Как найти направляющий вектор пересечения двух плоскостей



5.4.4. Прямая, заданная пересечением двух плоскостей

Если плоскости   пересекаются, то система линейных уравнений  задаёт прямую в пространстве.

То есть прямая задана уравнениями двух плоскостей. Типовая и

распространенная задача состоит в том, чтобы переписать уравнения прямой в каноническом виде:

Задача 151

Записать канонические уравнения прямой

Решение: чтобы составить канонические уравнения прямой, нужно знать точку и направляющий вектор. А у нас даны уравнения двух

плоскостей….

1) Сначала найдём какую-либо точку, принадлежащую данной прямой. Как это сделать? Методом подбора. В системе уравнений обнулим

какую-нибудь координату, например, . Тогда получается система двух линейных

уравнений с двумя неизвестными: . Почленно складываем уравнения и находим

решение системы:

Таким образом, точка  принадлежит данной прямой. Но принадлежит ли?

Выполним проверку – подставим её координаты в исходную систему уравнений:

Получены верные равенства, значит, действительно .

В процессе подбора обратите внимание на следующий технический момент: желательно найти точку с целыми координатами. Если бы в

системе мы обнулили «икс» или «зет», то не факт, что получилась бы «хорошая» точка без дробных координат. Такой анализ и подбор точки следует

проводить мысленно или на черновике.

2) Как найти направляющий вектор прямой? Существует готовая формула: если прямая задана пересечением двух

плоскостей , то вектор  является направляющим вектором данной прямой.
В нашей задаче:

Однако всех формул не упомнишь и поэтому очень важно понимать, откуда они взялись. Направляющий вектор нашей прямой ортогонален нормальным векторам плоскостей:  и , поэтому вектор «пэ» можно найти как векторное произведение векторов нормали: .
Из уравнений плоскостей  «снимаем» их векторы нормали:
 и находим направляющий вектор прямой:

Проверим результат с помощью скалярного произведения:
, ч.т.п.

И, наконец, завершающий этап:

3) Составим канонические уравнения прямой по точке  и

направляющему вектору :

Ответ:

Аналогичная задача для самостоятельного решения:

Задача 152

Записать канонические уравнения прямой

Будьте внимательны! Ваш ответ может отличаться от моего ответа (смотря, какую точку подберёте). Если отличие есть, то для проверки возьмите точку из вашего уравнения

и подставьте в моё уравнение (или наоборот).

Полное решение и ответ в конце книги.

И сейчас самое время перейти к простейшим задачам с пространственной прямой:

5.5.1. Взаимное расположение прямых

5.4.3. Параметрические уравнения прямой

| Оглавление |



Автор: Aлeксaндр Eмeлин

5.4.4. Прямая, заданная пересечением двух плоскостей

Если плоскости пересекаются, то система линейных уравнений задаёт прямую в пространстве.

То есть прямая задана уравнениями двух плоскостей. Типовая и распространенная задача состоит в том, чтобы переписать уравнения прямой в каноническом виде:

Задача 151

Записать канонические уравнения прямой

Решение: чтобы составить канонические уравнения прямой, нужно знать точку и направляющий вектор. А у нас даны уравнения двух плоскостей….

1) Сначала найдём какую-либо точку, принадлежащую данной прямой. Как это сделать? Методом подбора. В системе уравнений обнулим какую-нибудь координату, например, . Тогда получается система двух линейных уравнений с двумя неизвестными: . Почленно складываем уравнения и находим решение системы:

Таким образом, точка принадлежит данной прямой. Но принадлежит ли? Выполним проверку – подставим её координаты в исходную систему уравнений:

Получены верные равенства, значит, действительно .

В процессе подбора обратите внимание на следующий технический момент: желательно найти точку с целыми координатами. Если бы в системе мы обнулили «икс» или «зет», то не факт, что получилась бы «хорошая» точка без дробных координат. Такой анализ и подбор точки следует проводить мысленно или на черновике.

