абсолютных значений отклонений, перед вторым слагаемым ставим знак минус. Наос-новании свойства средней арифметической о том, что Вариационный ряд - определение и вычисление с примерами решения 0, делаем вывод, что Вариационный ряд - определение и вычисление с примерами решенияи следовательно,

Вариационный ряд - определение и вычисление с примерами решения

Учитывая, что под знаком суммы слагаемых будет Вариационный ряд - определение и вычисление с примерами решения выносим Вариационный ряд - определение и вычисление с примерами решения из-под знака суммы:

Вариационный ряд - определение и вычисление с примерами решения

Делим и умножаем числитель на Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Пример 31.

По данным табл. 27 о крепости одиночной нити (в г) вычислим показатели вариации признака: вариационный размах, показатель неровноты, коэффициенты вариации по среднему линейному отклонению и среднему квадратическому отклонению.

Вычисляем R:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю: Вариационный ряд - определение и вычисление с примерами решения

Находим Н. Интервал 190—200 расчленяем на две части: 190—192,16 и 192,16—200.
Аналогично поступаем с частотами: так как вся частота данного интервала равна 69, то, предполагая равномерное распределение признака внутри интервала, получим, что на величину, равную единице интервала, приходится 6,9 единицы частот (абсолютная плотность); на новый интервал (190—192,16), в котором интервальная разность равна 2,16, придется 6,9*2,16 = 14,9 единицы частот. Для простоты возьмем 15. Суммируя частоты вариантов, меньших общей средней, получим 255 (см. колонку 5 табл. 27). Суммируя произведения х
Вариационный ряд - определение и вычисление с примерами решения
Вычисляем Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения.

Учитывая одно из свойств средней, а именно, что сумма отклонений от средней, соответствующим образом взвешенных, равна нулю, практически поступают следующим образом. В колонке 7 табл. 27, несмотря на знак прямых скобок, указывающих на абсолютную величину отклонений, для отрицательных отклонений от средней знак минус оставляют и ведут вычисление только до перемены знака на плюс. Взвешивают отрицательные отклонения от средней (колонка 8 табл. 27) и, так как сумма взвешенных положительных отклонений от средней должна быть равна сумме взвешенных отрицательных отклонений от средней, для определения общей суммы взвешенных отклонений найденную сумму удваивают.

Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Вычисляем Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Между средним квадратическим отклонением Вариационный ряд - определение и вычисление с примерами решения и средним линейным отклонением Вариационный ряд - определение и вычисление с примерами решения существует определенное соотношение (такое же соотношение, как между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения). По свойству мажорантности Вариационный ряд - определение и вычисление с примерами решения всегда больше Вариационный ряд - определение и вычисление с примерами решения

Если объем совокупности достаточно большой и распределение признака в вариационном ряде близко к нормальному (см. раздел IV), то связь между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения определяется по формуле:   Вариационный ряд - определение и вычисление с примерами решения

Отклонения Вариационный ряд - определение и вычисление с примерами решения от 125 в обе стороны зависят от близости распределения к нормальному.

Пример 32.

По данным примера 31. найти соотношение между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения

Имеем:

Вариационный ряд - определение и вычисление с примерами решения

Это отношение не намного отличается от теоретического (1,25), что косвенно свидетельствует о близости взятого распределения к нормальному.

Свойства дисперсии

Средний квадрат отклонения — дисперсия — обладает рядом свойств, которые позволяют упростить вычисления.

1) Дисперсия постоянной величины равна нулю:

Вариационный ряд - определение и вычисление с примерами решения
где с — постоянная величина;

Вариационный ряд - определение и вычисление с примерами решения— дисперсия постоянной величины.

2) Если все значения вариантов признака х уменьшить на постоянную величину, то дисперсия не изменится. Это позволяет вычислить дисперсию вариационного ряда путем вычитания из вариантов начала отсчета Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — дисперсия вариантов х;

Вариационный ряд - определение и вычисление с примерами решения—дисперсия вариантов, уменьшенных вычитанием Вариационный ряд - определение и вычисление с примерами решения
 

Доказательство для невзвешенной дисперсии

Имеем: Вариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решения Вариационный ряд - определение и вычисление с примерами решениясо средней

Вариационный ряд - определение и вычисление с примерами решения

Тогда 

Вариационный ряд - определение и вычисление с примерами решения
3)    Дисперсия алгебраической суммы независимых случайных величин (см. стр. 115 и далее) равна сумме их дисперсий:

Вариационный ряд - определение и вычисление с примерами решения

4)    Если все значения вариантов х уменьшить в k раз, то дисперсия уменьшится в Вариационный ряд - определение и вычисление с примерами решения раз:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения —дисперсия из частных, полученных в результате деления вариантов на постоянную величину k.
 

Доказательство для невзвешенной дисперсии

Имеем: Вариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решения Тогда:
   Вариационный ряд - определение и вычисление с примерами решения
Отсюда:    Вариационный ряд - определение и вычисление с примерами решения

5) Дисперсия суммы двух случайных величин, связанных корреляционной зависимостью, равна сумме их дисперсий плюс удвоенное произведение среднеквадратических отклонений на коэффициент корреляции между этими случайными величинами
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — коэффициент корреляции между величинами у и х, определяемый по формуле Вариационный ряд - определение и вычисление с примерами решения

(Значение его как меры тесноты связи см. раздел «Корреляция».)

Пример 33.

Даны случайные величины у и х, связанные корреляционной зависимостью так, что Вариационный ряд - определение и вычисление с примерами решения =0,5.

Вариационный ряд - определение и вычисление с примерами решения

Найти дисперсию суммы этих случайных величин (для простоты дан пример без взвешивания).

Находим средние:Вариационный ряд - определение и вычисление с примерами решения

Определяем дисперсии:

Вариационный ряд - определение и вычисление с примерами решения
Используя рассматриваемую формулу, имеем:
Вариационный ряд - определение и вычисление с примерами решения
Убедимся, что если х + у = z, то получаем три значения z: 4, 8 и 9.
Находим: среднюю
Вариационный ряд - определение и вычисление с примерами решения
дисперсию

Вариационный ряд - определение и вычисление с примерами решения
т. е.

Вариационный ряд - определение и вычисление с примерами решения
Результаты вычисления, произведенные по непосредственным данным и суммированным, совпадают. 

6) Дисперсия суммы двух случайных величин, связанных Линейной функциональной зависимостью (см. раздел «Корреляция»), равна сумме их дисперсий плюс или минус удвоенное произведение среднеквадратических отклонений:

Вариационный ряд - определение и вычисление с примерами решения

В данной формуле знак плюс или минус определяется характером связи. При прямолинейной связи у с х Вариационный ряд - определение и вычисление с примерами решения знак, о котором идет речь, совпадает со знаком Вариационный ряд - определение и вычисление с примерами решения Если Вариационный ряд - определение и вычисление с примерами решения то в формуле берем знак плюс, если Вариационный ряд - определение и вычисление с примерами решения то берем знак минус.

Пример 34.

