Как найти напряжение через электроемкость конденсатора

Главная

Примеры решения задач ТОЭ

Расчет электрической цепи постоянного тока с конденсаторами

Расчет электрической цепи постоянного тока с конденсаторами


Расчет электрической цепи постоянного тока с конденсаторами

Основные положения и соотношения

1. Общее выражение емкости конденсатора

C= Q U .

2. Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,

здесь

S — поверхность каждой пластины конденсатора;

d — расстояние между ними;

εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;

εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м  – электрическая постоянная.

3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .

4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:

C= C 1 ⋅ C 2 C 1 + C 2 ,

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .

5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)

Преобразование звезды емкостей в эквивалентный треугольник емкостей

Рис. 0

осуществляется по формулам:

Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ;   C 13 = C 1 ⋅ C 3 ΣC ;   C 23 = C 2 ⋅ C 3 ΣC , где          ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .

6. Энергия электростатического поля конденсатора:

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .

7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .

Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.

Решение задач на расчет электрической цепи постоянного тока с конденсаторами

Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).

эквивалентная емкость при последовательном соединении конденсаторов

Рис. 1

Решение

На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.

Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.

Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.

Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов

U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .

Воспользовавшись формулой напряжения на конденсаторе

U= q C ,

запишем

q C = q C 1 + q C 2 + q C 3 .

Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов

1 C = 1 C 1 + 1 C 2 + 1 C 3 .

В общем случае эквивалентная емкость при последовательном соединении конденсаторов

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.

Определить заряд и энергию каждого конденсатора, если система подключена в сеть

Рис. 2

Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.

Решение

Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно

C12 = C1 + C2 = 200 мкФ,

эквивалентная емкость всей цепи равна

C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120  мкФ.

Заряд на эквивалентной емкости

Q = C·U = 120·10–6·240 = 288·10–4 Кл.

Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе

U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96  В.

Напряжение на конденсаторах C1 и C2 равно

U1 = U2 = U — U3 = 240 — 96 = 144 В.

их заряды имеют следующие значения

Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;

Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.

Энергии электростатического поля конденсаторов равны

W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52  Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56  Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38  Дж.

Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 3

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.

Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.

Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.

Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.

Решение

Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям

U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8  В; U 2 =U− U 1 =20−8=12  В.

Определить напряжение каждого конденсатора

Рис. 4

Ключ К замкнут. Через сопротивления r1 и r2 протекает ток

I= U r 1 + r 2 = 20 500 =0,04  А,

а через сопротивление r3 ток не протекает.

Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).

Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1

UC1 = I·r1 = 0,04·100 = 4 В.

Аналогично напряжение на втором конденсаторе равно

UC2 = I·r2 = 0,04·400 = 16 В.

Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.

Определить напряжение на зажимах конденсаторов и их энергию

Рис. 5

Решение

Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен

Q = C1·U = 5·10–6·25 = 125·10–6 Кл.

После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.

На основании закона сохранения электричества имеем

Q = Q’1 + Q’2 = 125 10–6 Кл. (1)

По второму закону Кирхгофа имеем

0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,

или

Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0.   (2)

Решая уравнения (1) и (2), найдем

Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.

Доставка свежих и аппетитных японских суши в Новороссийске — ям ям..

Напряжение на зажимах конденсаторов станет равным

U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1  В.

Энергия обоих конденсаторов будет равна

W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6   Дж.

Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии

W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6   Дж.

Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.

Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.

Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.

Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2

Рис. 6

Решение

Рубильник находится в положении 1. Заряд конденсатора C1 равен

Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.

В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем

E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,

откуда

Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3   Кл.

При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.

Для узла a

Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)

Для контура 2ebda2

0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .

Для контура bcadb

E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .

Уравнения (1) — (3), после подстановки числовых значений величин, примут вид

Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)

3Q’1 — Q’2 = 0; (5)

2Q’2 + Q’3 = 3·10–3. (6)

Решая совместно уравнения (4) — (6), получим

Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.

Напряжения на конденсаторах после перевода рубильника будут равны

U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33  В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33  В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17  В.

Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.

Определить заряд и напряжение конденсаторов, соединенных по схеме

Рис. 7

Решение

Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках

− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .

Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.

Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.

Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов

Рис. 8

Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.

Решение

1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)

C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6  мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0  мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5  мкФ.

Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость

C6 = C12 + C5 = 3 мкФ.

Аналогично

C7 = C13 + C4 = 2 мкФ.

Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется

C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7  мкФ.

Вычислим напряжение на каждом из конденсаторов.

На конденсаторе C7 напряжение равно

U 7 = C 6 C 6 + C 7 ⋅U=6  В.

Таково же напряжение и на конденсаторах C4 и C13

U4 = U31 = 6 В.