2) Как найти направляющий вектор прямой? Существует готовая формула: если прямая задана пересечением двух плоскостей , то вектор является направляющим вектором данной прямой.
В нашей задаче:

Однако всех формул не упомнишь и поэтому очень важно понимать, откуда они взялись. Направляющий вектор нашей прямой ортогонален нормальным векторам плоскостей: и , поэтому вектор «пэ» можно найти как векторное произведение векторов нормали: .
Из уравнений плоскостей «снимаем» их векторы нормали:
и находим направляющий вектор прямой:

Проверим результат с помощью скалярного произведения:
, ч.т.п.

И, наконец, завершающий этап:

3) Составим канонические уравнения прямой по точке и направляющему вектору :

Ответ:

Аналогичная задача для самостоятельного решения:

Задача 152

Записать канонические уравнения прямой

Будьте внимательны! Ваш ответ может отличаться от моего ответа (смотря, какую точку подберёте). Если отличие есть, то для проверки возьмите точку из вашего уравнения и подставьте в моё уравнение (или наоборот).

Полное решение и ответ в конце книги.

И сейчас самое время перейти к простейшим задачам с пространственной прямой:

Уравнения прямой в пространстве — это уравнения двух пересекающихся плоскостей

В данном разделе продолжим изучение темы уравнения прямой в пространстве с позиции стереометрии. Это значит, что мы будем рассматривать прямую линию в трехмерном пространстве как линию пересечения двух плоскостей.

Согласно аксиомам стереометрии, если две плоскости не совпадают и имеют одну общую точку, то они также имею одну общую прямую, на которой лежат все точки, которые являются общими для двух плоскостей. Используя уравнения двух пересекающихся плоскостей, мы можем определить прямую линию в прямоугольной системе координат.

По ходу рассмотрения темы приведем многочисленные примеры, ряд графических иллюстраций и развернутых решений, необходимых для лучшего усвоения материала.

Уравнения двух плоскостей, задающих прямую линию в пространстве

Пусть даны две плоскости, которые не совпадают между собой и пересекаются. Обозначим их как плоскость α и плоскость β . Разместим их в прямоугольной системе координат O х у z трехмерного пространства.

Как мы помним, любую плоскость в прямоугольной системе координат задает общее уравнение плоскости вида A x + B y + C z + D = 0 . Будем считать, что плоскости α соотвествует уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а плоскости β уравнение A 2 x + B 2 y + C 2 z + D 2 = 0 . В этом случае нормальные вектора плоскостей α и β n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) не коллинеарны, так как плоскости не совпадают между собой и е размещаются параллельно друг другу. Запишем это условие следующим образом:

n 1 → ≠ λ · n 2 → ⇔ A 1 , B 1 , C 1 ≠ λ · A 2 , λ · B 2 , λ · C 2 , λ ∈ R

Чтобы освежить в памяти материал по теме «Параллельность плоскостей», смотрите соответствующий раздел нашего сайта.

Линию пересечения плоскостей обозначим буквой a . Т.е. a = α ∩ β . Эта прямая представляет собой множество точек, которые являются общими для обеих плоскостей α и β . Это значит, что все точки прямой линии a удовлетворяют обоим уравнениям плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . Фактически, они являются частным решением системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Общее решение системы линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 определяет координаты всех точек линии, по которой происходит пересечение двух плоскостей α и β . Это значит, что с его помощью мы можем определить положение прямой в прямоугольной системе координат O x y z .

Рассмотрим описанную теорию еще раз, теперь уже на конкретном примере.

Прямая O x – это прямая, по которой пересекаются координатные плоскости O x y и O x z . Зададим плоскость O x y уравнением z = 0 , а плоскость O x z уравнением у = 0 . Такой подход мы подробно разобрали в разделе «Неполное общее уравнение плоскости», так что, в случае затруднений, можно обратиться к этому материалу повторно. В этом случае координатная прямая O x определяется в трехмерной системе координат системой из двух уравнений вида y = 0 z = 0 .

Нахождение координат точки, лежащей на прямой, по которой пересекаются плоскости

Рассмотрим задачу. Пусть в трехмерном пространстве задана прямоугольная система координат O х у z . Линия, по которой пересекаются две плоскости a , задана системой уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Дана точка трехмерного пространства M 0 x 0 , y 0 , z 0 .

Давайте определим, принадлежит ли точка M 0 x 0 , y 0 , z 0 заданной прямой линии a .

