Как найти напряжение на линии электропередач

Как определить напряжение ЛЭП по изоляторам

Даже не все опытные электрики внешне могут отличить опоры ВЛ, рассчитанные на разное напряжение. Но это необходимо знать и обычным людям, хотя бы для того, чтобы понимать, на каком расстоянии от ВЛ будет безопасно. Напряжение определяют по изоляторам ЛЭП, а дополнительно учитывают внешний вид самой конструкции и число проводов.

Безопасное расстояние до ЛЭП

Для обеспечения безопасности все виды ЛЭП имеют минимальные расстояния, на которые к ним можно приближаться. Их величину можно найти в Таблице 1 Приказа Минтруда России от 24.07.2013 г. № 328н. В таблице представлены минимальные расстояния для каждой категории напряжения.

Виды изоляторов ВЛ

Изолятор ВЛ – это электротехническое устройство, необходимое для крепления и изоляции проводов на опорах ВЛ (воздушной линии электропередачи). При изготовлении изоляторов используют фарфор, стекло или полимеры.

По назначению изоляторы делятся на следующие группы:

  • Линейные. Для крепления жестких или гибких токоведущих частей. Имеют развитые ребра, которые увеличивают ток утечки и напряжение пробоя.
  • Аппаратные. Используют, чтобы отделить токоведущие части от нейтральных и заземленных элементов.
  • Проходные. Применяются, чтобы провести провод или шину сквозь конструкции, например, когда нужно выполнить ввод в подстанцию. Отделяют токоведущие части от конструкций здания и прочих заземленных предметов.

Еще изоляторы классифицируют по методу крепления:

  • Изоляторы штыревые (ИШ). Используются для фиксации на траверсах опор изолированных СИП-3 и неизолированных проводов АС. Крепятся на штырях или крюках. Встречаются на опорах ВЛ до 35 кВ.
  • Подвесные изоляторы (ПС, ПСД, ПСВ). Чаще всего производятся из закаленного стекла. При креплении собираются в гирлянду.
  • Опорные изоляторы (СА, ИО, ИОР, ОНШП). Используются для закрепления токопроводящих элементов в распределительных установках и на других видах электрооборудования. Применяются на линиях 6-35 кВ. Устанавливаются на консоли или кронштейны, к которым сверху жестко крепятся провода.
  • Стержневые изоляторы (ИС, ИОС). Используются при напряжении более 1 кВ. Бывают из стекла или фарфора, имеют винтовые ребра. Устанавливаются вертикально, как и опорные, но могут воспринимать нагрузку в любой плоскости, т. е. могут быть опорой или оттяжкой.

Как узнать напряжение ЛЭП по изоляторам

В первую очередь стоит разобраться, какие изоляторы чаще всего используют при разном напряжении:

  • ВЛ до 1 кВ. Применимы только штыревые изоляторы.
  • ВЛ 6-20 кВ: на промежуточных опорах – любой из видов, на анкерных – подвесные и иногда штыревые изоляторы.
  • ВЛ 35 кВ: подвесные и стержневые, также допускаются штыревые.
  • ВЛ более 110 кВ: подвесные, стержневые и опорные.

Количество изоляторов на гирлянде ЛЭП в зависимости от напряжения:

  • 35 кВ – 3-5 шт.
  • 110 кВ – 6-7 шт.
  • 150 кВ – 8-9 шт.
  • 220 кВ – 10-14 шт.
  • 330 кВ – 14-20 шт.
  • 500 кВ – 20 шт.
  • 750 кВ – от 20 шт.