Напряжение на конденсаторе C6 равно

U6 = U — U7 = 4 В;

U5 = U12 = 4 В.

Вычислим заряды

Q4 = C4·U4 = 6·10–6 Кл;

Q5 = C5·U5 = 9,6·10–6 Кл;

Q12 = C12·U12 = 6·10–6 Кл;

Q13 = C13·U31 = 2,4·10–6 Кл.

По закону сохранения электричества для узла 1 схем 8, а и б имеем

Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,

отсюда

Q1 = Q13 — Q12 = 3,6·10–6 Кл,

а напряжение на конденсаторе, емкостью C1 составляет

U 1 = Q 1 C 1 =1,8  В.

Далее находим напряжения и заряды на остальных конденсаторах

U31 = U1 + U3,

отсюда

U3 = U31 — U1 = 4,2 В;

Q3 = C3·U3 = 21·10–6 Кл,

также

U12 = U2 — U1 = 4,2 В,

откуда

U2 = U12 + U1 = 5,8 В;

Q2 = C2·U2 = 17,4·10–6 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.

2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)

для узла 1

Q5 — Q1 — Q4 = 0; (1)

для узла О

Q1 + Q2 — Q3 = 0; (2)

для контура О13О

Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0;  (3)

для контура О12О

Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0;  (4)

для контура a3О2b

Q 3 C 3 + Q 2 C 2 =U.  (5)

Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения

C ab = Q U ,

где Q = Q3 + Q4, или Q = Q2 + Q5.

Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.

В схеме найти распределение зарядов

Рис. 9

Решение

При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:

для узла а

Q1 + Q2 + Q3 = 0;

для узла b

Q3 — Q4 — Q5 = 0;

для узла c

Q1 + Q4 + Q6 = 0;

для контура afcba

E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;

ля контура gdbag

E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;

для контура cbdc

0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .

Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды

Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;

Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.

Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.

Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.

Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.

Определить заряд и энергию каждого конденсатора в схеме

Рис. 10

Решение

Через сопротивления протекает ток

I= U r 1 + r 2 =0,05  А.

Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:

− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,

или

Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .

Решив эту систему уравнений, найдем, что

Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.


последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами

Комментарии

Определение

Конденсатор служит для накопления электрического заряда. Он представляет собой два проводника, разделенных слоем диэлектрика.

Плоский конденсатор — система двух разноименно заряженных пластин.

Разность потенциалов U (В) между обкладками конденсатора (напряжение между пластинами), определяется произведением напряженности создаваемого ими электрического поля на расстояние между ними:

U=Ed

Электроемкость конденсатора

Определение

Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

Электроемкость конденсатора определяется формулой:

C=ε0εSd

  • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
  • ε — диэлектрическая проницаемость среды;
  • S2) — площадь каждой пластины.

Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

C=QU=qU

Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

Энергия конденсатора

Формула энергии конденсатора

Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

Wэ=q22C=CU22

Подсказки к задачам

Конденсатор отключен от источника q = q′
Конденсатор подключен к источнику U = U′
Количество теплоты и энергия конденсатора Q = ∆Wэ

Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

10 см = 0,1 м

1 мм = 0,001 м

Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

Площадь квадратной пластины равна квадрату ее стороны:

S = a2

Соединения конденсаторов

Последовательное соединение Параллельное соединение
Схема
Напряжение

U=U1+U2

U=U1=U2

Заряд

q=q1=q2

q=q1+q2

Электроемкость

1C=1C1+1C2

C=C1+C2

Подсказки к задачам

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов одноименными полюсами. Схема соединения конденсаторов одноименными полюсами:

Заряд системы после соединения:

q
=C1U1+C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1+C2U2C1+C2

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов разноименными полюсами.

Схема соединения конденсаторов разноименными полюсами:

Заряд системы после соединения:

q
=C1U1C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1C2U2C1+C2

Пример №2. К конденсатору, электрическая емкость которого C = 16 пФ, подключают два одинаковых конденсатора емкостью X: один параллельно, а второй — последовательно (см. рисунок). Емкость образовавшейся батареи конденсаторов равна емкости C. Какова емкость X? Ответ округлите до десятых.

Электрическая емкость параллельного соединения равна:

Cпарал=X+C

Электроемкость последовательного соединения:

1Cпослед=1Cпарал+1X=1X+C+1X

Учтем, что суммарная электроемкость равна C:

1C=1X+C+1X

Преобразуем, умножим выражение на CX(X+C):

X(X+C)=CX+C(X+C)

Раскроем скобки:

X2+XC=CX+CX+C2

X2CXC2=0

Решив уравнение, получим: X = 25,9 пФ.