Для того, чтобы получить ответ на вопрос задачи, подставим координаты точки М 0 в каждое из двух уравнений плоскости. Если в результате подстановки оба уравнения превратятся в верные равенства A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 , то точка М 0 принадлежит каждой из плоскостей и принадлежит заданной линии. Если хотя бы одно из равенств A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 окажется неверным, то точка М 0 не принадлежит прямой линии.

Рассмотрим решение примера

Прямая линия задана в пространстве уравнениями двух пересекающихся плоскостей вида 2 x + 3 y + 1 = 0 x — 2 y + z — 3 = 0 . Определите, принадлежат ли точки M 0 ( 1 , — 1 , 0 ) и N 0 ( 0 , — 1 3 , 1 ) прямой линии пересечения плоскостей.

Решение

Начнем с точки М 0 . Подставим ее координаты в оба уравнения системы 2 · 1 + 3 · ( — 1 ) + 1 = 0 1 — 2 · ( — 1 ) + 0 — 3 = 0 ⇔ 0 = 0 0 = 0 .

В результате подстановки мы получили верные равенства. Это значит, что точка М 0 принадлежит обеим плоскостям и расположена на линии их пересечения.

Подставим в оба уравнения плоскости координаты точки N 0 ( 0 , — 1 3 , 1 ) . Получаем 2 · 0 + 3 · — 1 3 + 1 = 0 0 — 2 · — 1 3 + 1 — 3 = 0 ⇔ 0 = 0 — 1 1 3 = 0 .

Как вы видите, второе уравнение системы превратилось в неверное равенство. Это значит, что точка N 0 не принадлежит заданной прямой.

Ответ: точка М 0 принадлежит прямой линии, а точка N 0 не принадлежит.

Теперь предлагаем вам алгоритм нахождения координат некоторой точки, принадлежащей прямой линии, если прямая в пространстве в прямоугольной системе координат O x y z определяется уравнениями пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Количество решений системы из двух линейных уравнений с темя неизвестными A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 бесконечно. Любое из этих решений может стать решением задачи.

Пусть в трехмерном пространстве задана прямая линия уравнениями двух пересекающихся плоскостей вида x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 . Найдите координаты любой из точек этой прямой.

Решение

Перепишем систему уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 ⇔ x + 0 y + 3 z = — 7 2 x + 3 y + 3 z = — 2 .

Возьмем отличный от нуля минор второго порядка в качестве базисного минора основной матрицы системы 1 0 2 3 = 3 ≠ 0 . Это значит, что z – это свободная неизвестная переменная.

Перенесем слагаемые, содержащие свободную неизвестную переменную z в правые части уравнений:

x + 0 y + 3 z = — 7 2 x + 3 y + 3 z = — 2 ⇔ x + 0 y = — 7 — 3 z 2 x + 3 y = — 2 — 3 z

Введем произвольное действительное число λ и примем, что z = λ .

Тогда x + 0 y = — 7 — 3 z 2 x + 3 y = — 2 — 3 z ⇔ x + 0 y = — 7 — 3 λ 2 x + 3 y = — 2 — 3 λ .

Для решения полученной системы уравнений применим метод Крамера:

∆ = 1 0 2 3 = 1 · 3 — 0 · 1 = 2 ∆ x = — 7 — 3 λ 0 — — 3 λ 3 = — 7 — 3 λ · 3 — 0 · ( — 2 — 3 λ ) = 21 — 9 λ ⇒ x = ∆ x ∆ = — 7 — 3 λ ∆ y = 1 — 7 — 3 λ 2 — 2 — 3 λ = 1 · — 2 — 3 λ — — 7 — 3 λ · = 12 + 3 λ ⇒ y = ∆ y ∆ = 4 + λ

Общее решение системы уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 будет иметь вид x = — 7 — 3 λ y = 4 + λ z = λ , где λ ∈ R .

Для получения частного решения системы уравнений, которое даст нам искомые координаты точки, принадлежащей заданной прямой, нам необходимо взять конкретное значение параметра λ . Если λ = 0 , то x = — 7 — 3 · 0 y = 4 + 0 z = 0 ⇔ x = — 7 y = 4 z = 0 .

Это позволяет нам получить координаты искомой точки — 7 , 4 , 0 .