Все виды опор ВЛ, которые можно узнать по числу проводов и изоляторов:

  • 0,4 кВ. Низковольтные линии, встречающиеся в населенных пунктах. Имеют обычные штыревые изоляторы, по одному на проводе.
  • 6 и 10 кВ. Имеют 3 провода, в каждом по 2 изолятора или один, но рассчитанный на больший номинал.
  • 35 кВ. Имеют гирлянду из 3-5 подвесных изоляторов для каждого из трех фазных проводов. Такие линии обычно проходят уже за городом.
  • 110 кВ. Каждый провод монтируют на гирлянде с 6-9 изоляторами.
  • 220 кВ. Имеют 10-14 изоляторов. Обычно применяются на подводах к крупным подстанциям.
  • 330 кВ. Имеют 2 провода на одну фазу с 14-20 изоляторами в гирлянде.
  • 550 кВ. В гирлянде 20 изоляторов, а фаза делится на 3-5 проводов.
  • 750 кВ. Фаза с 4-5 проводниками, с более чем 20 изоляторами.
  • 1150 кВ. Имеет больше всего изоляторов (от 50 шт.) и проводов в фазе (8 шт.). В России такую линию можно увидеть на участке магистрали «Сибирь – Центр».

При определении напряжения ЛЭП лишь по числу изоляторов не стоит полностью полагаться на приведенные данные. Конструктивные решения могут различаться в зависимости от климатических особенностей. Для людей безопаснее просто не приближаться к опорам, поскольку даже указанные выше минимальные значения приводятся для специалистов, участвующих в обслуживании и ремонте ЛЭП.

Остались вопросы?
задайте их нашему инженеру

Узнайте, как определить напряжение ЛЭП по внешнему виду, количеству изоляторов, маркировке и другим параметрам. Общая классификация ЛЭП по напряжению.

Если вы любитель загородных прогулок и пикников, а охота и рыбалка – ваша страсть, велика вероятность, что когда-нибудь вы попадёте под опасное напряжение в зоне ЛЭП. Ведь к определённым электрическим магистралям, вообще, не стоит приближаться. Для электрика определение напряжения — задача несложная. Как же непрофессионалу узнать, какое напряжение в линии электропередач опасно для жизни и здоровья? Ниже мы расскажем читателям сайта Сам Электрик, как определить напряжение ЛЭП по внешнему виду, количеству изоляторов и другим параметрам.

Содержание:

  • Классификация ВЛ
  • Безопасные расстояния
  • Определение напряжения по внешнему виду
  • Маркировка на опорах
  • Сети железных дорог
  • Заключение

Классификация ВЛ

По напряжению ЛЭП могут быть:

  1. Низковольтными, на 0,4 киловольта, передающими электроэнергию в пределах небольших населённых пунктов.
  2. Средними, на 6 или на 10 киловольт, передающими электричество на расстояние менее 10 км.
  3. Высоковольтными, на 35 киловольт, для электроснабжения небольших городов или посёлков.
  4. Высоковольтными, на 110 киловольт, распределяющими электричество между городами.
  5. Высоковольтными, на 150 (220, 330, 500, 750) кВ, передающими энергию на дальние расстояния.

Самое высокое напряжение на ЛЭП составляет 1150 киловольт.

Безопасные расстояния

Правилами охраны труда на каждое напряжение ЛЭП определяются минимальные расстояния до проводящих ток частей. Сокращать эту дистанцию запрещено.

Определение напряжения по внешнему виду

Следующий этап — определение мощностей ВЛ.

Как же узнать напряжение на ЛЭП по её внешнему виду? Легче всего это сделать по количеству проводов и по числу изоляторов. Самый простой способ — определение по изоляторам.

Существуют ВЛ разных классов напряжения. Рассмотрим поочередно каждую.

ЛЭП на 0,4 киловольта (400 Вольт) — низковольтные, встречающиеся во всех населенных пунктах. В них всегда используются штыревые изоляторы из фарфора или стекла. Опоры изготавливают из железобетона или дерева. В однофазной линии два провода. Если фазы три, проводников будет четыре и более.

Далее идут ЛЭП на 6 и 10 киловольт. Визуально они неотличимы друг от друга. Здесь всегда по три провода. В каждом используется два штыревых фарфоровых или стеклянных изолятора или один, но большего номинала. Используются эти трассы для подведения питания к трансформаторам. Минимальное расстояние до частей, проводящих ток, здесь составляет 0,6 м.

Часто в целях экономии совмещают подвеску проводников 0,4 и 10 кВ. Охранной зоной таких трасс является расстояние 10 м.

В ЛЭП на напряжение 35 кВ, используются подвесные изоляторы в количестве от 3 до 5 штук в гирлянде к каждому из трёх фазных проводов.

