Как найти направление тела при падении

Определение

Свободное падение — это движение тела только под действием силы тяжести.

В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.

Внимание!

В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!

Ускорение свободного падения

Ускорение свободного падения — векторная физическая величина. Вектор ускорения свободного падения всегда направлен вниз к центру Земли. Обозначается как g.

Единица измерения ускорения свободного падения — 1 м/с2.

Модуль ускорения свободного падения — скалярная величина. Обозначается как g. Численно равна 9,8 м/с2. При решении задач это значение округляется до целых: g = 10 м/с2.

Свободное падение

Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:

Скорость

v = gt

v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело

Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.

Подставляем данные в формулу и вычисляем:

v = gt = 10∙3 = 30 (м/с).

Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.

Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.

Высота падения

Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.

Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:

Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:

Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.

Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:

Формула определения перемещения тела в n-ную секунду свободного падения:

s(n) — перемещение за секунду n.

Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх, описывается в два этапа

Два этапа движения тела, брошенного вертикально вверхЭтап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях (v↑↓g).

Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону (v↑↑g).
Формулы для расчета параметров движения тела, брошенного вертикально вверхПеремещение тела, брошенного вертикально вверх, определяется по формуле:

Если известна скорость в момент времени t, для определения перемещения используется следующая формула:

Если время движения неизвестно, для определения перемещения используется следующая формула:

Формула определения скорости:

Какой знак выбрать — «+» или «–» — вам помогут правила:

  • Если движение равнозамедленное (тело поднимается вверх), перед ускорением свободного падения в формуле нужно ставить знак «–», так как векторы скорости и ускорения противоположно направлены.
  • Если движение равноускоренное (тело падает вниз), перед ускорением свободного падения в формуле нужно ставить знак «+», так как векторы скорости и ускорения сонаправлены.

Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).

Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.

Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:

Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид:

Уравнение скорости при свободном падении:

vy = v0y + gyt

Полезные факты

  • В момент падения тела на землю y = 0.
  • В момент броска тела от земли y0 = 0.
  • Когда тело падает без начальной скорости (свободно) v0 = 0.
  • Когда тело достигает наибольшей высоты v = 0.

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

План построения чертежа

  • Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
  • Отмечаются начальная и конечная координаты тела (y и y0).
  • Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.

Свободное падение на землю с некоторой высоты

Чертеж:

Уравнение скорости:

–v = v0 – gtпад

Уравнение координаты:

Тело подбросили от земли и поймали на некоторой высоте

Чертеж:

Уравнение скорости:

–v = v0 – gt

Уравнение координаты:

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

Чертеж:

Интервал времени между моментами прохождения высоты h:

∆t = t2 – t1

Уравнение координаты для первого прохождения h:

Уравнение координаты для второго прохождения h:

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

Поэтому:

Через 3 с после падения тело окажется на высоте 5 м.

Задание EF17519

С аэростата, зависшего над Землёй, упал груз. Через 10 с он достиг поверхности Земли. На какой высоте находился аэростат? Сопротивление воздуха пренебрежимо мало.


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения искомой величины в векторном виде.
  4. Записать формулу для определения искомой величины в векторном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 0 м/с.
  • Время падения t = 10 c.

Делаем чертеж:

Перемещение (высота) свободно падающего тела, определяется по формуле:

В скалярном виде эта формула примет вид:

Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:

Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:

Вычисляем высоту, подставив известные данные:

Ответ: 500

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17483

Тело брошено вертикально вверх с начальной скоростью 10 м/с. Если сопротивление воздуха пренебрежимо мало, то через одну секунду после броска скорость тела будет равна…


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения скорости тела в векторном виде.
  4. Записать формулу для определения скорости тела в скалярном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 10 м/с.
  • Время движения t = 1 c.

Делаем чертеж:

Записываем формулу для определения скорости тела в векторном виде:

v = v0 + gt

Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:

v = v0 – gt

Подставим известные данные и вычислим скорость:

v = 10 –10∙1 = 0 (м/с)

Ответ: 0

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.7k

Скорость свободного падения

Общие сведения

Основоположником создания учения о движении стал Аристотель. Он утверждал, что скорость падения тела зависит от его веса. Значит, тяжёлый предмет сможет долететь до Земли быстрее, чем лёгкий. Если же на объект не будут воздействовать какие-либо силы, его движение невозможно.