Проверим верность найденных координат точки методом подстановки их в исходные уравнения двух пересекающихся плоскостей — 7 + 3 · 0 + 7 = 0 2 · ( — 7 ) + 3 · 4 + 3 · 0 + 2 = 0 ⇔ 0 = 0 0 = 0 .

Ответ: — 7 , 4 , 0

Направляющий вектор прямой, по которой пересекаются две плоскости

Давайте рассмотрим, как определить координаты направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . В прямоугольной системе координат 0хуz направляющий вектор прямой неотделим от прямой линии.

Как мы знаем, прямая перпендикулярна по отношению к плоскости в том случае, когда она перпендикулярна по отношению к любой прямой, лежащей в данной плоскости. Исходя из вышесказанного, нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в данной плоскости. Эти два факта помогут нам в нахождении направляющего вектора прямой.

Плоскости α и β пересекаются по линии a . Направляющий вектор a → прямой линии a расположен перпендикулярно по отношению к нормальному вектору n 1 → = ( A 1 , B 1 , C 1 ) плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и нормальному вектору n 2 → = ( A 2 , B 2 , C 2 ) плоскости A 2 x + B 2 y + C 2 z + D 2 = 0 .

Направляющий вектор прямой a представляет собой векторное произведение векторов n → 1 = ( A 1 , B 1 , C 1 ) и n 2 → = A 2 , B 2 , C 2 .

a → = n → 1 × n 2 → = i → j → k → A 1 B 1 C 1 A 2 B 2 C 2

Зададим множество всех направляющих векторов прямой как λ · a → = λ · n 1 → × n 2 → , где λ — это параметр, который может принимать любые действительные значения, отличные от нуля.

Пусть прямая в пространстве в прямоугольной системе координат O х у z задана уравнениями двух пересекающихся плоскостей x + 2 y — 3 z — 2 = 0 x — z + 4 = 0 . Найдем координаты любого направляющего вектора этой прямой.

Решение

Плоскости x + 2 y — 3 z — 2 = 0 и x — z + 4 = 0 имеют нормальные векторы n 1 → = 1 , 2 , — 3 и n 2 → = 1 , 0 , — 1 . Примем за направляющий вектор прямой линии, являющейся пересечением двух заданных плоскостей, векторное произведение нормальных векторов:

a → = n → 1 × n 2 → = i → j → k → 1 2 — 3 1 0 — 1 = i → · 2 · ( — 1 ) + j → · ( — 3 ) · 1 + k → · 1 · 0 — — k → · 2 · 1 — j → · 1 · ( — 1 ) — i → · ( — 3 ) · 0 = — 2 · i → — 2 j → — 2 k →

Запишем ответ в координатной форме a → = — 2 , — 2 , — 2 . Тем, кто не помнит, как это делается, рекомендуем обратиться к теме «Координаты вектора в прямоугольной системе координат».

Ответ: a → = — 2 , — 2 , — 2

Переход к параметрическим и каноническим уравнениям прямой в пространстве

Для решения ряда задач проще использовать параметрические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ или канонические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В этих уравнениях a x , a y , a z — координаты направляющего вектора прямой, x 1 , y 1 , z 1 — координаты некоторой точки прямой, а λ — параметр, принимающий произвольные действительные значения.

От уравнения прямой вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 можно перейти к каноническим и параметрическим уравнениям прямой линии в пространстве. Для записи канонических и параметрических уравнений прямой нам понадобятся навыки нахождения координат некоторой точки прямой, а также координат некоторого направляющего вектора прямой, заданной уравнениями двух пересекающихся плоскостей.

Рассмотрим написанное выше на примере.

Зададим прямую линию в трехмерной системе координат уравнениями двух пересекающихся плоскостей 2 x + y — z — 1 = 0 x + 3 y — 2 z = 0 . Напишем канонические и параметрические уравнения этой прямой.