Разбор задач на тему «Заряженная частица в поле конденсатора»

Шарик, находящийся в масле плотностью ρ, «висит» в поле плоского конденсатора. Плотность вещества шарика ρш > ρ, его радиус r, расстояние между обкладками конденсатора d. Каков заряд шарика, если электрическое поле направлено вверх, а разность потенциалов между обкладками U? Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+FA=0

ρш > ρ, поэтому Fтяж> FA. В этом случае сила Кулона направлена вверх, а заряд шарика положительный. Схематически это можно отобразить так:

Проекция второго закона Ньютона на ось ОУ:

FK+FA=Fтяж

Сила тяжести равна произведению объема на плотность шарика и на ускорение свободного падения:

Fтяж=ρш43πr3g

Архимедова сила равна произведению объема шарика на плотность масла и на ускорение свободного падения:

FА=ρ43πr3g

Сила Кулона:

FK=qUd

qUd+ρ43πr3g=ρш43πr3g

q=(ρш43πr3gρ43πr3g)dU=4πr3gd(ρшρ)3U

Маленький шарик с зарядом q и массой m, подвешенный на невесомой нити с коэффициентом упругости k, находится между вертикальными пластинами воздушного конденсатора. Расстояние между обкладками конденсатора d. Какова разность потенциалов между обкладками конденсатора U, если удлинение нити ∆l?

Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+Fупр=0

Проекции на оси ОХ и ОУ соответственно:

FупрsinαFK=0

Fупрcosαmg=0

Отсюда:

kΔlsinα=qUd

kΔlcosα=mg

Чтобы избавиться от угла α, возведем уравнения в квадрат и сложим их:

(kΔl)2sin2α+(kΔl)2cos2α=(qUd)2+(mg)2

(kΔl)2(sin2α+cos2α)=(qUd)2+(mg)2

sin2α+cos2α=1

(kΔl)2=(qUd)2+(mg)2

U=dq(kΔl)2(mg)2

Пластины плоского конденсатора расположены горизонтально на расстоянии d друг от друга. Напряжение на пластинах конденсатора U. В пространстве между пластинами падает капля жидкости. Масса капли m, ее заряд q. Определите расстояние между пластинами. Влиянием воздуха на движение капли пренебречь. Второй закон Ньютона в векторной форме:

Fтяж+FK=0

Проекция на вертикальную ось:

FтяжFK=0

Fтяж=mg

FK=qUd

mg=qUd

d=qUmg

Между двумя параллельными горизонтально расположенными диэлектрическими пластинами создано однородное электрическое поле с напряженностью E, направленное вертикально вниз. Между пластинами помещен шарик на расстоянии d от верхней пластины и b от нижней. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Через какой промежуток времени t шарик ударится об одну из пластин, если система находится в поле силы тяжести Земли? Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Согласно условию данной задачи, сила тяжести противоположно направлена силе Кулона. Построим рисунок:

Если Fтяж > FK, то шарик движется с ускорением вниз. Ускорение и перемещение в этом случае равны:

a=mgqEm

s=b

Если Fтяж < FK, то шарик движется с ускорением верх. Ускорение и перемещение в этом случае равны:

a=qEmgm

s=d

Начальная скорость шарика равна нулю. Поэтому перемещение также равно:

s=at22

Сделаем вычисления для случая Fтяж > FK:

at22=b

mgqEmt22=b

t=2bmmgqE

Выполняя вычисления для случая Сделаем вычисления для случая Fтяж < FK, получим:

t=2bmqEmg

Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого E и направлена слева направо. Между пластинами помещен шарик на расстоянии b от левой пластины и d от правой. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Найдите смещение шарика по вертикали ∆h до удара об одну из пластин. Пластины имеют достаточно большой размер. Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Если сила Кулона направлена вправо, то sx = d.

Если сила Кулона направлена вправо, то sx = b.

Учитывая, что заряд меньше нуля, а вектор напряженности направлен вправо, делаем вывод, что кулоновская сила направлена влево.

Из проекций второго закона Ньютона выразим проекции ускорения на оси ОХ и ОУ соответственно:

ax=qEm

ay=g

Проекции перемещений на эти же оси:

sx=axt22

sx=Δh=gt22

axt22=b

Или:

qEmt22=b

Так как время движения шарика по вертикали и горизонтали одинаково:

t2=2Δhg=2mbqE

Δh=mbgqE

Задание EF17979

Введите ответ в поле ввода
Плоский конденсатор подключён к гальваническому элементу. Как изменятся при уменьшении зазора между обкладками конденсатора три величины: ёмкость конденсатора, величина заряда на его обкладках, разность потенциалов между ними?

Для каждой величины определите соответствующий характер изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит емкость конденсатора, и как она изменится при уменьшении зазора между его обкладками.