Галилео галилей

Но Галилео Галилей, известный итальянский изобретатель и физик, изучая падение различных предметов и их инерцию, смог опровергнуть догадки Аристотеля. Результаты его исследований были революционными в науке. При этом даже была выпущена книга «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению», в которой были изложены основные размышления Галилея.

За дату рождения кинематики как науки можно принять 20 января 1700 года. В это время проходило заседание Академии наук, на котором Пьер Вариньона не только дал определения понятиям скорость, ускорение, но и описал их в дифференциальном виде. Уже после Ампер использовал для изучения процессов вариационное исчисление. Наглядные опыты провёл Лейбниц, а потом. профессор МГУ Н. А. Любимов смог продемонстрировать появление невесомости при свободном падении.

Под невесомостью понимают состояние тела, при котором силы взаимодействия с опорой, существующие из-за гравитационного притяжения, не оказывают никакого влияния. Такое положение имеет место, когда воздействующие на тело внешние силы можно охарактеризовать массовостью, например, тяготения.

Свободное падение тел

В этом случае силы поля сообщают всем частицам предмета в любом из его положений равные по модулю и направлению ускорения, либо при движении возникают одинаковые по модулю скорости всех частиц тела. Например, поступательное движение. Состояние невесомости особо ярко проявляется в начальный момент при падении тела в атмосфере. Это связано с тем, что сопротивление воздуха ещё невелико.

Таким образом, для существования свободного падения нужно выполнение как минимум двух условий:

  • малость или отсутствие сопротивления среды;
  • действие лишь одной силы тяжести.

Что интересно, движение вверх тоже считается свободным падением, несмотря на обратное интуитивное восприятие, поэтому траектория движения может иметь форму как участка параболы, так и отрезка прямой. Например, камень, брошенный с небольшой высоты или поверхности под любым углом.

Опыт Галилея

Падение относится к реальному движению. Любое взаимодействие с Землёй приводит к изменению скорости из-за чего возникает ускорение. В 1553 году итальянец Джованни Бенедетти заявил, что 2 тела с разной массой, но одинаковой формы, брошенные в одной среде за одинаковое время пролетят равные расстояния. Это утверждение нуждалось в доказательстве, так как противоречило общепринятому на тот момент времени пониманию процессов. В частности, высказываниям Аристотеля.

Галилео галилей опыты

Одним из экспериментаторов стал Галилей. Для проведения опыта учёному понадобилось:

  • стофунтовое ядро;
  • однофунтовый шар.

Существует мнение, что вместо шара учёный использовал мушкетную пулю. Эксперимент заключался в следующем. Подняв 2 предмета на Пизанскую башню, Галилей сбросил их одновременно. Наблюдающие люди воочию смогли убедиться, что 2 тела упали на землю одновременно. Когда же один из учеников Аристотеля упрекнул итальянца, что на такой малой высоте невозможно оценить достоверно разницу, экспериментатор ответил: «Проделайте опыт самостоятельно, вы найдёте, что более тяжёлый предмет опередит тот, что легче на 2 пальца, поэтому, когда первый упадёт на землю, то второй будет от него на расстоянии толщины двух пальцев».

Свободное падение

В своих работах Галилей рассуждал, что если связать верёвкой 2 тела разной тяжести, то с большим весом, по мнению Аристотеля, предмет будет лететь быстрее. Причём лёгкий объект начнёт замедлять падение тяжёлого. Но так как система в целом тяжелее, чем отдельно взятые тела, падать она должна быстрее самого тяжёлого тела. Другими словами, возникает противоречие, значит, предположение о влиянии веса на скорость падения неверно.

Сегодня эксперимент, подтверждающий доводы Галилея, может провести самостоятельно, пожалуй, каждый интересующийся. Такой опыт часто демонстрируют в средних классах общеобразовательной школы. Для этого нужно взять 2 трубки, длиной более метра и поместить в них 2 шарика разной массы. Затем создать внутри вакуум и одновременно их перевернуть. Если все условия соблюдены верно, то 2 тела опустятся на дно ёмкостей одновременно.

Если же опыт повторить не в вакууме, на шары будет действовать сила сопротивления, поэтому время падения уже не будет совпадать. Причём зависеть оно будет от формы предмета и его плотности.

Закон ускорения

Формула для свободного падения была выведена из выражения, определяющего силу тяжести: F = m * g. В соответствии с законом, падение предметов выполняется с одним и тем же ускорением вне зависимости от массы тела. По сути, это частный случай равноускоренного движения, обусловленное силой тяжести.