Решение

Найдем координаты направляющего вектора прямой, который является векторным произведением нормальных векторов n 1 → = 2 , 1 , — 1 плоскости 2 x + y — z — 1 = 0 и n 2 → = ( 1 , 3 , — 2 ) плоскости x + 3 y — 2 z = 0 :

a → = n 1 → × n 2 → = i → j → k → 2 1 — 1 1 3 — 2 = i → · 1 · ( — 2 ) + j → · ( — 1 ) · 1 + k → · 2 · 3 — — k → · 1 · 1 — j → · 2 · ( — 2 ) — i → · ( — 1 ) · 3 = i → + 3 · j → + 5 · k →

Координаты направляющего вектора прямой a → = ( 1 , 2 , 5 ) .

Следующим шагом является определение координат некоторой точки заданной прямой линии, которыми является одно из решений системы уравнений: 2 x + y — z — 1 = 0 x + 3 y — 2 z = 0 ⇔ 2 x + y — z = 1 x + 3 y — 2 z = 0 .

Возьмем в качестве минорной матрицы системы определитель 2 1 1 3 = 2 · 3 — 1 · 1 = 5 , который отличен от нуля. В этом случае переменная z является свободной. Перенесем слагаемые с ней в правые части каждого уравнения и придаем переменной произвольное значение λ :

2 x + y — z = 1 x + 3 y — 2 z = 0 ⇔ 2 x + y = 1 + z x + 3 y = 2 z ⇔ 2 x + y = 1 + λ x + 3 y = 2 λ , λ ∈ R

Применяем для решения полученной системы уравнений метод Крамера:

∆ = 2 1 1 3 = 2 · 3 — 1 · 1 = 5 ∆ x = 1 + λ 1 2 λ 3 = ( 1 + λ ) · 3 — 1 · 2 λ = 3 + λ ⇒ x = ∆ x ∆ = 3 + λ 5 = 3 5 + 1 5 · λ ∆ y = 2 1 + λ 1 2 λ = 2 · 2 λ — ( 1 + λ ) · 1 = — 1 + 3 λ ⇒ y = ∆ y ∆ = — 1 + 3 λ 5 = — 1 5 + 3 5 · λ

Получаем: 2 x + y — z — 1 = 0 x + 3 y — 2 z = 0 ⇔ x = 3 5 + 1 5 y = — 1 5 + 3 5 z = λ

Примем λ = 2 для того, чтобы получить координаты точки прямой линии: x 1 = 3 5 + 1 5 · 2 y 1 = — 1 5 + 3 5 · 2 z 1 = 2 ⇔ x 1 = 1 y 1 = 1 z 1 = 2 . Теперь мы имеем достаточно данных для того, чтобы записать канонические и параметрические уравнения данной прямой в пространстве: x — x 1 a x = y — y 1 a y = z — z 1 a z ⇔ x — 1 1 = y — 1 3 = z — 2 5 x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x = 1 + 1 · λ y = 1 + 3 · λ z = 2 + 5 · λ ⇔ x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Ответ: x — 1 1 = y — 1 3 = z — 2 5 и x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Данная задача имеет еще один способ решения.

Нахождение координат некоторой точки прямой проводится при решении системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

В общем случае ее решения можно записать в виде искомых параметрических уравнений прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ .

Получение канонических уравнений проводится следующим образом: решаем каждое из полученных уравнений относительно параметра λ , приравниваем правые части равенства.

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ λ = x — x 1 a x λ = y — y 1 a y λ = z — z 1 a z ⇔ x — x 1 a x = y — y 1 a y = z — z 1 a z

Применим данный способ к решению задачи.

Зададим положение прямой линии уравнениями двух пересекающихся плоскостей 2 x + y — z — 1 = 0 x + 3 y — 2 z = 0 . Напишем параметрическое и каноническое уравнения для этой прямой линии.

Решение

Решение системы из двух уравнений с тремя неизвестными проводится аналогично тому, как мы делали это в предыдущем примере. Получаем: 2 x + y — z — 1 = 0 x + 3 y — 2 z = 0 ⇔ x = 3 5 + 1 5 · λ y = — 1 5 + 3 5 · λ z = λ .

Это параметрические уравнения прямой в пространстве.

Канонические уравнения получаем следующим образом: x = 3 5 + 1 5 · λ y = — 1 5 + 3 5 · λ z = λ ⇔ λ = x — 3 5 1 5 λ = y + 1 5 3 5 λ = z 1 ⇔ x — 3 5 1 5 = y + 1 5 3 5 = z 1

Полученные в обоих примерах уравнения отличаются внешне, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства, а следовательно и одну и ту же прямую линию.