2.Определить, от чего зависит величина заряда конденсатора, и как она изменится после уменьшения зазора между его обкладками.

3.Определить, от чего зависит разность потенциалов между обкладками конденсатора, и как она изменится при уменьшении зазора.

Решение

Емкость конденсатора определяется формулой:

C=ε0εSd

Следовательно, емкость имеет обратно пропорциональную зависимость от расстояния между обкладками. Если расстояние уменьшить, то емкость увеличится.

Вот как взаимосвязана электроемкость и заряд конденсатора:

C=qU

Мы выяснили, что электроемкость увеличивается. Следовательно, увеличится и заряд, так как они имеют прямо пропорциональную зависимость.

С учетом того, что плоский конденсатор подключен к гальваническому элементу, разность потенциалов никак не зависит от расстояния между обкладками. Поэтому величина U остается неизменной.

Ответ: 113

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18574

Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.


Алгоритм решения

1.Проанализировать каждый этап эксперимента.

2.Установить, от чего зависит угол отклонения стрелки электрометра.

3.Выяснить, что поменяется при смещении одной пластины конденсатора относительно другой, и что при этом произойдет со стрелкой электрометра.

Решение

На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.

На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:

C=ε0εSd

S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.

Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.

На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:

C=qU

Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.

Ответ: Увеличатся

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18695

Ученик изучает свойства плоского конденсатора. Какую пару конденсаторов (см. рисунок) он должен выбрать, чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками?


Алгоритм решения

  1. Установить, какие величины в данном эксперименте должны быть переменными, а какие — постоянными.
  2. Найти рисунок с парой конденсаторов, удовлетворяющий требованиям, выявленным в шаге 1.

Решение

Чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками, нужно сохранить все величины постоянными, кроме самого расстояния. Поэтому площади обкладок должны быть одинаковыми, но расстояние между ними разными, как на рисунке 1.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18703

Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между пластинами (см. рисунок). Найдите минимальную скорость υ, с которой протон должен влететь в конденсатор, чтобы затем вылететь из него. Длина пластин конденсатора 5 см, расстояние между пластинами 1 см, напряжённость электрического поля конденсатора 5000 В/м. Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

Ответ записать в км/с, округлив до десятков.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Выполнить рисунок. Указать направление движения протона и силы, действующие на него.

3.Выяснить, при каком условии протон успеет вылететь из конденсатора.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса протона: m = 1,67∙10–27 кг.

 Заряд протона: q = 1,6∙10–19 Кл.

 Расстояние между обкладками конденсатора: d = 1 см.

 Длина пластин конденсатора: l = 5 см.

 Напряженность однородного поля внутри конденсатора: E = 5000 В/м.

1 см = 0,01 м

5 см = 0,05 м

Сделаем рисунок:

Изначально протон обладает только горизонтальной скоростью v, равной vx. Влетев в однородное электростатическое поле внутри конденсатора, протон обретает вертикальную компоненту скорости, которая растет за счет ускорения, придаваемого кулоновскими силами. Положительно заряженный протон притягивается нижней отрицательно зараженной пластиной конденсатора.

Чтобы протон вылетел из конденсатора, его горизонтальная компонента скорости должна быть достаточной для того, чтобы частица не притянулась к нижней пластине раньше. Время, которое понадобится протону для преодоления длины пластин конденсатора со скоростью vx:

t=lvx=lv

Протон влетел в пространство между обкладками конденсатора на одинаковом расстоянии от них. Следовательно, прежде чем он упадет на нижнюю пластину, по оси OY он переместится на расстояние, равное 0,5d. Так как начальная компонента скорости равна нулю (мы пренебрегаем силой тяжести):

0,5d=at22

Протон вылетит из конденсатора, а не упадет на его пластину, если время горизонтального перемещения до конца пластин будет как минимум равно времени падения. Выразим время падения:

t=da

Приравняем правые части уравнений времени и получим:

lv=da

Отсюда скорость равна:

v=al2d

Ускорение выразим из второго закона Ньютона:

FK=ma=qUd

a=qUmd

Но известно, что:

U=Ed

Поэтому:

a=qEdmd=qEm

Отсюда:

Минимальная скорость, с которой протон должен влететь в конденсатор, составляет 346∙103 м/с. Округлим до десятков и переведем в км/с. Получим 350 км/с.

Ответ: 350

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6k

Как найти напряжение между пластинами конденсатора

Одним из разделов физики, лежащих в основе знания, посвященного процессам, связанным с электричеством, является электростатика. Она изучает взаимодействие неподвижных электрических зарядов. Поэтому одной из типичных задач, которую может потребоваться решить школьникам и студентам младших курсов ВУЗ-ов, является нахождение напряжения между пластинами конденсатора на основании знания различных параметров.