Обычно такие воздушные магистрали через территорию городов не проходят. Допустимым считается расстояние – 0,6 м, а охранная зона определяется 15 метрами. Опоры должны быть железобетонными или металлическими, с разнесенными друг от друга на допустимое расстояние проводниками, несущими ток.

В ЛЭП на напряжение 110 кВ монтаж каждого из проводов осуществляется на отдельной гирлянде из 6-9 подвесных изоляторов. Минимально близким к проводникам, является расстояние в 1 метр, а охранная зона определяется 20 метрами.

Материалом для опоры служит железобетон или металл.

Если напряжение 150 кВ, применяют 8-9 подвесных изоляторов на каждую гирлянду в ЛЭП. Расстояние 1,5 м до проводников тока считается в этом случае минимальным.

Когда напряжение 220 кВ, число используемых изоляторов находится в пределах от 10 до 40 единиц. Фаза передаётся по одному проводу.

Линии используют для подведения электроэнергии к крупным подстанциям. Наименьшее расстояние приближения к проводникам составляет 2 м. Величина охранной зоны – 25 м.

В последующих классах высоковольтных ЛЭП появляется отличие по числу проводов на фазу.

Если произведен монтаж двух проводников на одну фазу, а изоляторов в гирляндах по 14, перед вами магистраль 330 кВ.

Минимальным расстоянием до токоведущих частей в ней считается 3,5 м. Необходимое увеличение охранной зоны до 30 м. Материалом для опор служит железобетон или метал.

Если фаза расщепляется на 2-3 проводника, а подвесных изоляторов в гирляндах по 20, то напряжение ВЛ составляет 500 кВ.

Охранная зона в этом случае ограничивается 30 метрами. Опасной считается дистанция менее 3,5 м до проводов.

В случае разделения фазы на 4 или 5 проводников, соединение которых кольцевое или квадратное, и присутствия в гирляндах 20 и более изоляторов, напряжение ВЛ составляет 750 кВ.

Охранная территория таких трасс — 40 м, а приближение к токопроводящим частям ближе 5 м опасно для жизни.

В России есть единственная в мире ЛЭП, напряжение которой 1150 кВ. Фазы в ней делятся на 8 проводов каждая, а в гирляндах присутствуют 50 и более изоляторов.

К этой трассе не стоит приближаться более чем на 8 метров. Увидеть такую высоковольтную линию можно, например, на участке магистрали «Сибирь – Центр».

Получить подробную информацию о любой ВЛ, её местоположении можно на интерактивной карте в сети интернет.

Маркировка на опорах

Возможно определение мощности ВЛ по маркировкам, нанесенным непосредственно на опоры. Первыми в такой записи идут заглавные буквы, означающие класс напряжения:

  • Т — 35 кВ,
  • С – 110 кВ,
  • Д – 220 кВ.

Через тире пишут номер линии. Следующая цифра – порядковый номер опоры.

Сети железных дорог

Около 7% электроэнергии, вырабатываемой на электростанциях России, передаётся по трассам ВЛ на объекты ЖД. В целом, длина железнодорожного полотна составляет 43 тысячи километров. Из них 18 тысяч км питаются постоянным током напряжением в 3 000 Вольт, а остальные 25 тысяч км работают на переменном токе напряжением в 25 000 Вольт.

Энергия электрифицированных дорог используется не только для движения поездов. Ею питают промышленные предприятия, населенные пункты, другие объекты недвижимости, расположенные вдоль железных дорог или в непосредственной близости к магистралям. По статистике, более половины электроэнергии контактной сети ЖД расходуется на электроснабжение объектов, не включенных в транспортную инфраструктуру.

Заключение

После того, как удалось выяснить, как по количеству изоляторов можно определить напряжение на ЛЭП, осталось понять, насколько можно доверять такому способу.

Климатические условия на территории России довольно разнообразны. Например, умеренно континентальный климат в Москве значительно отличается от влажных субтропиков Сочи. Поэтому, ВЛ одинакового класса напряжения, расположенные в различных климатических и природных условиях, могут отличаться друг от друга и по типу опор, и по количеству изоляторов.