Для количественного анализа нужно ввести систему координат, взяв начало у поверхности Земли. Тогда можно рассмотреть падение тела массой m с высоты y0. Причём вращением планеты и сопротивлением воздушной среды нужно пренебречь.

Ускорение свободного падения формула

Дифференциальное уравнение будет иметь вид: my = — mg, где: g — ускорение свободного падения. Само же дифференцирование выполняется по времени. При заданных начальных условиях y = y0 и беря во внимание проекцию скорости на вертикальную ось после интегрирования, зависимость переменных от t примет вид:

  • v = v0 + gt;
  • y = y0 + v0t — (gt2 / 2).

Из полученных формул становится понятно, почему свободное падение не зависит от массы тела. При этом если начальная скорость будет равна нулю, то есть при падении предмету не сообщается импульс, текущее движение пропорционально времени, а пройденный путь определяется его квадратом.

Как показали эксперименты, если сопротивления воздуха нет, ускорение для любых летящих предметов по отношению к Земле составит 9,8 м / с2. Формулы, которые используются при расчёте величин, совпадают с выражениями, справедливыми для любого равноускоренного движения. Например, если тело падает без начальной скорости, его скорость можно найти по формуле: V2 = g * t, а высоту падения определить так: h = (gt2 / 2).

Свободное падение формула

Следует отметить, что при удалении предмета от Земли значение свободного движения уменьшается. Причём из-за формы планеты на экваторе оно будет составлять 9,78 м / с2, а с противоположной стороны — 9,832 м / с2. Чтобы определить значение в любом месте, используют нитяной маятник. Его период колебаний определяется по формуле: T = 2p√(l / g), где l — длина нити.

Значения силы тяжести также зависит от строения земной коры и содержащихся в недрах полезных ископаемых. С учётом этого рассчитываются гравитационные аномалии: Δg = g — gср. Например, если g > gcp, то с большой вероятностью в земле содержатся залежи железной руды, в ином случае — нефти или газа.

Решение задач

Свободно двигаться, то есть не испытывать действие сторонних сил, могут любые тела в вакууме. Но в реальности на них оказывается воздействие как атмосферными явлениями, так и сопротивлением среды. При решении задач учитывается только сила тяжести, а вот остальными явлениями пренебрегают, считая их ничтожно малыми.

Вот некоторые из типовых задач, используемые при обучении в среднеобразовательных школах:

Свободное падение задача

  1. Деревянная бочка падает с 30 метров. Какова будет её скорость перед столкновением с Землёй? Так как рассматривается свободное падение, для решения нужно использовать формулу: v2 = 2 * g * h. Отсюда, v = √(2 * g * h) = (2 * 9,81 м / с2 * 30 м) = 24,26 м/с.
  2. Тело вылетает вертикально вверх со скоростью 45 м/с. Какой высоты оно достигнет перед изменением направления полёта и сколько для этого понадобится времени. Для начала следует записать формулу скорости: v = v0 — gt. Отсюда можно рассчитать время полёта: t = v0 / g = 45 / 9,8 = 4,6 c. Теперь можно определить максимальную высоту: h = vot — (gt 2 / 2) = 45 м / с * 4,6 с — 9,8 м / с2 * (4,6 c)2 / 2 = 207 м — 103,7 м = 103,3 м.

  3. Камень летит со скоростью 30 м/с. Найти время, за которое он достигнет 25 метров. Система уравнений, описывающая движение, будет выглядеть так: h = v0t — (gt2 / 2); 25 = 30t — 5t2. Полученные уравнения в системе называются квадратными, поэтому нужно выразить одно из другого и определить корни: t2 — 6t + 5 = 0. В результате должно получиться время, равное одной секунде.

Рассмотренные задания довольно простые. Но есть и повышенной сложности, требующие не только знания формул, но и умения выполнять анализ. Вот одно из таких.

Мяч бросили с горки под углом к горизонту. Через время, равное t = 0,5 c он достигнет наибольшей высоты, а t2 = 2,5 он упадёт. Определить высоту горки, ускорение падения принять равное g = 10 м / с2. Скорость движущегося предмета можно представить в координатной плоскости x и y. В горизонтальном направлении сил, оказывающих воздействие, нет. Движение равномерное. Наибольшая высота будет достигнута при h = H + v0y * t1 — (gt21 / 2).