Ответ: x — 3 5 1 5 = y + 1 5 3 5 = z 1 и x = 3 5 + 1 5 · λ y = — 1 5 + 3 5 · λ z = λ

Линия пересечения плоскостей онлайн

С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Линия пересечения плоскостей − теория, примеры и решения

Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:

α1: A1x+B1y+C1z+D1=0, (1)
α2: A2x+B2y+C2z+D2=0, (2)

Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:

Умножив уравнение (2) на λ, получим:

α2: A1x+B1y+C1z+λD2=0, (3)

Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:

(4)

Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.

Так как в системе линейных уравнений (4) векторы n1=<A1, B1, C1> и n2=<A2, B2, C2> не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:

, (5)

Равенство (5) можно записать в следующем виде:

. (6)

Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:

.

Пример 1. Найти линию пересечения плоскостей α1 и α2:

Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.

Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:

. (9)

Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

. (10)

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:

.

Второй этап. Обратный ход Гаусса.

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:

.

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

.

. (11)

где t− произвольное действительное число.

Запишем (11) в следующем виде:

. (12)

Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.

(13)

Из равентсв выше получим каноническое уравнение прямой:

Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:

Пример 2. Найти линию пересечения плоскостей α1 и α2:

(14)
(15)

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:

(16)

Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.

Пример 3. Найти линию пересечения плоскостей α1 и α2:

(17)
(18)

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:

(19)

Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenija-prjamoj-v-prostranstve-eto-uravnenija-d/

http://matworld.ru/analytic-geometry/linija-peresechenija-ploskostej.php

Линия пересечения плоскостей онлайн

С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Линия пересечения плоскостей − теория, примеры и решения

Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:

α1:  A1x+B1y+C1z+D1=0, (1)
α2:  A2x+B2y+C2z+D2=0, (2)

где n1={A1, B1, C1} и n2={A2, B2, C2} − нормальные векторы плоскостей α1 и α2, соответственно.

Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:

1. Нормальные векторы n1 и n2 плоскостей α1 и α2 коллинеарны (Рис.1).

Поскольку векторы n1 и n2 коллинеарны, то существует такое число λ≠0, что выполнено равенство n1=λn2, т.е. A1=λA2, B1=λB2, C1=λC2.

Умножив уравнение (2) на λ, получим:

α2:  A1x+B1y+C1z+λD2=0, (3)

Если выполненио равенство D1=λD2, то плоскости α1 и α2 совпадают, если же D1λD2то плоскости α1 и α2 параллельны, то есть не пересекаются.

2. Нормальные векторы n1 и n2 плоскостей α1 и α2 не коллинеарны (Рис.2).

Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:

Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.

Так как в системе линейных уравнений (4) векторы n1={A1, B1, C1} и n2={A2, B2, C2} не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:

где x0, y0, z0, m, p, l действительные числа, а t − переменная.

Равенство (5) можно записать в следующем виде:

Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:

Пример 1. Найти линию пересечения плоскостей α1 и α2:

Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 1}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 9, −5}.

Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.

Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:

Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:

Второй этап. Обратный ход Гаусса.

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Получим решение:

где t− произвольное действительное число.

Запишем (11) в следующем виде:

Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.

Из равентсв выше получим каноническое уравнение прямой:

Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:

Пример 2. Найти линию пересечения плоскостей α1 и α2:

Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 7}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 4, 14}.

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:

Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.

Пример 3. Найти линию пересечения плоскостей α1 и α2:

Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={5, −2, 3}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={15, −6, 9}.

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:

Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.

Написать канонические и параметрические уравнения прямой, образованной пересечением плоскостей

Решение

1) Найдем координаты фиксированной точки. Из исходной системы уравнений 

исключим z. 

Положим z=0, тогда:

откуда находим: x=1, y= -2.

Таким образом, нашли координаты фиксированной точки M0(1,-2,0).

2) Направляющий вектор определяется как векторное произведение нормалей двух плоскостей, образующих прямую:

3) Запишем канонические уравнения:

4) Обозначив,

получаем параметрические уравнения:

x=t+1, y=4t-2, z=4

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

1.5.
Лекция 5.