Даны две случайные величины х и у, связанные уравнением у=2+Зх.Вариационный ряд - определение и вычисление с примерами решения

Найти дисперсию суммы этих случайных величин. Находим средние:

Вариационный ряд - определение и вычисление с примерами решения
Определяем дисперсии по формуле:

Вариационный ряд - определение и вычисление с примерами решения

Используем рассматриваемую формулу. В данном случае берем знак плюс:

Вариационный ряд - определение и вычисление с примерами решения

Убеждаемся, что если х + у = z, то получаем три значения z: 6, 14 и 22.

Находим: среднюю

Вариационный ряд - определение и вычисление с примерами решения
дисперсию

Вариационный ряд - определение и вычисление с примерами решения

т. е.

Вариационный ряд - определение и вычисление с примерами решения

Вычисление дисперсии методом отсчета от условного нуля

Практически расчет дисперсии производят по формуле, упрощающей вычисления. Эта формула получена с учетом свойств дисперсии, а расчет по ней называется отсчетом от условного нуля:
Вариационный ряд - определение и вычисление с примерами решения

Доказательство. Возьмем выражение  Вариационный ряд - определение и вычисление с примерами решения   произведем некоторые преобразования и получим:

Вариационный ряд - определение и вычисление с примерами решения
Так как второе слагаемое в фигурной скобке равно нулю: Вариационный ряд - определение и вычисление с примерами решения то,  продолжая преобразования, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Отсюда:
Вариационный ряд - определение и вычисление с примерами решения

и

Вариационный ряд - определение и вычисление с примерами решения

Пример 35.

По данным табл. 27 (колонки 2 и 3) рассчитать дисперсию, используя формулу, упрощающую вычисления. Располагаем данные, необходимые для ее вычисления, в таблице (см. табл. 30).

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Величина дисперсии совпадает с величиной, полученной в примере 31, но в данном случае вычисления в значительной мере упрощены.

Из формулы Вариационный ряд - определение и вычисление с примерами решения вытекает еще одна формула дисперсии.

При Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
или

Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — средняя из квадратов вариантов.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения — квадрат средней

Вариационный ряд - определение и вычисление с примерами решения
Так, если вычислить дисперсию по данным табл. 27, пользуясь этой формулой, то получим:Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Результат совпадает с дисперсией, полученной по этим данным в примере 31.

Частные дисперсии

Для каждой группы вариантов вариационного ряда может быть исчислена наряду с частной средней и дисперсия, которая называется частной дисперсией или внутригрупповой, Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения (невзвешенная);

Вариационный ряд - определение и вычисление с примерами решения (взвешенная),

Где Вариационный ряд - определение и вычисление с примерами решения — частная средняя i-й группы;

Вариационный ряд - определение и вычисление с примерами решения—частная дисперсия i-й группы.

(Вариационный ряд - определение и вычисление с примерами решения означает суммирование по i-й части совокупности).

Средняя из частных дисперсий

Из частных, т. е.

внутригрупповых, дисперсий может быть найдена средняя, которая обозначается Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Средняя из частных дисперсий служит для характеристики среднего рассеяния признака внутри групп.

Межгрупповая дисперсия

Частные средние по группам Вариационный ряд - определение и вычисление с примерами решения могут не совпадать с общей средней Вариационный ряд - определение и вычисление с примерами решения Мерой колеблемости частных средних вокруг общей средней является меж-
групповая дисперсия Вариационный ряд - определение и вычисление с примерами решения— дельта квадрат в среднемВариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Правило сложения вариаций

Между общей дисперсией, средней из частных дисперсий и межгрупповой дисперсией «существует такая связь:    

Вариационный ряд - определение и вычисление с примерами решения
Это — правило сложения вариации (или дисперсий).

Доказательство.

Пусть общая совокупность состоит из t групп численностью Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Частные средние Вариационный ряд - определение и вычисление с примерами решенияобщая средняя Вариационный ряд - определение и вычисление с примерами решения и дисперсия

Вариационный ряд - определение и вычисление с примерами решения

Частные дисперсии можно записать следующим образом.
Вариационный ряд - определение и вычисление с примерами решения
откуда

Вариационный ряд - определение и вычисление с примерами решения

Суммируя Вариационный ряд - определение и вычисление с примерами решения для всей совокупности, получаем: Вариационный ряд - определение и вычисление с примерами решения

Умножим обе части этого равенства на Вариационный ряд - определение и вычисление с примерами решения тогдаВариационный ряд - определение и вычисление с примерами решения

Вычитая из обеих частей равенства Вариационный ряд - определение и вычисление с примерами решения получим:
Вариационный ряд - определение и вычисление с примерами решения
Левая часть равенства представляет собой общую дисперсию, т. е. Вариационный ряд - определение и вычисление с примерами решения. В правой части первое слагаемое есть средняя из частных дисперсий, т. е. Вариационный ряд - определение и вычисление с примерами решения а разность двух последних выражений— межгрупповая дисперсия Вариационный ряд - определение и вычисление с примерами решения Тогда:

Вариационный ряд - определение и вычисление с примерами решения

Пример 36.

Используя данные табл. 27 и расчленяя вариационный ряд на две группы (1-я группа с интервала 120—130 до интервала 190—200 включительно, а 2-я группа с •интервала 200—210 до интервала 260—270), исчислить частные дисперсии, среднюю из частных дисперсий и межгрупповую дисперсию.

Начинаем расчет с 1-й группы (см. табл. 33):

Вариационный ряд - определение и вычисление с примерами решения= 195; k= 10;

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Для 2-й группы получаем (по тем же формулам):

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Вычисляем среднюю из частных дисперсий:

Вариационный ряд - определение и вычисление с примерами решения
Находим межгрупповую дисперсию, используя общую среднюю для всего вариационного ряда, найденную в примере 31 и равную 192,16

Вариационный ряд - определение и вычисление с примерами решения
Для получения общей дисперсии используем правило сложения вариации:

Вариационный ряд - определение и вычисление с примерами решения

Результат совпадает с дисперсией, вычисленной в примере 31 по табл. 27 без расчленения вариационного ряда на две группы.

Вариация альтернативного признака

Наряду с количественной вариацией признака может иметь место и качественная вариация. Если, имеются два взаимно исключающих друг друга варианта, то вариация признака называется альтернативной.

Так, например, рассмотрение выпущенной продукции с точки зрения ее качества, т. е. пригодности к дальнейшему использованию, дает альтернативный признак. Обозначая наличие признака 1, а отсутствие — 0 и долю вариантов, обладающих данным признаком, — р, а долю вариантов, не обладающий им, — q

и замечая, что p + q=1, получаем сначала среднюю: Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения, а затем дисперсию альтернативного признака:

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, Вариационный ряд - определение и вычисление с примерами решения

§ 35. Из дисперсии альтернативного признака извлечением корня находится среднее квадратическое отклонение:

Вариационный ряд - определение и вычисление с примерами решения

Пример 37.