Вертикальную составляющую можно вычислить, руководствуясь геометрическими принципами: v0y = v0 * sin (a). Учитывая, что h = (gt2 / 2), для высоты горки можно записать: H = (g * (t21 + t22) / 2) — t1 * v0 sin (a). Так как gt1 = v0 sin (a), то рабочая формула примет вид: H = (g * (t21 + t22) / 2) — gt21. После подстановки данных в ответе должна получиться высота равная 30 метров. Задача решена.

Частным случаем равноускоренного движения является свободное
падение тел. Жизненный опыт нам подсказывает, что любое тело, если его ничего не
поддерживает, падает на поверхность Земли, постоянно увеличивая свою скорость.
При этом мы видим, что лёгкие предметы падают гораздо медленнее, чем тяжёлые.
Так и хочется сказать, что время падения зависит от массы тела — чем она
больше, тем быстрее падает тело.

Такие мысли посещали не одно поколение учёных, в том числе и
древнегреческого учёного Аристотеля, который первым указал на эту зависимость
падения тел. При этом взгляды Аристотеля казались настолько очевидными, что в
течение почти 18 веков никто не подвергал их сомнению.

Лишь в конце XVI века Галилео Галилей усомнился в этом. Согласно легенде, в
1589 году на глазах многочисленной публики он одновременно сбросил с вершины
Пизанской башни два пушечных ядра различной массы. Каково же было удивление
зевак, когда два ядра полетели вместе и вместе достигли земли.

«Глухой удар падающих ядер о землю прозвучал как похоронный
звон над старой системой физики и возвестил о зарождении новой», — позже
написал британский учёный Оливер Лодж.

Различную скорость падения других тел Галилей объяснял
наличием сопротивления воздуха. Тогда предположив, что произошло бы в случае
свободного падения тел в вакууме, великий итальянец вывел следующие законы
падения тел для идеального случая:

Все тела при падении движутся одинаково: начав падать
одновременно, они движутся с одинаковой скоростью.

Движение происходит с постоянным ускорением.

Для доказательства правоты Галилея Исаак Ньютон провёл очень
простой и убедительный опыт. Он взял стеклянную трубку, в которую поместил
дробинку, кусочек пробки, пушинку и так далее. Затем он перевернул трубку и
наблюдал, как сначала упала дробинка, затем пробка и только потом — пушинка. Но
вот когда он откачал из трубки почти весь воздух и повторил эксперимент, то
увидел, как все три предмета упали на дно трубки одновременно.

Одновременное падение тел в разреженном воздухе доказывает,
что все тела падают с одинаковым ускорением. Падение тел под действием
только гравитационного поля Земли называется свободным падением
. Поскольку
сила тяжести, действующая на тело вблизи поверхности Земли в данной её точке,
постоянна, то свободно падающее тело движется с постоянным ускорением,
называемым ускорением свободного падения. Причём для всех тел в одном и
том же месте оно одинаково и направлено по вертикали вниз.

Обратим внимание на то, что свободное падение — это не
обязательно только движение вниз. Так, если мы подбросим камень, то он при
своём свободном падении некоторое время будет двигаться вверх, уменьшая свою
скорость до нуля, и лишь потом начнёт падать.

При изучении свободного падения тел мы будем рассматривать
только такие движения, в которых сопротивлением воздуха можно пренебречь. Тогда
эти движения будут описываться уже известными нам кинематическими уравнениями:

Теперь давайте изучим движение тела, начальная скорость
которого направлена под некоторым углом к горизонту (или под углом к ускорению
свободного падения). С таким видом движения приходится встречаться довольно
часто. Например, так движется теннисный мячик после удара по нему ракеткой.
Полет пуль и снарядов также представляет собой пример движения тел, брошенных
под углом к горизонту.

Итак, найдём траекторию тела, брошенного под углом к
горизонту с некоторой начальной скоростью.

Для описания движения выберем две взаимно перпендикулярные
оси координат таким образом, чтобы векторы начальной скорости и ускорения
свободного падения лежали в одной плоскости. Начала отсчёта совместим с
начальным положением тела.