Прямая
в пространстве. Задачи о прямых

и
плоскостях

Уравнения
прямой, проходящей через данную точку
и параллельной данному вектору. Уравнение
прямой, проходящей через две заданные
точки. Расстояние от точки до прямой.
Расстояние между непараллельными
прямыми. Проекция точки на плоскость.
Проекция точки на прямую. Проекция
прямой на плоскость параллельно заданному
вектору. Общий перпендикуляр к двум
скрещивающимся прямым.

Уравнение
прямой, проходящей через данную точку

и
параллельной данному вектору

Существует,
причем единственная, прямая
,
содержащая заданную точку

и параллельная ненулевому вектору
.
Такой вектор называется направляющим
вектором прямой
.
Для произвольной точки

пространства имеем (рис. 10) логическую
цепочку

Уравнение


(5.1)

называется
векторным
уравнением прямой
.
Вектор

называют вектором
сдвига

прямой.

Условие
параллельности векторов

и

можно записать в виде

,

или

.
(5.2)

Уравнение
(5.2) называется векторно-параметрическим
уравнением прямой
.
Расписывая его в декартовой системе
координат, получим параметрические
уравнения прямой


(5.3)

Если
параметр

пробегает
,
точка с координатами

из (5.3) пробегает прямую.

Рис.
10. Уравнение прямой

Условие
(5.1) коллинеарности векторов в координатах
примет вид пропорции


(5.4)

где
.

Если
обращается в нуль одна из координат
направляющего вектора, например
,
то уравнения прямой принимают вид

Эта
прямая лежит в плоскости
.

Уравнение
прямой, проходящей через две заданные

точки

и

В
качестве направляющего вектора прямой
можно взять вектор
,
а в качестве данной точки прямой – точку

.
Тогда уравнение (5.1) примет вид

или
в координатах

Расстояние
от точки до прямой

Пусть
прямая

задана уравнением
,
а точка

– радиус-вектором
.
Расстояние от точки до прямой равно
можно найти, разделив площадь
параллелограмма, построенного на
векторах

и
,
на длину его основания (рис. 11).

Рис.
11. Расстояние от точки до прямой

В
результате получим формулу расстояния
от точки до прямой


(5.5)

Упражнение.
Записать расстояние от точки до прямой
в прямоугольных декартовых координатах.

Расстояние
между непараллельными прямыми

Рассмотрим
две непараллельные прямые

Существуют
параллельные плоскости

и

такие, что

.

В
качестве направляющих векторов обеих
плоскостей можно взять пару векторов
,
,
а в качестве начальных точек — точки с
радиус-векторами

и
,
соответственно, для плоскостей
,
.
Искомое расстояние между прямыми можно
найти, разделив объем параллелепипеда,
построенного на векторах
,
,

на площадь его основания (рис. 12). Получим

Рис.
12. Расстояние между непараллельными
прямыми

Из
приведенных рассуждений получаем также

Предложение.
Прямые

и

пересекаются тогда и только тогда, когда

Проекция
точки на плоскость

Найдем
радиус-вектор проекции точки

на плоскость
,
заданную уравнением

Прямая

проходит через

и перпендикулярна плоскости. Подставляя
значение для

из уравнения прямой в уравнение плоскости,
получим
.
Отсюда
.
Подставив найденное значение

в уравнение прямой, получим радиус-вектор
искомой проекции

Проекция
точки на прямую

Пусть
прямая

задана уравнением

и дана точка

с радиус-вектором
.
Построим плоскость
,
перпендикулярную прямой

и проходящую через точку
.
В качестве нормального к плоскости

вектора можно взять вектор
,
а в качестве начальной точки плоскости
– точку
.
Тогда

есть уравнение искомой плоскости. Точка
пересечения этой плоскости с прямой

и есть проекция точки

на прямую
.
Найдем эту точку, решая относительно

и

систему уравнений

Подставляя

из первого уравнения во второе, получим

Отсюда

и

.

Подставляя
найденное значение

в первое уравнение системы, получим
радиус-вектор искомой точки

Проекция
прямой на плоскость параллельно заданному
вектору

Пусть
плоскость

задана уравнением
,
прямая

– уравнением
.
Требуется составить уравнение проекции
прямой

на плоскость

параллельно вектору
.
Будем считать, что векторы

не коллинеарны, ибо в противном случае
проекцией прямой на плоскость является
точка. Направляющий вектор

проекции можно искать в виде комбинации
,
перпендикулярной вектору

(рис. 13).