Совокупность состоит из 10000 электрических, лампочек, включающих в свой состав 20 бракованных. Найти дисперсию признака и среднее квадратическое отклонение.

Находим долю брака и долю доброкачественных лампочек:
Вариационный ряд - определение и вычисление с примерами решения
По формуле Вариационный ряд - определение и вычисление с примерами решения вычислим дисперсию:

Вариационный ряд - определение и вычисление с примерами решения

а затем среднее квадратическое отклонение:
Вариационный ряд - определение и вычисление с примерами решения

Попытки измерить колеблемость признака путем нахождения средней арифметической из квадратов разностей вариантов во всех возможных их попарных сочетаниях не вносят-ничего принципиально нового.

Можно доказать, что этот показатель Вариационный ряд - определение и вычисление с примерами решения представляет собой дисперсию, умноженную на 2, т. е.

Вариационный ряд - определение и вычисление с примерами решения

Пусть, например, имеются варианты:

1; 3; 5; 6; 10.

Исчислим среднюю и дисперсию:

Вариационный ряд - определение и вычисление с примерами решения

Вычислим абсолютные разности всех возможных попарных сочетаний, включая и сочетания каждого варианта с ним же:

1)    Разности попарных сочетаний с первым вариантом

1 — 1=0; 3—1=2; 5—1=4; 6—1 = 5; 10—1=9.

2)    Разности попарных сочетаний со вторым вариантом

3 — 3 = 0; 3—1 =2; 3 —5 = 2; 3 — 6 = 3; 3—10 = 7

и далее:

5    —5 = 0; 5—1 =4; 5 —3 = 2; 5 —6= 1; 5—10 = 5;

6    — 6 = 0; 6—1 =5; 6 — 3 = 3; 6 — 5= 1; 6—10 = 4;

10 — 10 = 0; 10 — 1 = 9; 10 —3 = 7; 10 —5 = 5; 10 —6 = 4.

Находим сумму квадратов 25 разностей и делением на 25 — среднюю арифметическую из квадратов разностей:Вариационный ряд - определение и вычисление с примерами решения

Замечаем, что этот же результат можно получить умножением дисперсии (Вариационный ряд - определение и вычисление с примерами решения) на 2:

9,2*2=18,4.

Квартили и децили

Как уже было показано, медиана — это вариант, который делит упорядоченный вариационный ряд на две равные по объему группы. В каждой группе аналогично можно найти также вариант, делящий ее на две подгруппы. Такие варианты называются квартилями.

Различают нижний и верхний квартили. Иногда вычисляют и децили, т.е. такие варианты, которые делят вариационный ряд на 10 равных по объему групп.

При отношении объема двух подгрупп, как Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения имеем нижний квартиль Вариационный ряд - определение и вычисление с примерами решения при отношении объемов подгруппВариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения  верхний квартиль Вариационный ряд - определение и вычисление с примерами решения а при отношениях объемов групп Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения  Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения и т.д. —децили.
Формулы для расчетов в интервальном ряду:

нижнего квартиля

Вариационный ряд - определение и вычисление с примерами решения
верхнего квартиля
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — минимальная граница интервала, содержащего нижний квартиль (определяется по накопленным частотам);

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля;

k — интервальная разность;

 Вариационный ряд - определение и вычисление с примерами решения—накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля;

Вариационный ряд - определение и вычисление с примерами решения —частота интервала, содержащего нижний квартиль;

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля.

Вычисление децилей ничем принципиально не отличается от вычисления медианы и квартилей. Так, первый и второй децили могут быть вычислены по формулам:

Вариационный ряд - определение и вычисление с примерами решения

и т.д.

Пример 38.

По данным табл. 7 вычислить нижний и верхний квартили (рекомендуется предварительно вспомнить вычисление медианы).

Используем табл. 9, в которой дана колонка накопленных частот. Нижний квартиль рассчитывается по соответствующей формуле Вариационный ряд - определение и вычисление с примерами решения Из итога колонки 2 табл. 9 видно, что численность совокупности для этого ряда равна 200 единицам. Следовательно, нижний квартиль соответствует 50-й единице. По колонке накопленных частот (3) видим, что нижний квартиль содержится в интервале 49,933—49,938, потому что первая из накопленных частот, превышающих 50, — это накопленная частота данного интервала.

Следовательно:

Вариационный ряд - определение и вычисление с примерами решения
Находим нижний квартиль:

Вариационный ряд - определение и вычисление с примерами решения

Верхний квартиль отвечает 150-й единице и содержится в интервале 49,943-49,948 (так как первая из накопленных частот, превышающая 150, равна 164 и соответствует данному интервалу).

Находим верхний квартиль:

Вариационный ряд - определение и вычисление с примерами решения

Квартиль

В качестве характеристики колеблемости вариационного ряда применяется относительный показатель, подобный коэффициенту вариации, но для вычисления которого используются нижний и верхний квартили и медиана. Этот показатель называют квартилем Вариационный ряд - определение и вычисление с примерами решения без добавления слова нижний или верхний. Он исчисляется по формуле:
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения— половина межквартильного расстояния.

Пример 39.

По результатам исчисления медианы, а также нижнего и верхнего квартилей по табл. 7 (см. примеры 27 и 38) найти квартиль.

Имеем:
Вариационный ряд - определение и вычисление с примерами решения
Интересно, что величина коэффициента вариации, по данным табл. 7, довольно близка к полученной величине квартиля:

Вариационный ряд - определение и вычисление с примерами решения

Моменты распределения

Обобщающими характеристиками вариационных рядов являются моменты распределения. Характер распределения может быть определен с помощью небольшого числа моментов. Способ моментов был разработан русским математиком П. Л. Чебышевым и успешно применен А. А. Марковым для рассмотрения возможностей использования закона нормального распределения при изучении сумм: большого, но конечного числа независимых случайных величин.

Средняя из k-x степеней-отклонений вариантов х от некоторой постоянной величины А называется моментом k-гo порядка:

Вариационный ряд - определение и вычисление с примерами решения

При исчислении средней в качестве весов могут быть использованы частоты, частости или вероятности (см. раздел II). При использовании в качестве весов частот или частостей моменты называются эмпирическими, а при использовании вероятностей — теоретическими.

Порядок момента определяется величиной k. Эмпирический момент k-гo порядка находится как отношение суммы произведений k-x степеней отклонений вариантов от постоянной величины А на частоты к сумме частот:

Вариационный ряд - определение и вычисление с примерами решения
В зависимости от выбора постоянной величины А различают следующие моменты:

1) Если постоянная величина А равна нулю (А=0), то моменты называются начальными. Приводим формулу всех начальных моментов:

Вариационный ряд - определение и вычисление с примерами решения

Тогда:

при k = 0 получаем 

Вариационный ряд - определение и вычисление с примерами решения
при k=1

Вариационный ряд - определение и вычисление с примерами решения
при k=2

Вариационный ряд - определение и вычисление с примерами решения
при k = 3

Вариационный ряд - определение и вычисление с примерами решения
при k = 4
Вариационный ряд - определение и вычисление с примерами решения
и т. д. Практически используют моменты первых четырех порядков.