Теперь запишем кинематические уравнения равноускоренного
движения (а движение у нас действительно равноускоренное, потому что модуль и
направление ускорения с течением времени не изменяются):

Так как начало координат совмещено с точкой бросания, то
начальные координаты тела равны нулю:

В выбранной системе координат проекция вектора ускорения на
ось Х равна нулю, а на ось Y — –g.

Из полученного рисунка видно, что проекцию вектора начальной
скорости можно выразить через её модуль и косинус или синус угла, который этот
вектор образует с положительным направлением оси:

Перепишем кинематические уравнения движения с учётом
начальных условий:

Из этих формул следует, что в горизонтальном направлении
тело, брошенное под углом к горизонту, движется равномерно, а в вертикальном — равноускоренно.

В этом легко убедиться. Так, если посмотреть на такое
движение тела сверху, то мы увидим, как оно движется вдоль прямой с постоянной
скоростью. А если посмотреть на это движение сбоку, то мы сначала увидим, как
шарик замедленно поднимается вверх, а потом ускоренно падает вниз.

Для построения траектории движения найдём её уравнение (то
есть найдём зависимость у = у(х). Чтобы получить это
уравнение нам с вами необходимо исключить время из уравнений движения. Для
этого выразим из уравнения движения тела вдоль оси Х время:

И подставим его во второе уравнение:

Обратите внимание на то, что

После замены мы приходим к простой квадратичной функции,
известной нам ещё из курса алгебры. Напомним, что её графиком является
парабола. Причём ветви параболы будут направлены вниз, так как значение коэффициента
b меньше нуля.

Таким образом мы с вами показали, что тело, брошенное под
углом к горизонту, действительно движется по параболе (конечно при условии, что
ускорение свободного падения постоянно).

Теперь давайте определим время полёта. Для этого воспользуемся
уравнением движения тела вдоль оси OY. При этом учтём, что в момент падения тела на землю его
координата становится равной нулю:

Решая простое квадратное уравнение, найдём формулу, по
которой можно рассчитать время полёта тела:

Второй корень уравнения, равный нулю, соответствует моменту
броска.

Теперь легко определить дальность полёта. Для этого
подставляем найденное значение времени в уравнение движения тела вдоль оси Икс:

Полученное выражение можно упростить, если вспомнить о том,
что удвоенное произведение синуса на косинус — это синус двойного угла:

Также мы можем найти максимальную высоту подъёма и время
подъёма тела на эту высоту. Для этого воспользуемся уравнением скорости для
равноускоренного движения в проекциях на ось Y:

Теперь учтём, что в верхней точке траектории проекция
скорости на ось игрек равна нулю:

Решая простое линейное уравнение, найдём время подъёма тела
на максимальную высоту:

 Нетрудно заметить, что это время в два раза меньше
времени всего полёта. Таким образом, получается, что сколько времени тело
поднимается на максимальную высоту, столько же времени оно и опускается с неё.

Подставив полученное выражение для времени в уравнение
движения вдоль оси игрек, найдём максимальную высоту подъёма тела:

Теперь давайте рассмотрим движение тела, брошенного
горизонтально с некоторой высоты, и выясним, какой будет траектория этого тела.
Для этого опять воспользуемся уравнениями движения, записанными в координатной
форме:

Для описания движения тела выберем две взаимно
перпендикулярные о́си координат таким образом,
чтобы векторы начальной скорости и ускорения свободного падения лежали в одной
плоскости. При этом пусть положительное направление оси Y совпадает с направлением вектора
ускорения свободного падения. Начало отсчёта совместим с начальным положением
тела.

При таком выборе системы координат,
начальные координаты тела равны нулю. Также равны нулю проекция начальной
скорости на ось Y
и проекция ускорения на ось X.
Тогда:

Перепишем уравнения движения с учётом начальных условий:

Их анализ показывает, что в горизонтальном направлении тело
движется равномерно, а в вертикальном — равноускоренно
с ускорением свободного падения.

Когда скорость тела направлена горизонтально, оно движется по
ветви параболы, вершина которой находится в точке бросания.

Предлагаем вам самостоятельно определить время и максимальную
дальность полёта тела.

Таким образом, на основании рассмотренных нами примеров можно
сделать вывод о том, что любое сложное движение можно представить, как сумму
движений по двум независимым координатам.
В этом состоит суть закона
независимости движений.

Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г.Галилей опытным путем с доступной для того времени точностью установил, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом  он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение g оказывается неодинаковым, изменяясь примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе. На широте Москвы g = 9,81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то числовое значение g у поверхности Земли принимают равным 9,8 м/с2 или даже 10 м/с2.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу в 1.4, положив υ0 = 0, y0 = h, a = –g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = y – h < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:

Скорость отрицательна, так как вектор скорости направлен вниз.

Время падения tп тела на Землю найдется из условия y = 0:

Скорость тела в любой точке составляет:

В частности, при y = 0 скорость υп падения тела на Землю равна:

Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д.

Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y0 = 0, υ0 > 0, a = –g. Это дает:

Через время υ0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой

Тело возвращается на землю (y = 0) через время 2υ0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ0, т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Максимальная высота подъема

Рисунок 1.5.1.

Графики скоростей для различных режимов движения тела с ускорением a = –g

На рис. 1.5.1 представлены графики скоростей для трех случаев движения тела с ускорением a = –g. График I соответствует случаю свободного падения тела без начальной скорости с некоторой высоты h. Падение происходило в течение времени tп = 1 с. Из формул для свободного падения легко получить: h = 5 м (все числа в этих примерах округлены, ускорение свободного падения принято равным 10 м/с2).

График II – случай движения тела, брошенного вертикально вверх с начальной скоростью υ0 = 10 м/с. Максимальная высота подъема h = 5 м. Тело возвращается на землю через время t = 2 с.

График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II.

Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат (ось OY) направить вертикально вверх, а другую (ось OX) – расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.5.2 изображен вектор начальной скорости  тела и его проекции на координатные оси.

Рисунок 1.5.2.

Движение тела, брошенного под углом  к горизонту. Разложение вектора  начальной скорости тела по координатным осям

Таким образом, для движения вдоль оси OX имеем следующие условия:

а для движения вдоль оси OY

Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом α к горизонту.

Время полета:

Дальность полета:

Максимальная высота подъема:

Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.

Все вы в своей жизни наблюдали за тем, что тела, не имеющие опоры или подвеса, падают вниз. В чем причина такого падения? Конечно же в том, что на все тела у поверхности Земли действует сила тяжести. 

Свободным падением тела называется движение тела только под действием силы тяжести.

Проведем мысленный эксперимент. Представьте, что одновременно начинают падение мяч, камень, лист дерева и перо птицы. В какой очередности упадут эти тела?

Первым упадут камень и мяч, затем перо и лист.

Почему? На перо и лист оказывает заметное влияние сила сопротивления воздуха, направленная против силы тяжести.

Падение тела не может считаться свободным, если сила сопротивления воздуха сравнима с силой тяжести.

Еще в конце XVI века знаменитый итальянский ученый Г. Галилей предположил, что все тела падают с одинаковым ускорением и опытным путем доказал, что это предположение верно.

Галилео Галилей

Согласно биографии Галилео Галилея, написанной его учеником Винченцо Вивиани, в 1589 году Галилей провёл эксперимент, сбросив два шара различной массы (ядро и мушкетную пулю) со знаменитой падающей башни в Пизе, чтобы продемонстрировать, что время падения не зависит от массы шара. С помощью этого эксперимента Галилей якобы обнаружил, что тела упали практически одновременно, тем самым доказав, что в отсутствии сопротивления воздуха все тела падают на Землю равноускоренно и что в данной точке Земли ускорение всех тел при падении одно и то же.

   Опыт Галилео Галилея с Пизанской башней

Исаак Ньютон доказал справедливость выводов Галилео простым опытом.

Исаак Ньютон

В стеклянную трубку он поместил дробинку, пробку и перышко. Если резко перевернуть расположенную вертикально трубку, то быстрее всего упадет дробинка, за ней кусочек пробки и потом плавно опустится перышко. Если же из трубки откачать воздух и опять резко перевернуть её,то все три тела опустятся на дно одновременно.

Трубка Ньютона (эксперимент)

 Какие выводы можно сделать из опыта Ньютона?

1. Тела падают с одинаковым ускорением.

2. Существует сила сопротивления воздуха

Ускорение, с которым тела падают на Землю, называется ускорением свободного падения.

Ускорение свободного падения ускорение, сообщаемое телу, поднятому над Землей, силой тяжести.