Рис.
13. Проекция прямой на плоскость

Так
как длина вектора с
нам безразлична, то мы можем положить
.

Из
условия

получим

и

Найдем
радиус-вектор точки пересечения плоскости

и прямой
.

Подставляя
значение

из уравнения прямой в уравнение плоскости,
получим
.
Отсюда
.
При этом значении

уравнение прямой даст искомый радиус-вектор

Имея
радиус-вектор

начальной точки проекции и ее направляющий
вектор
,
запишем, наконец, уравнение проекции

Другой
вариант решения этой задачи заключается
в построении проекции как пересечения
двух плоскостей: плоскости

и плоскости
,
порожденной векторами

и проходящей через точку пересечения
прямой

с плоскостью
.

Общий
перпендикуляр к двум скрещивающимся
прямым

Пусть
прямые

и
не
параллельны, т.е..
Вектор

перпендикулярен обеим прямым. Поэтому
плоскость


(5.6)

проходит
через первую прямую и общий перпендикуляр,
а плоскость


(5.7)

– через
вторую прямую и общий перпендикуляр к
обеим прямым. Следовательно, общий
перпендикуляр можно задать системой
уравнений (5.6) и (5.7) как пересечение
плоскостей. Чтобы найти его начальную
точку, можно решить совместно уравнение
первой прямой и уравнение плоскости
(5.7). Направляющим вектором является
вектор
.

Рассмотрим
другой способ решения этой задачи. На
первой прямой возьмем произвольную
точку

с радиус-вектором
,
а на второй – точку

с радиус-вектором
.
Подберем значения параметров

так, чтобы вектор

был
перпендикулярен обоим векторам

и
.
Для этого мы должны решить относительно

систему

Преобразуем
ее
к
виду

Главный
определитель этой системы

отличен
от нуля. По правилу Крамера эта система
имеет единственное решение

Тем
самым определятся точки

и
.
Осталось записать уравнение прямой
через эти точки.

Изложенный
метод годится для построения общего
перпендикуляра к двум скрещивающимся
прямым в пространстве размерности и
выше трех.

Упражнения

5.1.
Точка

определяется радиус-вектором
.
Составить уравнение прямой, проходящей
через точку

перпендикулярно плоскости
.

5.2.
Точка

определяется радиус-вектором
.
Составить уравнение плоскости, проходящей
через точку

перпендикулярно прямой
.

5.3.
Составить векторное уравнение плоскости,
проходящей через прямую
и
точку
,
не лежащую на этой прямой.

5.4.
Даны точка

и плоскость
.
Найти радиус-вектор точки
,
симметричной с

относительно плоскости.

5.5.
Даны точка

и прямая
.
Найти радиус-вектор точки
,
симметричной с

относительно прямой.

5.6.
Составить уравнение прямой, пересекающей
прямую

под прямым углом и проходящей через
точку
,
не лежащую на данной прямой (перпендикуляра,
опущенного из точки

на прямую
.

5.7.
Составить уравнение прямой, пересекающей
две скрещивающиеся прямые

и

и проходящей через точку
,
не лежащую ни на одной из этих прямых.

5.8.
Найти расстояние между двумя параллельными
плоскостями

и
.

5.9.
Составить уравнение прямой, которая
параллельна прямой

и пересекает прямые
,
.

Вопросы
для самопроверки

1.
Дайте геометрическую иллюстрацию
векторно-параметрическому уравнению
прямой.

2.
Как перейти от векторно-параметрического
уравнения прямой к каноническим и
параметрическим уравнениям?

3.
Как найти направляющий вектор прямой,
проходящей через две заданные точки?

4.
Как найти направляющий вектор прямой,
являющийся пересечением двух плоскостей?

33

Соседние файлы в папке Analiticheskaya_geom

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Отломился носик у утюга как исправить
  • Как найти слово в документе онлайн
  • Как найти относительную молекулярную массу молекулы днк
  • Как составить договор купли продажи продукции
  • Дневник целей как составить