Пример 40.

Вычислить начальные моменты первых четырех порядков, если варианты х имеют как отрицательные, так и положительные значения.

Располагаем все расчеты в таблицу:Вариационный ряд - определение и вычисление с примерами решения

Вычисляем моменты:
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
2) Если А не равно нулю, а некоторой произвольной величине Вариационный ряд - определение и вычисление с примерами решения (начало отсчета), то моменты называются начальными относительно Вариационный ряд - определение и вычисление с примерами решения и обозначаются Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
При подстановке различных значений k получаем начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения
при k=0

Вариационный ряд - определение и вычисление с примерами решения
при k=1

Вариационный ряд - определение и вычисление с примерами решения
при k=2

Вариационный ряд - определение и вычисление с примерами решения

при k=3

Вариационный ряд - определение и вычисление с примерами решения

при k=4

Вариационный ряд - определение и вычисление с примерами решения

и т.д.

Из формулы момента первого порядка вытекает, что Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения т. е. средняя арифметическая равна началу отсчета плюс начальный момент первого порядка относительно начала отсчета. Если отклонения х от Вариационный ряд - определение и вычисление с примерами решения имеют общий множитель С, то на него можно разделить отклонения, а по окончании вычислений полученный момент умножить на этот множитель в соответствующей степени, т. е.Вариационный ряд - определение и вычисление с примерами решения

Отсюда следует, что Вариационный ряд - определение и вычисление с примерами решения

При сравнении с вычислением средней методом отсчета от условного нуля видно, что Вариационный ряд - определение и вычисление с примерами решения (см. стр. 37) и Вариационный ряд - определение и вычисление с примерами решения тождественны. Поэтому вычисление средней методом отсчета от условного нуля иногда называют методом моментов.

Пример 41.

Вычислить начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения = 20 первых четырех порядков по данным колонок 1 и 2 табл. 35.

Располагаем все расчеты в таблицу:
Таблица 35
Вариационный ряд - определение и вычисление с примерами решения
Возьмем в качестве Вариационный ряд - определение и вычисление с примерами решения вариант, равный 20, вычислим колонку 3, разделим все отклонения от начала отсчета на общий множитель С, равный 2, и получим значения Вариационный ряд - определение и вычисление с примерами решения в колонке 4, для которых начальные моменты вычислены в примере 40.

Для получения Вариационный ряд - определение и вычисление с примерами решения нужно найденные в примере 40 начальные моменты умножить на С, равное 2, в соответствующей степени:
Вариационный ряд - определение и вычисление с примерами решения
Практически при нахождении начальных моментов относительно Вариационный ряд - определение и вычисление с примерами решения поступают следующим образом:

из всех вариантов вычитают начало отсчета и находят отклонения Вариационный ряд - определение и вычисление с примерами решения
делят эти отклонения на общий множитель Вариационный ряд - определение и вычисление с примерами решения
находят начальные моменты для Вариационный ряд - определение и вычисление с примерами решения

путем умножения найденных начальных моментов на Вариационный ряд - определение и вычисление с примерами решения получают начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения
3) Если за постоянную величину А взять среднюю Вариационный ряд - определение и вычисление с примерами решения то моменты называются центральными и обозначаются Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения
Тогда:

при k = 0
Вариационный ряд - определение и вычисление с примерами решения
центральный момент нулевого порядка равен единице
при k=1
Вариационный ряд - определение и вычисление с примерами решения
центральный момент первого порядка равен нулю
при k = 2
Вариационный ряд - определение и вычисление с примерами решения
центральный момент второго порядка равен дисперсии и служит мерой колеблемости признака

при k = 3
Вариационный ряд - определение и вычисление с примерами решения
центральный момент третьего порядка служит мерой асимметрии распределения признака. Если распределение симметрично, то Вариационный ряд - определение и вычисление с примерами решения
При k = 4
Вариационный ряд - определение и вычисление с примерами решения
центральный момент четвертого порядка

Пример 42.

Вычислим центральные,моменты первых четырех порядков по данным табл. 36 (колонки 1, 2).

Располагаем все расчеты в таблицу (см. табл. 36). Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
§ 40. Существует связь между начальными моментами первых четырех порядков вариантов Вариационный ряд - определение и вычисление с примерами решения и начальным моментом 4-го порядка вариантов Вариационный ряд - определение и вычисление с примерами решения для случая, когда варианты Вариационный ряд - определение и вычисление с примерами решения меньше вариантов Вариационный ряд - определение и вычисление с примерами решения на единицу:Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — четвертый начальный момент вариантов Вариационный ряд - определение и вычисление с примерами решения

В правой части формулы все начальные моменты (от нулевого порядка до четвертого порядка) вариантов Вариационный ряд - определение и вычисление с примерами решения.

Практически данная формула используется для проверки

вычисления начальных моментов первых четырех порядков вариантов Вариационный ряд - определение и вычисление с примерами решения путем вычисления начального момента 4-го порядка новых вариантов Вариационный ряд - определение и вычисление с примерами решения полученных прибавлением к вариантам Вариационный ряд - определение и вычисление с примерами решения единицы.

Если исчисления Вариационный ряд - определение и вычисление с примерами решения непосредственно из данных по формуле

Вариационный ряд - определение и вычисление с примерами решения

и по формуле связи между моментами дают тождественные результаты, то это свидетельствует о правильности всех начальных моментов первых четырех порядков, вычисленных для вариантов Вариационный ряд - определение и вычисление с примерами решения

Пример 43.

Проверим правильность начальных моментов первых четырех порядков, вычисленных в примере 40.

Располагаем все расчеты в таблицу:Вариационный ряд - определение и вычисление с примерами решения

В колонке 3 записываем новые варианты Вариационный ряд - определение и вычисление с примерами решения путем прибавления к старым вариантам Вариационный ряд - определение и вычисление с примерами решения единицы.

Получаем по формуле:

Вариационный ряд - определение и вычисление с примерами решения

Для расчетов Вариационный ряд - определение и вычисление с примерами решения по формуле связи между моментами привлекаем данные из примера 40:

Вариационный ряд - определение и вычисление с примерами решения
Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Результаты совпадают, следовательно, начальные моменты первых четырех порядков в примере 40 вычислены правильно.

Вычисление центральных моментов, привлекаемых в качестве характеристик вариационного ряда, по формуле

Вариационный ряд - определение и вычисление с примерами решения с точки зрения вычислительной техники довольно громоздко. Поэтому сначала вычисляют начальные моменты-относительно Вариационный ряд - определение и вычисление с примерами решения а для нахождения центральных моментов используют формулу перехода от начальных моментов, вычисленных относительно Вариационный ряд - определение и вычисление с примерами решения к центральным:

Вариационный ряд - определение и вычисление с примерами решения

Знаки в формуле чередуются.

Вариационный ряд - определение и вычисление с примерами решения и т. д. обозначают числа сочетаний из: k по 1; k по 2; k по 3 и т. д.