Вектор ускорения свободного падения обозначается символом g.

g=9,8 м/с2≈10м/с2

Из закона всемирного тяготения: ускорение свободного падения

Ускорение свободного падения:

1) Всегда направлено по вертикали вниз

2) Не зависит от массы падающего тела

3) Зависит от географической широты. Так как Земля не шар, а эллипсоид вращения, т.е. радиус Земли на полюсе меньше, чем радиус Земли на экваторе.

Радиус Земли

Поэтому сила тяжести и вызвемое ей ускорение больше на полюсе, чем на экваторе. g изменяется примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе. На широте Москвы g = 9,81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то числовое значение g у поверхности Земли принимают равным 9,8 м/с2 или даже 10 м/с2.

4) Зависит от высоты над уровнем моря 

Зависимость ускорения свободного падения от высоты

Рассмотрим несколько примеров движения тел под действием силы тяжести. При решении подобных задач очень важно правильно выполнить чертеж, на котором указать направление осей и всех векторных величин.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости.

Анализируем рисунок.

Свободное падение тела с высоты h без начальной скорости

Свободное падение является прямолинейным движением с постоянным ускорением a=g, значит, к нему применимы все формулы для равноускоренного движения.

Так как тело движется вертикально, то будем рассматривать его движение вдоль оси y, которую направим вертикально вверх.

Тогда проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, с которой тело падало s=h, а проекция перемещения на ось y отрицательна: sy=-h

Начальная скорость движения равна нулю v0=0

Проекция конечной скорости на ось y отрицательна vу =-v

Начальная координата тела y0=h

Теперь работаем с формулами.

Проекция скорости на ось y при равноускоренном движении находится по формуле 

vу=v0у+ayt

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  vу=-v, получаем     -v=0-gt

Упростив выражение, получим формулу для нахождения скорости свободно падающено тела в любой момент времени:

v=gt

Проекция перемещения на ось y при равноускоренном движении находится по формуле 

sу=v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  sу=-h, получаем     -h=0-gt2/2

Упростив выражение, получим формулу для нахождения перемещения тела при свободном падении в любой момент времени:

h=gt2/2

Уравнение координаты при равноускоренном движении находится по формуле 

y=y0+v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  y0=h, получаем     y=h-gt2/2

То есть, формула для нахождения координаты тела при свободном падении в любой момент времени:

y=h-gt2/2

2. Тело брошено вертикально вверх.

Как будет двигаться тело, брошенное вертикально вверх?

Движение тела, брошенного вертикально вверх

Если бросить тело вертикально вверх, то некоторое время оно будет двигаться вверх. Действующая на него сила тяжести направлена вниз и сообщает ему ускорение g, тоже направленное вниз. Поэтому скорость тела будет уменьшаться со временем и в некоторый момент она станет равной нулю, после чего тело начнет падать вниз с увеличивающейся скоростью.

Анализируем рисунок.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх тоже является прямолинейным движением с постоянным ускорением a=g, значит, к нему применимы все формулы для равноускоренного движения.

Так как тело движется вертикально, то будем рассматривать его движение вдоль оси y, которую направим вертикально вверх.

Тогда проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, на которую тело поднимется s=h, а проекция перемещения на ось y полжительна: sy=h

Проекция начальной скорости движения на ось y положительна v0y=v0

Конечная скорость в верхней точке равна нулю v =0

Начальная координата тела равна нулю y0=0, а конечная координата равна высоте, на которую тело поднимется y=h

Теперь работаем с формулами.

Проекция скорости на ось y при равноускоренном движении находится по формуле 

vу=v0у+ayt

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 и  vу=v, получаем, что скорость тела, брошенного вертикально в любой момент времени:

v=v0-gt

Если учесть, что в верхней точке v =0, получим    0=v0-gt 

Упростив выражение, получим формулу для нахождения начальной скорости тела, брошенного вертикально:

v0=gt

Проекция перемещения на ось y при равноускоренном движении находится по формуле 

sу=v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 и  sу=h, получим формулу для нахождения перемещения тела, брошенного вертикально, в любой момент времени:

h=v0t-gt2/2

Уравнение координаты при равноускоренном движении находится по формуле 

y=y0+v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 ,  y0=0 и y=h, получаем формулу для нахождения координаты тела, брошенного вертикально, в любой момент времени:

y=v0t-gt2/2

3. Тело брошено горизонтально.

Как будет двигаться тело, брошенное горизонтально?

Если тело бросить горизонтально, оно будет двигаться криволинейно — по параболе, хотя на тело все время действует сила тяжести, направленная вертикально вниз.