Как найти напряжение между пластинами конденсатора

Вам понадобится

  • — знание емкости или геометрических и физических параметров конденсатора;
  • — знание энергии или заряда на конденсаторе.

Инструкция

Найдите напряжение между пластинами конденсатора, если известна текущая величина накопленной им энергии, а также его емкость. Энергия, запасенная конденсатором, может быть вычислена по формуле W=(C∙U²)/2, где C — емкость, а U — напряжение между пластинами. Таким образом, значение напряжения может быть получено как корень из удвоенного значения энергии, деленного на емкость. То есть, оно будет равно: U=√(2∙W/C).

Энергия, запасенная конденсатором, также может быть вычислена на основании значения содержащегося в нем заряда (количества электричества) и напряжения между обкладками. Формула, задающая соответствие между этими параметрами, имеет вид: W=q∙U/2 (где q — заряд). Следовательно, зная энергию и заряд конденсатора, можно вычислить напряжение между его пластинами по формуле: U=2∙W/q.

Поскольку заряд на конденсаторе пропорционален как приложенному к его пластинам напряжению, так и емкости устройства (он определяется формулой q=C∙U), то, зная заряд и емкость, можно найти и напряжение. Соответственно, для проведения расчета используйте формулу: U=q/C.

Для получения значения напряжения на конденсаторе с известными геометрическими и физическими параметрами, сначала рассчитайте его емкость. Для простого плоского конденсатора, состоящего из двух проводящих пластин, разделенных диэлектриком, расстояние между которыми пренебрежимо мало по сравнению с их размерами, емкость может быть вычислена по формуле: C=(ε∙ε0∙S)/d. Здесь d — расстояние между пластинами, а S — их площадь. Значение ε0 — электрическая постоянная (константа, равная 8,8542•10^-12 Ф/м), ε — относительная диэлектрическая проницаемость пространства между пластинами (ее можно узнать из физических справочников). Вычислив емкость, рассчитайте напряжение одним из методов, приведенных в шагах 1-3.

Обратите внимание

Для получения корректных результатов при вычислении напряжений между обкладками конденсаторов, перед проведением расчетов приводите значения всех параметров в систему СИ.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Расчёт ёмкости конденсатора

Содержание

  • 1 Конденсатор
  • 2 Емкость
  • 3 Зависимость
  • 4 Расчет
    • 4.1 Плоский конденсатор
    • 4.2 Электроемкость
    • 4.3 Сферический конденсатор
    • 4.4 Цилиндрический
  • 5 Проверка
  • 6 Заключение
  • 7 Видео по теме

Конденсаторы нашли в наше время очень широкое применение в электронике и электротехнике, ведь они являются основными элементами большинства электрических цепей и схем. Постараемся подробно в данной статье рассказать — что такое электроемкость конденсатора. Так же будут приведены применяемые формулы расчета, описаны различные виды таких устройств и рассказано об их маркировке. Кроме того будет затронуто влияние различных факторов на емкость конденсатора.

Конденсаторы

Конденсатор

Прежде чем разобраться с тем, что такое емкость простейшего конденсатора, необходимо определиться, что из себя представляет этот электроэлемент. Конденсатором является радиоэлектронная деталь, которая может накапливать и отдавать определенную порцию электрического заряда. Состоит устройство из следующих элементов:

  1. Корпуса. Зачастую выполняется из алюминия. По форме он может быть плоским, сферическим и цилиндрическим.
  2. Обкладок (2 и более). Их делают из металлических пластинок или фольги.
  3. Диэлектрической прокладки. Устанавливается между обкладками и служит в качестве изолятора.
  4. Двух или более выводных контактов для подключения устройства в электроцепь.

Устройство конденсатора

Работает такой накопитель электрического заряда следующим образом.

  1. В момент подключения элемента к источнику электрического тока, он выступает в роли проводника. В этот момент электроток имеет максимальное значение, а напряжение — минимальное.
  2. На обкладках элемента начинают скапливаться положительные и отрицательные заряды (электроны и ионы). Таким образом происходит зарядка самого устройства. На момент заряда сила электротока постепенно уменьшается, а напряжение наоборот — увеличивается.
  3. После того как количество заряда в конденсаторе станет больше допустимого предела, он разряжается и процесс опять начинает повторяться циклически.

Основой работоспособности данного устройства является его емкость. Именно от этого параметра зависит время накопления заряда и общая «вместимость» устройства. О том, как на схемах обозначается простейший конденсатор, поможет понять следующий рисунок ниже.