Полагая в этой формуле k равным 0, 1, 2, 3, 4 и т. д., можем получить центральные моменты различных порядков:

Вариационный ряд - определение и вычисление с примерами решения

Для вычисления центральных моментов высших порядков по найденным центральным моментам низших порядков и начальным моментам относительно Вариационный ряд - определение и вычисление с примерами решения подставляем в формулу третьего центрального момента величину Вариационный ряд - определение и вычисление с примерами решения найденную из формулы второго центрального момента:

Вариационный ряд - определение и вычисление с примерами решения

т. е.

Вариационный ряд - определение и вычисление с примерами решения

Пример 44.

Используя данные примера 41, где вычислены начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения = 20, вычислим центральные моменты первых четырех порядков по соответствующим формулам и сверим полученные результаты с центральными моментами, вычисленными в примере 42.

Из примера 41 имеем:

Вариационный ряд - определение и вычисление с примерами решения

По формулам центральных моментов получаем, используя начальные моменты:

Вариационный ряд - определение и вычисление с примерами решения

Сравнивая центральные моменты первых четырех порядков, вычисленные по указанным формулам, с центральными моментами, вычисленными в примере 42 непосредственно по формуле Вариационный ряд - определение и вычисление с примерами решения убеждаемся в сравнительной простоте исчисления центральных моментов по приведенным в этом параграфе формулам.

Аналогично используются и формулы центральных моментов высших порядков по центральным моментам низших порядков.

Вычислим третий центральный момент по второму центральному моменту и начальным относительно Вариационный ряд - определение и вычисление с примерами решения моментам:

Вариационный ряд - определение и вычисление с примерами решения

Вычислим и четвертый центральный момент по третьему и второму центральным моментам и начальным относительно Вариационный ряд - определение и вычисление с примерами решения моментам:

Вариационный ряд - определение и вычисление с примерами решения

Исчисление центральных моментов сводится к:

  1. нахождению начальных моментов Вариационный ряд - определение и вычисление с примерами решения и их проверке:
  2. нахождению начальных моментов относительно произвольно выбранного начала отсчета Вариационный ряд - определение и вычисление с примерами решения
  3. использованию формул перехода от начальных моментов относительно произвольно выбранного начала отсчета к центральным моментам Вариационный ряд - определение и вычисление с примерами решения

Пример 45.

По данным табл. 38 (колонки 1, 2 и 3) вычислить центральные моменты первых четырех порядков:
Вариационный ряд - определение и вычисление с примерами решения
Начнем с вычисления начальных моментов. Для этого выбираем Вариационный ряд - определение и вычисление с примерами решения = 44,5, находим отклонения вариантов х от Вариационный ряд - определение и вычисление с примерами решенияи делим эти отклонения на общий множитель с=3.

Все действия производим в табл. 38 и получаем колонку Вариационный ряд - определение и вычисление с примерами решения(колонка 4). Далее, произведя расчеты по формуле  Вариационный ряд - определение и вычисление с примерами решения находим начальные моменты. Для этого рассчитываем колонки 5, 6, 7 и 8.

Для простоты расчета числа колонки 5 получают перемножением чисел, расположенных в колонках 2 и 4, числа колонки 6 получают перемножением чисел колонок 4 и 5, числа колонки 7— перемножением чисел колонок 4 и 6 и т. д.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Проверяем вычисление начальных моментов первых четырех порядков. Для этого вычисляем колонки 9 и 10.

Числа колонки 9 получают прибавлением к числам колонки 4 единицы. Числа колонки 10 (а можно и 8) получают, используя таблицу, имеющую следующий вид:

Вариационный ряд - определение и вычисление с примерами решения
В колонке 1 таблицы указаны частоты (m) от 1 до 50, а в верхнем заголовке — числа х’ или х». Произведения Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения находятся на пересечении соответствующей строки и столбца.

Так, если Вариационный ряд - определение и вычисление с примерами решения

если Вариационный ряд - определение и вычисление с примерами решения

и т. д. (см. приложение VII).

Используя формулу Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения

Исчисляя Вариационный ряд - определение и вычисление с примерами решения непосредственно по формуле Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
Результаты вычисления Вариационный ряд - определение и вычисление с примерами решения по двум формулам совпадают, что свидетельствует о правильности расчета первых четырех начальных моментов.

Находим начальные моменты первых четырех порядков относительно выбранного начала отсчета 44,5 по формулеВариационный ряд - определение и вычисление с примерами решения

Находим центральные моменты, используя формулы перехода от начальных моментов, вычисленных относительно Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Вычисление моментов способом сумм

Вычисление моментов при равно отстоящих значениях признака может производиться двумя способами: 1) способом произведений, использованным нами ранее во всех случаях вычислений моментов, и 2) способом сумм, являющимся более упрощенным.

Таблица, в которой производятся все подготовительные расчеты для вычисления начальных четырех моментов, включает в себя колонки х и m и, кроме этого, 4 нумерованные колонки.

Рассмотрим пример вычисления начальных моментов способом сумм по данным табл. 38 (см. табл. 40).

Вся таблица делится на две части чертой, проведенной против частости, соответствующей Вариационный ряд - определение и вычисление с примерами решения В каждой части таблицы суммирование частот производится отдельно. Для верхней части таблицы в колонке 1 идут накопленные частоты начиная сверху, а для нижней части таблицы — начиная снизу. В остальных колонках накопление производится так же и заканчивается на одну клетку раньше, чем в предыдущей колонке.

Для получения Вариационный ряд - определение и вычисление с примерами решения( —) суммируются числа верхней части таблицы, а для Вариационный ряд - определение и вычисление с примерами решения( + ) —нижней части таблицы.

Величины S и D получаются сложением и вычитаниемВариационный ряд - определение и вычисление с примерами решения(—) и Вариационный ряд - определение и вычисление с примерами решения ( + ). Так: S =Вариационный ряд - определение и вычисление с примерами решения(-) + Вариационный ряд - определение и вычисление с примерами решения ( + ), a D =Вариационный ряд - определение и вычисление с примерами решения (—) — Вариационный ряд - определение и вычисление с примерами решения ( + ).

Вариационный ряд - определение и вычисление с примерами решения

Для вычисления начальных моментов по способу сумм используют следующие формулы:

Вариационный ряд - определение и вычисление с примерами решения
Как видим, результаты вычислений по способу сумм совпадают с результатами примера 45.

Нормированные моменты

Второй центральный момент равен дисперсии, т. е. Вариационный ряд - определение и вычисление с примерами решения Если среднее квадратическое отклонение Вариационный ряд - определение и вычисление с примерами решения т. е. корень из дисперсии, иначе говоря, корень из второго центрального момента Вариационный ряд - определение и вычисление с примерами решенияпринять за стандарт, то отношение центрального момента k-гo порядка к стандарту в k-й степени сбудет называться нормированным моментом и обозначаться Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Пример 46. По найденным в примере 45 центральным моментам найти нормированные моменты первых четырех порядков.