Движение тела, брошенного горизонтально

Такое движение тела рассматривают как два движения: по горизонтали — вдоль оси х, и по вертикали —  вдоль оси y.

Анализируем рисунок.

Движение тела, брошенного горизонтально

Ось y направим вертикально вверх. Проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, с которой тело бросили s=h, а проекция перемещения на ось y отрицательна: sy=-h

Начальные координаты тела х0=0 y0=h

Проекция начальной скорости на ось х равна v=v0

Проекция начальной скорости на ось y равна v0y=0

Перемещение тела вдоль оси х это дальность полета sх=l=х-х0

Теперь работаем с формулами.

По горизонтали, т.е. вдоль оси х тело движется равномерно (т.к. нет ускорения) с постоянной скоростью, равной проекции начальной скорости на ось х. Поэтому при рассмотрении движения вдоль оси х нужно пользоваться формулами, полученными для равномерного движения.

Уравнение скоростиv0x=v0=const 

Уравнение перемещения (дальность полета): l=v·t= v0·t

Уравнение координаты: x= x0 + v0·t

По вертикали, т.е. вдоль оси y тело свободно падает с высоты h. Поэтому при рассмотрении движения вдоль оси y применимы формулы для свободного падения.

Уравнение скоростиv=g·t 

Уравнение перемещения: h=g·t2/2

Уравнение координаты: y= y0-g·t2/2

4. Тело брошено под углом к горизонту.

Как будет двигаться тело, брошенное под углом к горизонту?

Движение тела, брошенного под углом к горизонту

Если тело бросить под углом к горизонту, оно будет двигаться криволинейно — по параболе, хотя на тело все время действует сила тяжести, направленная вертикально вниз.

Такое движение тела рассматривают как два движения: по горизонтали — вдоль оси х, и по вертикали —  вдоль оси y.

Анализируем рисунок.

Движение тела, брошенного под углом к горизонту

Ось y направим вертикально вверх. Проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, на которую тело поднимется s=h, а проекция перемещения на ось y полжительна: sy=h

Начальные координаты тела равны нулю х0=0 y0=0

Проекция начальной скорости на ось х равна v=v0·cosa

Проекция начальной скорости на ось y равна v0y=v0·sina

h — максимальная высота, на которую тело поднимется. На этой высоте проекция скорости на ось y равна 0.

Перемещение тела вдоль оси х это дальность полета sх=l=х-х0

Теперь работаем с формулами.

По горизонтали, т.е. вдоль оси х тело движется равномерно (т.к. нет ускорения) с постоянной скоростью, равной проекции начальной скорости на ось х. Поэтому при рассмотрении движения вдоль оси ОХ нужно пользоваться формулами, полученными для равномерного движения.

Уравнение скоростиv0x=v0·cosa=const 

Уравнение перемещения (дальность полета): l=vxt= v0·cosa·t

Уравнение координаты: x= x0 + v0·cosa·t

По вертикали, т.е. вдоль оси y тело движется сначало равнозамедленно, подобно телу, брошенному вертикально вверх со скоростью, равной проекции начальной скорости на ось y, а затем равноускоренно (свободно падая).

Проекция ускорения на ось y gy= -g , проекция начальной скорости на ось y  v=v0·sina, начальная координата y0=0

Таким образом, применимы формулы, которые мы использовали ранее для равноускоренного движения по вертикали.

Уравнение скоростиvy=v0·sina-g·t 

Уравнение перемещения (максимальная высота полета): h=v0·sina·t-g·t2/2

Уравнение координаты: y= v0·sina·t-g·t2/2

Время полета в 2 раза больше времени подъема тела на максимальную высоту

t= 2·tmax = 2·v0·sina/g

Скорость тела находится по теореме Пифагора: Скорость тела

Дальность полета тела, брошенного под углом к горизонту.

l = x max= v02·sin2a /g

Дальность полета максимальна, когда максимален sin2a.
Максимальное значение синуса равно единице при угле 2a=900, откуда a = 450
Для углов, дополняющих друг друга до 900 дальность полета одинакова.

Расширения для Joomla

Понравилась статья? Поделить с друзьями:
  • Как найти случайного знакомого
  • Как найти проэкцию наклонной
  • Как найти пройденый путь против течения
  • Как найти свою яркую индивидуальность
  • Как исправить багет