Обозначение конденсатора на схеме

Электрическая емкость, как и сами конденсаторы, нашли широкую область применения. Их используют в качестве:

  1. Частотных фильтров.
  2. Источника импульсов для различной фотоаппаратуры.
  3. Сглаживателей пульсирующих токов в выпрямителях.
  4. Фазосдвигающих элементов для электрических двигателей.

Применение конденсаторов в различных сферах основано именно на способности устройства накапливать электрический заряд. В более сложной электроаппаратуре эти устройства используются для бесперебойного поддержания определенного напряжения в разных накопителях данных.

Емкость

Емкостью конденсатора является физическая величина, которая определяет отношение между накопленным зарядом на обкладках и разностью потенциалов между ними.

В системе «СИ» емкость конденсатора и ее единица измерения — Фарад. В формулах для ее обозначения используется буква Ф (F). Однако емкость конденсатора редко измеряется в Фарадах, потому что это довольно большая величина. Чаще всего применяют ее кратные и дольные значения.

Кратные и дольные величины емкости

Значение электроемкости конденсатора всегда можно найти в маркировке устройства, которая нанесена на его корпус.

Маркировка конденсаторов

На схеме элемент обозначается буквой «С». Обозначение емкости является обязательным условием, ведь это позволит упростить процесс подбора необходимой электродетали для схемы.

Зависимость

Благодаря приведенному ранее описанию, мы узнали — что такое емкость. Далее попытаемся разобраться, от чего зависит эта характеристика. Емкость конденсатора зависит от расстояния между обкладками, их площади, а так же от самого материала диэлектрика. Благодаря этому можно сказать, от чего зависит емкость устройства: она прямопропорциональна площади пластины конденсатора и обратно пропорциональна расстоянию между пластинами.

Рассмотрим, как найти данную величину. Для плоского конденсатора формула расчета емкости выглядит следующим образом:

Формула плоского конденсатора

Зависимость способности устройства накапливать заряд от площади его обкладок и толщины диэлектрической прослойки так же указывает на то, что на данную величину оказывают влияние и общие размеры элемента.

Расчет

Расчет емкости конденсатора делается по довольно простой формуле:

Расчет емкости через заряд и разность потенциалов

В этой формуле:

  1. q — величина заряда, накопленного конденсатором.
  2. φ1−φ2 — разница потенциалов между его обкладками.

Данное выражение помогает довольно легко рассчитать емкость любого плоского конденсатора. Как и говорилось ранее в статье, этот величина электроёмкости конденсаторов всегда зависит от его геометрических размеров.

Плоский конденсатор

Отличительная особенность плоского конденсатора — наличие двух параллельно расположенных обкладок. Такие устройства могут иметь квадратную, круглую или прямоугольную форму.

Плоские конденсаторы

Рассмотрим далее, как определить емкость данного вида конденсаторов. Найти емкость такого типа конденсаторов всегда поможет следующая формула:

Формула емкости плоского конденсатора

Электроемкость

Зачастую применение конденсаторов подразумевает подключение в цепь сразу нескольких таких элементов. Благодаря этому можно увеличить общую емкость. Формула для определения электроемкости плоского конденсатора при параллельном подключении выглядит следующим образом:

Параллельное соединение конденсаторов

Определение общей емкости для такой электроцепи делается следующим образом: C=C1+C2

Величина заряда и напряжение для такой схемы соединения определяется следующим образом:

qобщ=q1+q2

Uобщ=U1=U2

Определить емкость конденсатора для последовательного соединения элементов позволит формула:

Последовательное соединение конденсаторов

То есть в этом случае общую электроемкость плоского конденсатора находят с помощью выражения:

1/Cобщ=1/C1+1/C1

Благодаря данным выражениям найдем общее напряжение и определим величину заряда для последовательного соединения элементов:

qобщ=q1=q2

Uобщ=U1+U2

Емкость конденсатора и применяемые формулы расчетов для различных вариантов соединения плоских устройств приведены на рисунке ниже. Можно сказать, что она очень наглядная и удобная для использования:

Особенности соединения конденсаторов

Сферический конденсатор

Сферическое устройство имеет две обкладки в форме концентрических сфер, между которыми расположен диэлектрик. Емкость сферического конденсатора можно определить следующим образом:

Емкость сферического конденсатора

В данном выражении значение «4π» определяет коэффициент рассеивания зарядов на поверхности сферических плоскостей.

Расчет емкости сферического конденсатора можно сделать по формуле для плоского устройства в том случае, если зазор по сравнению с радиусом сферы имеет довольно маленькое значение.