Из примера 45 имеем:

Вариационный ряд - определение и вычисление с примерами решения

Находим сначала стандарт:

Вариационный ряд - определение и вычисление с примерами решения

а затем нормированные моменты:

Вариационный ряд - определение и вычисление с примерами решения

Использование нормированных моментов

Нормированные моменты используются при изучении вариационных рядов. Третий нормированный момент Вариационный ряд - определение и вычисление с примерами решения называется мерой или. косости вариационного ряда.Знак перед Вариационный ряд - определение и вычисление с примерами решения указывает на направление асимметрии ряда. Если Вариационный ряд - определение и вычисление с примерами решения то вариационный ряд будет с левосторонней скошенностью, а если Вариационный ряд - определение и вычисление с примерами решения — с правосторонней скошенностью. В симметричном ряде Вариационный ряд - определение и вычисление с примерами решения

Четвертый нормированный момент Вариационный ряд - определение и вычисление с примерами решения называется мерой крутости.

Если Вариационный ряд - определение и вычисление с примерами решения то распределение высоковершинное, если Вариационный ряд - определение и вычисление с примерами решения то распределение низковершинное, если Вариационный ряд - определение и вычисление с примерами решения то распределение близко к нормальному (см. раздел IV).

По результатам вычисления нормированных моментов в примере 46 видно, что Вариационный ряд - определение и вычисление с примерами решения отрицателен (—0,81), т. е. распределение с незначительной правосторонней скошенностью, а Вариационный ряд - определение и вычисление с примерами решения больше 3. Это указывает на высоковершинность данного распределения. В целом данное распределение не очень сильно отличается от нормального.

Коэффициент асимметрии

В качестве показателя отклонения вариационного ряда от симметрии применяется простой эмпирический коэффициент асимметрии Вариационный ряд - определение и вычисление с примерами решения представляющий собой отношение разности между средней арифметической и модой к среднему квадратическому отклонению:

Вариационный ряд - определение и вычисление с примерами решения
Если Вариационный ряд - определение и вычисление с примерами решения то скошенность левосторонняя;

если Вариационный ряд - определение и вычисление с примерами решения то скошенность правосторонняя;

если Вариационный ряд - определение и вычисление с примерами решения то вариационный ряд симметричен.

Пример 47.

По данным примера 31 (табл. 27) вычислим коэффициент асимметрии.

Имеем: Вариационный ряд - определение и вычисление с примерами решения

Вычислим моду по формулеВариационный ряд - определение и вычисление с примерами решения

В данном случае асимметрия небольшая и скошенность левосторонняя.

  • Законы распределения случайных величин
  • Дисперсионный анализ
  • Математическая обработка динамических рядов 
  • Корреляция — определение и вычисление
  • Статистическая проверка гипотез
  • Статистические оценки
  • Теория статистической проверки гипотез
  • Линейный регрессионный анализ
  1. Пользуясь формулой, вычисляем накопленные частоты интервалов. В частности,

;

;

;

.

  1. Вычисляем частости
    интервалов. Например,

;
;
.

  1. Вычисляем
    накопленные частости интервалов.

  2. Данные вычислений
    заносим в табл. 2

Таблица 2

интервала

Границы
интервала

Частота

Накопленная
частота

Частость

Накопленная
частость

1

5

7

3

3

0,06

0,06

2

7

9

9

12

0,18

0,24

3

9

11

17

29

0,34

0,58

4

11

13

10

39

0,20

0,78

5

13

15

7

46

0,14

0,92

6

15

17

4

50

0,08

1

Распределение
типа сведенного в табл. 2 представляет
собой интервальный
вариационный ряд
.

Анализ вариационных
рядов упрощается при их графическом
представлении. Наряду с гистограммой
и полигоном частот можно построить
полигон
накопленных частостей (кумулята)

График получается
при соединении точек прямыми отрезками.
Координаты точек соответствуют верхним
границам интервалов
и
накопленным частотам. Если по оси ординат
откладывать накопленные частости, то
полученный график называется полигоном
накопленных частостей
.
Если ряд не интервальный, то по оси

откладывают значения измеряемого
признака, а по оси


соответствующие накопленные частоты
или частости. На рис.2 изображен полигон
накопленных частостей для примера 3.

На
практике соседние точки чаще всего
соединяют кривыми линиями (рис. 3).

1 .3. Статистические характеристики вариационного ряда

Для
полноты картины анализа выборки
рассматривают статистические
характеристики

вариационного ряда. С этой целью оценивают
следующие качества ряда:

  • центральную
    тенденцию выборки;

  • вариацию.

Центральную
тенденцию выборки оценивают такими
статистическими характеристиками, как

  • мода;

  • медиана;

  • среднее
    арифметическое значение.

К
характеристикам вариации относят:

  • размах;

  • дисперсию;

  • среднее
    квадратическое отклонение;

  • коэффициент
    вариации;

  • ошибку
    выборочного среднего.

Модой
называется значение признака, наиболее
часто встречающееся в выборке. Мода
обозначается
.
Если значения выборки сгруппированы в
интервальный вариационный ряд, то
выбирается модальный
интервал
с
наибольшей частотой.

Медиана

это такое значение признака, при котором
одна половина значений признака меньше
ее, а другая половина 
больше (медиана делит вариационный ряд
пополам). Медиана обозначается
.
Для отыскания медианы выборку ранжируют,
то есть значения признака располагают
в порядке возрастания или убывания. В
ранжированной выборке ранг (порядковый
номер в выборке)

медианы определяют по формуле:

, где


объем выборки.

При

нечетном ранг


целое число, и медианой считают следующее
значение:
.
При

четном ранг


число не целое, представимое в виде
,
где


целое. В таком случае медианой считают
значение
.

Среднее
арифметическое
неупорядоченной
выборки вычисляют по формуле:

.

В случае интервального
вариационного ряда формула приобретает
вид:
,
где


частота
-го
интервала,


среднее арифметическое значение этого
интервала.

Размах вариации
– это разность
между максимальным и минимальным
значениями выборки:

.

Дисперсией
называется
средний квадрат отклонений значений
признака от среднего арифметического
и вычисляется по формуле:

.

Средним
квадратическим отклонением
называется
положительный квадратный корень из
дисперсии:

,

Среднее квадратическое
отклонение имеет ту же единицу измерения,
что и варьирующий признак. Оно характеризует
степень отклонения значений признака
от его среднего арифметического значения
в абсолютных единицах.

Для
сравнения варьируемости двух или
нескольких выборок, имеющих разные
единицы измерения, используют коэффициент
вариации. Коэффициент
вариации

это относительный показатель, равный
отношению среднего квадратического
отклонения к среднему арифметическому
значению:

.

Принято
считать, что если
,
то варьируемость малая,


средняя,


большая.