Цилиндрический

Цилиндрическое устройство немного схоже с ранее описанным сферическим. В них применяются схожие по форме обкладки. Они имеют так же круглую форму, а значит на расчет емкости цилиндрического устройства так же будет влиять такой параметр, как радиус обкладок. Отличием заключается только в самой вытянутой форме пластин цилиндрического конденсатора. Емкость цилиндрического конденсатора определяется по формуле:

Емкость цилиндрического конденсатора

Сферические и цилиндрические типы элементов сильно зависимы от толщины слоя диэлектрика. Чем он толще, тем меньше будет объем заряда, а значит у него повысится устойчивость к воздействию пробивного напряжения.

Проверка

Как отмечалось ранее, емкость устройства проставляется на его корпусе. Проверить паспортную величину и имеющуюся емкость устройства можно при помощи тестера с режимом «СХ». Например, для этого подойдут популярные модели M890D, AM-1083, DT9205A, UT139C, другие. Далее надо будет:

  1. Выпаять и разрядить устройство. Разрядка проводится строго изолированным металлическим предметом.
  2. Вставить ножки конденсатора в пазы «СХ», соблюдая полярность.
  3. Прибор отобразит на табло результат измерений. Его нужно будет сравнить с тем, который прописан в маркировке на его корпусе. Если значения между собой сильно отличаются, то это говорит о том, что элемент неисправный и требует замены.

Проверка кондесатора мультиметром

Если мультиметр показал наличие бесконечной емкости, то это говорит о коротком замыкании внутри корпуса устройства и оно так же признается неисправным, требующим замены. Кроме того неисправность всегда можно определить визуально по трещинам или вздутию корпуса.

Заключение

В статье было описано — что такое конденсатор, как определить его емкость, от чего зависит этот параметр и основные формулы для расчета емкости различных типов таких устройств. Устройства всегда имеют на корпусе специальную маркировку, поэтому довольно просто выбрать наиболее подходящий по значению накопитель электрозаряда. Кроме того был приведен способ проверки устройства, который позволяет определить возможные его неисправности.

Видео по теме

Плоский конденсатор

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1 .

Формула для расчета электроемкости записывается как

C = ε ε 0 S d , где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Плоский конденсатор

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется d i , вычисление диэлектрической проницаемости этого слоя ε i выполняется, исходя из формулы:

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Слободянюк А. И. Физика 10/16.1 — PhysBook Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними. Спрашивайте, я на связи!

Цепи | Электродинамика | Теория | Решутест. Продвинутый тренажёр тестов

Электроемкость плоского конденсатора. Формулы

Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы C i , где C i — это емкость конденсатора с номером i :

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 с м 2 с расстоянием между ними 1 м м . Пространство между обкладками находится в вакууме.

Чтобы рассчитать электроемкость конденсатора, применяется формула:

ε = 1 , ε 0 = 8 , 85 · 10 — 12 Ф м ; S = 1 с м 2 = 10 — 4 м 2 ; d = 1 м м = 10 — 3 м .

Найти напряженность электростатического поля у сферического конденсатора на расстоянии x = 1 с м = 10 — 2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R 1 = 1 с м = 10 — 2 м , внешнем – R 2 = 3 с м = 3 · 10 — 2 м . Значение напряжения — 10 3 В .

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

E = 1 4 π ε ε 0 q r 2 , где q обозначают заряд внутренней сферы, r = R 1 + x — расстояние от центра сферы.

Нахождение заряда предполагает применение определения емкости конденсатора С:

Для сферического конденсатора предусмотрена формула вида

C = 4 π ε ε 0 R 1 R 2 R 2 — R 1 с радиусами обкладок R 1 и R 2 .

Производим подстановку выражений для получения искомой напряженности:

E = 1 4 πεε 0 U ( x + R 1 ) 2 4 πεε 0 R 1 R 2 R 2 — R 1 = U ( x + R 1 ) 2 R 1 R 2 R 2 — R 1 .

Данные представлены в системе С И , поэтому достаточно заменить буквы числовыми выражениями:

E = 10 3 ( 1 + 1 ) 2 · 10 — 4 · 10 — 2 · 3 · 10 — 2 3 · 10 — 2 — 10 — 2 = 3 · 10 — 1 8 · 10 — 6 = 3 , 45 · 10 4 В м .

Плоский конденсатор

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи»

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи» // Фiзiка: праблемы выкладання. – 2006. – № 4. – С. 42-49.

В статье разобраны примеры задач повышенного и углубленного уровня на расчет электрических цепей постоянного тока с конденсаторами. Приводится краткий теоретический материал по данной теме.

Расчет электрических цепей, в которых конденсаторы соединены последовательно или параллельно, производится по известным формулам.

Если в цепи нет участков с последовательно или параллельно соединенными конденсаторами, но есть точки с одинаковыми потенциалами, то их можно либо соединять, либо разъединять, не меняя режима работы цепи. Цепь при этом упрощается, и мы приходим к случаю параллельно и последовательно соединенных конденсаторов.