Отклонения
выборочных коэффициентов от параметров
в генеральной совокупности называются
ошибками
параметров. Эти ошибки возникают в силу
того, что выборочная совокупность
представляет генеральную совокупность
только приближенно. Если взять несколько
вариантов выборок объемом

из одной и той же генеральной совокупности
и вычислить для каждой из них среднее
арифметическое, то окажется, что средние
арифметические выборок варьируют вокруг
среднего арифметического для генеральной
совокупности

в

раз меньше, чем отдельные варианты. На
этом основании в качестве стандартной
ошибки выборочного среднего

принимают величину

.

Чтобы
подчеркнуть точность оценки среднего
выборочного, его чаще всего записывают
в виде: .

Пример 4.
В качестве оценки силовой подготовки
учащихся 5 класса произведен тест на
количество подтягиваний на перекладине.

Данные теста
следующие: 9, 9, 10, 11, 8, 7, 10, 7, 9, 11, 7, 8, 9, 8, 9.

Требуется вычислить
моду, медиану, среднее арифметическое
значение, размах вариации, дисперсию,
среднее квадратическое отклонение,
коэффициент вариации и ошибку выборочного
среднего данной выборки.

Решение.
Непосредственным подсчетом убеждаемся,
что значение

встречается в выборке чаще других (5
раз), следовательно,
.

Для
вычисления медианы производим ранжировку
заданной выборки:

7, 7, 7, 8, 8, 8, 9, 9, 9, 9,
9, 10, 10, 11, 11

Объем выборки


число нечетное, поэтому ранг медианы
вычисляем по формуле:

,

то есть медианой
является 8-е значение выборки),
.

Среднее арифметическое
значение выборки находим, пользуясь
формулой:

Крайние значения
ряда) определяют минимальное и максимальное
значения выборки
,
.
Согласно определению, размах вариации
равен:

.

Для удобства
вычисления дисперсии составляем таблицу.
Пользуясь суммой значений последней
колонки и формулой, находим: .

1

9

0,2

0,04

2

9

0,2

0,04

3

10

1,2

1,44

4

11

2,2

4,84

5

8

-0,8

0,64

6

7

-1,8

3,24

7

10

1,2

1,44

8

7

-1,8

3,24

9

9

0,2

0,44

10

11

2,2

4,24

11

7

-1,8

3,24

12

8

-0,8

0,64

13

9

0,2

0,04

14

8

-0,8

0,64

15

9

0,2

0,04

132

24,4

Вычислим среднее
квадратическое отклонение:
.

Коэффициент
вариации:
,
откуда делаем вывод 
результаты тестирования имеют средний
коэффициент вариации.

Ошибку выборочного
среднего арифметического находим:
.

Наконец, записываем:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Элементы статистики. Среднее значение. Накопленная частота.

Видео: Элементы статистики. Среднее значение. Накопленная частота.

Содержание

  • Формулы
  • Прочие накопленные частоты
  • Как получить накопленную частоту?
  • Как заполнять частотную таблицу
  • Таблица частотности
  • Кумулятивное частотное распределение
  • пример
  • Предлагаемое упражнение
  • Ответить
  • Ссылки

В накопленная частота представляет собой сумму абсолютных частот f, от самой низкой до той, которая соответствует определенному значению переменной. В свою очередь, абсолютная частота — это количество раз, когда наблюдение появляется в наборе данных.

Очевидно, переменная исследования должна быть сортируемой. А поскольку накопленная частота получается сложением абсолютных частот, получается, что накопленная частота до последних данных должна совпадать с их суммой. В противном случае в расчетах будет ошибка.

Обычно накопленная частота обозначается как Fя (или иногда nя), чтобы отличить ее от абсолютной частоты fя и важно добавить для него столбец в таблице, с помощью которой организованы данные, известной как таблица частот.

Это упрощает, среди прочего, отслеживание того, сколько данных было подсчитано до определенного наблюдения.

А Фя он также известен как абсолютная совокупная частота. Если разделить на общие данные, мы получим относительная совокупная частота, окончательная сумма которых должна быть равна 1.

Формулы

Кумулятивная частота данного значения переменной Xя представляет собой сумму абсолютных частот f всех значений, меньших или равных ей:

Fя = f1 + f2 + f +… Fя

Путем сложения всех абсолютных частот получается общее количество данных N, то есть:

F1 + F2 + F3 +…. + Fп = N

Предыдущая операция кратко записывается с помощью символа суммирования ∑:

∑ Fя = N

Прочие накопленные частоты

Также могут накапливаться следующие частоты:

-Относительная частота: получается делением абсолютной частоты fя между общими данными N:

Fр = fя / N

Если относительные частоты сложить от самой низкой к той, которая соответствует определенному наблюдению, мы получим совокупная относительная частота. Последнее значение должно быть равно 1.

-Процент кумулятивной относительной частоты: накопленная относительная частота умножается на 100%.

F% = (fя / N) x 100%

Эти частоты полезны для описания поведения данных, например, при нахождении показателей центральной тенденции.

Как получить накопленную частоту?

Чтобы получить накопленную частоту, необходимо упорядочить данные и организовать их в таблице частот. Процедура иллюстрируется следующей практической ситуацией:

-В интернет-магазине, который продает сотовые телефоны, отчет о продажах определенного бренда за март месяц показал следующие значения за день:

1; 2; 1; 3; 0; 1; 0; 2; 4; 2; 1; 0; 3; 3; 0; 1; 2; 4; 1; 2; 3; 2; 3; 1; 2; 4; 2; 1; 5; 5; 3

Переменная — это количество телефонов, проданных за день и это количественно. Данные, представленные таким образом, не так легко интерпретировать, например, владельцы магазина могут быть заинтересованы в том, чтобы узнать, есть ли какая-либо тенденция, например, дни недели, когда продажи этого бренда выше.

Подобную информацию и многое другое можно получить, представив данные в упорядоченном виде и указав частоты.

Как заполнять частотную таблицу

Для расчета накопленной частоты данные сначала упорядочиваются:

 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 4; 4; 4; 5; 5

Затем строится таблица со следующей информацией:

-Первый столбец слева с количеством проданных телефонов от 0 до 5 в порядке возрастания.

-Второй столбец: абсолютная частота, то есть количество дней, в течение которых было продано 0 телефонов, 1 телефон, 2 телефона и т. Д.

-Третий столбец: накопленная частота, состоящая из суммы предыдущей частоты и частоты данных, которые необходимо учитывать.

Этот столбец начинается с первых данных в столбце абсолютной частоты, в данном случае это 0. Для следующего значения сложите его с предыдущим. Это продолжается до тех пор, пока не будут достигнуты последние накопленные данные частоты, которые должны совпадать с общими данными.

Таблица частотности

В следующей таблице показаны переменная «количество телефонов, проданных за день», ее абсолютная частота и подробный расчет накопленной частоты.

На первый взгляд, можно сказать, что у рассматриваемого бренда один или два телефона почти всегда продаются в день, поскольку максимальная абсолютная частота составляет 8 дней, что соответствует этим значениям переменной. Только за 4 дня месяца они не продали ни одного телефона.

Как уже отмечалось, таблицу легче изучить, чем изначально собранные индивидуальные данные.