Если в цепи нет параллельно и последовательно соединенных конденсаторов и нет точек с одинаковыми потенциалами, то для ее расчета используются следующие положения.

1. Сумма зарядов всех обкладок, соединенных с одним из полюсов источника тока, равна заряду источника (закон сохранения заряда):

2. Если пластины нескольких конденсаторов соединены в один узел, не связанный непосредственно с источником тока, то алгебраическая сумма зарядов на этих пластинах равна нулю (закон сохранения заряда):

Это соотношение справедливо и тогда, когда перед конденсаторами имеются источники ЭДС (рис. 3): .

3. Алгебраическая сумма разностей потенциалов на всех конденсаторах и источниках тока, встречающихся при обходе любого замкнутого контура, равна нулю (закон сохранения энергии):

4. Если на каком-либо из участков цепи 12 (рис. 4) имеется конденсатор и источник ЭДС, т.е. участок цепи неоднородный, то заряд конденсатора определяется ЭДС источника и разностью потенциалов на концах участка :

Этот факт обусловливает необходимость учитывать выбор знаков в каждом конкретном случае:

а) Если , т.е. разность потенциалов направлена в ту же сторону, что и ЭДС (см. рис. 4), то следует пользоваться формулой (4).

В этом случае разность потенциалов «противодействует» ЭДС. Если же при этом , то для определения заряда формулу (4) следует записать в таком виде:

Правило для определения знаков зарядов на обкладках конденсатора: поле между обкладками конденсатора направлено в ту сторону, в которую направлена сумма ЭДС и разности потенциалов .

В приведенном примере (см. рис. 4) при и поле конденсатора направлено влево (левая обкладка заряжена отрицательно, правая – положительно);

Если , то поле между обкладками конденсатора направлено в сторону меньшего потенциала, т.е. со стороны меньшего потенциала будет обкладка с отрицательным зарядом.

в) В случае, когда величина потенциалов j 1 и j 2 неизвестна, следует пользоваться одним из рассмотренных вариантов по своему усмотрению.

Как Определить Напряжение и Заряд Каждого Конденсатора Плоский конденсатор

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Практическая работа, расчет цепей постоянного тока с конденсаторами. И вот мы стали свидетелями уникального лингвистико-оптико-математического явления экспонента экспонировала-таки матрицу фотоаппарата. Спрашивайте, я на связи!

Емкость конденсаторов: определение, формулы, примеры.

Практическая работа, расчет цепей постоянного тока с конденсаторами.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Наименование работы: Расчет цепи постоянного тока с конденсаторами

Цель работы: Научиться производить расчет цепей постоянного тока содержащих конденсаторы.

Научиться пользоваться справочными данными и расчетными формулами

Решение задачи требует знания методики определения эквивалентной емкости цепи при смешанном соединении конденсаторов, а также умения вычислять величину заряда конденсатора. Перед решением задачи рассмотрите типовой пример.

hello_html_3150388e.jpg

Определяем общую емкость конденсаторов С 2 и C 3 , учитывая, что конденсаторы С 2 и С 3 соединены между собой параллельно:

После преобразования схема будет иметь вид представленный на рис. 2.

Конденсаторы C 1 и C 23 включены последовательно, поэтому:

После преобразования схема будет иметь вид представленный на рис. 3.

Конденсаторы C 123 и C 4 включены последовательно, поэтому общая (эквивалентная) емкость всей цепи:

Зная напряжение на конденсаторе C 4 можно определить величину заряда накапливаемого конденсатором:

Так как конденсаторы C 1 , C 23 и C 4 включены последовательно (см. рис.2), их заряды одинаковые, т.е. . Такой же заряд будет накапливаться всей цепью, т.е.

Зная величины зарядов конденсаторов С 1 и С 23 Q 1 и Q 23 соответственно можно определить напряжения на этих конденсаторах:

Так как конденсаторы С 2 и С 3 соединены между собой параллельно (см. рис. 1), напряжение на них одинаковое, т.е.:

Зная напряжение на конденсаторах С 2 и С 3 , можно определить величину зарядов накапливаемых конденсаторами:

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Опыты с конденсаторами: mntc — ЖЖ Итак, чтобы найти силу тока I , надо электрический заряд q , прошедший через поперечное сечение проводника за время t , разделить на это время. Спрашивайте, я на связи!

Позойский С. В, Жидкевич В. И. Избранные задачи по теме «Конденсаторные цепи»

Понравилась статья? Поделить с друзьями:
  • Как найти мочу кота
  • Как найти токи в ветвях формула
  • Как найти объемы работ строительство
  • Как найти координаты вектора зная длину вектора
  • Как составить отчет сзв тд при увольнении