Кумулятивное частотное распределение

Кумулятивное распределение частот — это таблица, в которой показаны абсолютные частоты, совокупные частоты, совокупные относительные частоты и совокупные процентные частоты.

Хотя есть преимущество организации данных в таблице, подобной предыдущей, если количество данных очень велико, может оказаться недостаточно для их организации, как показано выше, потому что, если частот много, их все равно трудно интерпретировать.

Проблему можно решить, построив Распределение частоты по интервалам, полезная процедура, когда переменная принимает большое количество значений или если это непрерывная переменная.

Здесь значения сгруппированы в интервалы равной амплитуды, называемые класс. Классы характеризуются наличием:

-Предел класса: — крайние значения каждого интервала, их два, верхний предел и нижний предел. Как правило, верхняя граница относится не к интервалу, а к следующему, а нижняя — к.

-Классовый знак: является средней точкой каждого интервала и принимается в качестве его репрезентативного значения.

-Ширина класса: Он рассчитывается путем вычитания значения самого высокого и самого низкого данных (диапазона) и деления на количество классов:

Ширина класса = Диапазон / Количество классов

Подробное описание частотного распределения приведено ниже.

пример

Этот набор данных соответствует 40 баллам за тест по математике по шкале от 0 до 10:

0; 0;0; 1; 1; 1; 1; 2; 2; 2; 3; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 6; 6; 6; 6; 7; 7; 7; 7; 7; 7; 8; 8; 8; 9; 9; 9;10; 10.

Распределение частот может быть выполнено с определенным количеством классов, например 5 классами. Следует иметь в виду, что при использовании многих классов данные нелегко интерпретировать, и смысл группировки теряется.

А если, наоборот, они сгруппированы в очень немногие, то информация размывается и часть ее теряется. Все зависит от количества имеющихся у вас данных.

В этом примере рекомендуется иметь две оценки в каждом интервале, поскольку будет 10 оценок и будет создано 5 классов. Ранг — это вычитание между высшим и низшим классом, ширина класса составляет:

Ширина класса = (10-0) / 5 = 2

Слева интервалы закрыты, а справа открыты (кроме последнего), что обозначено скобками и круглыми скобками соответственно. Все они одинаковой ширины, но это не обязательно, хотя и является наиболее распространенным.

Каждый интервал содержит определенное количество элементов или абсолютную частоту, а в следующем столбце — накопленная частота, с которой переносится сумма. В таблице также указана относительная частота fр (абсолютная частота между общим количеством данных) и относительная частота в процентах fр ×100%.

Предлагаемое упражнение

Одна компания ежедневно звонила своим клиентам в течение первых двух месяцев года. Данные следующие:

6, 12, 7, 15, 13, 18, 20, 25, 12, 10, 8, 13, 15, 6, 9, 18, 20, 24, 12, 7, 10, 11, 13, 9, 12, 15, 18, 20, 13, 17, 23, 25, 14, 18, 6, 14, 16, 9, 6, 10, 12, 20, 13, 17, 14, 26, 7, 12, 24, 7

Сгруппируйте по 5 классам и составьте таблицу с частотным распределением.

Ответить

Ширина класса:

(26-6)/5 = 4

Пожалуйста, попытайтесь понять это, прежде чем увидите ответ.

Ссылки

  1. Беренсон, М. 1985. Статистика для управления и экономики. Interamericana S.A.
  2. Деворе, Дж. 2012. Вероятность и статистика для техники и науки. 8-е. Издание. Cengage.
  3. Левин, Р. 1988. Статистика для администраторов. 2-й. Издание. Прентис Холл.
  4. Вероятность и статистика. Ширина интервала классов. Получено с: pedroprobabilidadyestadistica.blogspot.com.
  5. Шпигель, М. 2009. Статистика. Серия Шаум. 4-й Издание. Макгроу Хилл.
  6. Уолпол, Р. 2007. Вероятность и статистика для инженерии и науки. Пирсон.

Построение полигона, гистограммы, кумуляты, огивы

Для наглядности строят различные графики статистического
распределения, и, в частности, полигон и гистограмму.

  • Полигон
  • Гистограмма
  • Кумулята и огива

Полигон


Полигоном частот называют
ломаную, отрезки которой соединяют точки

. Для построения полигона частот на оси
абсцисс откладывают варианты

, а на оси ординат – соответствующие им
частоты

. Такие точки

 соединяют
отрезками прямых и получают полигон частот.

Полигоном относительных
частот называют ломаную, отрезки которой соединяют
точки

. Для построения полигона относительных
частот на оси абсцисс откладывают варианты

, а на оси ординат – соответствующие им
относительные частоты (частости)

. Такие точки

 соединяют
отрезками прямых и получают полигон частот.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Пример 1

Построить полигон частот и
полигон относительных частот (частостей):

Решение

Вычислим относительные
частоты (частости):

Полигон частот

Полигон относительных частот

В случае интервального ряда для
построения полигона в качестве

 берутся середины интервалов.

Гистограмма


В случае интервального
статистического распределения целесообразно построить гистограмму.

Гистограммой частот
называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых
служат частичные интервалы длиною

, а высоты (в случае равных интервалов) должны
быть пропорциональны частотам. При построении гистограммы с неравными
интервалами по оси ординат наносят не частоты, а плотность частоты 

. Это необходимо сделать для устранения
влияния величины интервала на распределение и иметь возможность сравнивать
частоты.

В случае построения
гистограммы относительных частот (гистограммы частостей)
высоты в случае равных интегралов должны быть пропорциональны относительной
частоте

, а в случае неравных интервалов высота
равна плотности относительной частоты

.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Пример 2

Построить гистограмму
частот и относительных частот (частостей)

Гистограмма частот

Гистограмма относительных частот


Пример 3

Построить гистограмму
частот (случай неравных интервалов).

Решение

Вычислим плотности
частоты:

Гистограмма частот

Кроме этой задачи на другой странице сайта есть

пример построения полигона и гистограммы на одном графике для интервального вариационного ряда

Кумулята и огива


При помощи кумуляты (кривой сумм) изображается ряд накопленных частот.
Накопленные частоты определяются путём последовательного суммирования частот по
группам и показывают, сколько единиц совокупности имеют значения признака не больше,
чем рассматриваемое значение. При построении кумуляты
интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а
по оси ординат накопленные частоты, которые наносят на поле в виде
перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти
перпендикуляры соединяют и получают ломаную линию, т.е. кумуляту.

Если при графическом
изображении вариационного ряда в виде кумуляты оси
поменять местами, то получим огиву.  То есть огива строится аналогично кумуляте с той
лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения
признака — на оси ординат.


Пример 4

Построить кумулятивную
кривую:

Решение

Вычислим накопленные
частоты:

Кумулятивная кривая

Понравилась статья? Поделить с друзьями:
  • Как найти стоимость основных средств по балансу
  • Как можно найти собаку которая потерялась
  • Как найти украденный телефон через полицию
  • Как найти песню если не знаешь автора
  • Как найти эквивалентную массу щелочи