В случае комплексного анализа по всем критериям, предложенным в статье, определение напряжения ЛЭП по внешним признакам будет довольно точным. А вот каким может быть напряжение в конкретной высоковольтной магистрали, со 100% точностью вам подскажут местные энергетики.

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Что такое электрическое поле
  • Шаговое напряжение и пути его преодоления

Материал взят с сайта: ​https://samelectrik.ru/​​​

  1. Расчет потери напряжения на участках линий;

Потребители
электрической энергии работают нормально,
когда на их зажимы подается то напряжение,
на которое рассчитаны данный
электродвигатель или устройство. При
передаче электроэнергии по проводам
часть напряжения теряется на сопротивление
проводов и в результате в конце линии,
т. е. у потребителя, напряжение получается
меньшим, чем в начале линии.

Понижение
напряжения у потребителя по сравнению
с нормальным сказывается на работе
токоприемника, будь то силовая или
осветительная нагрузка. Поэтому при
расчете любой линии электропередачи
отклонения напряжений не должны превышать
допустимых норм, сети, выбранные по току
нагрузки и рассчитанные на нагрев, как
правило, проверяют по потере напряжения.

Потерей
напряжения ΔU называют
разность напряжений в начале и конце
линии (участка линии). ΔU
принято определять в относительных
единицах — по отношению к номинальному
напряжению. Аналитически потеря
напряжения определена формулой:

где

P
— активная мощность, кВт, Q — реактивная
мощность, квар, ro — активное сопротивление
линии, Ом/км, xo — индуктивное сопротивление
линии, Ом/км, l — длина линии, км, Uном —
номинальное напряжение, кВ.

Значения
активного и индуктивного сопротивлений
(Ом/км) для воздушных линий, выполненных
проводом марки А-16 А-120 даны в справочных
таблицах. Активное сопротивление 1 км
алюминиевых (марки А) и сталеалюминевых
(марки АС) проводников можно определить
также по формуле:

где
F — поперечное сечение алюминиевого
провода или сечение алюминиевой части
провода АС, мм2 (проводимость
стальной части провода АС не учитывают).

Согласно
ПУЭ («Правилам устройства электроустановок»),
для силовых сетей отклонение напряжения
от нормального должно составлять не
более ± 5 %, для сетей электрического
освещения промышленных предприятий и
общественных зданий — от +5 до — 2,5%, для
сетей электрического освещения жилых
зданий и наружного освещения ±5%. При
расчете сетей исходят из допустимой
потери напряжений.

Учитывая
опыт проектирования и эксплуатации
электрических сетей, принимают следующие
допустимые величины потери напряжений:
для низкого напряжения — от шин
трансформаторного помещения до наиболее
удаленного потребителя — 6%, причем эта
потеря распределяется примерно следующим
образом: от станции или понизительной
трансформаторной подстанции и до ввода
в помещение в зависимости от плотности
нагрузки — от 3,5 до 5 %, от ввода до наиболее
удаленного потребителя — от 1 до 2,5%, для
сетей высокого напряжения при нормальном
режиме работы в кабельных сетях — 6%, в
воздушных— 8%, при аварийном режиме сети
в кабельных сетях – 10 % и в воздушных—
12 %.

Считают,
что трехфазные трехпроводные линии
напряжением 6—10 кВ работают с равномерной
нагрузкой, т. е что каждая из фаз такой
линии нагружена равномерно. В сетях
низкого напряжения из-за осветительной
нагрузки добиться равномерного ее
распределения между фазами бывает
трудно, поэтому там чаще всего применяют
4-проводную систему трехфазного тока
380/220 В. При данной системе электродвигатели
присоединяют к линейным проводам, а
освещение распределяется между линейными
и нулевым проводами. Таким путем
уравнивают нагрузку на все три фазы.

При
расчете можно пользоваться как заданными
мощностями, так и величинами токов,
которые соответствуют этим мощностям.
В линиях, которые имеют протяженность
в несколько километров, что, в частности,
относится к линиям напряжением 6—10 кВ,
приходится учитывать влияние индуктивного
сопротивления провода на потерю
напряжения в линии.

Для
подсчетов индуктивное сопротивление
медных и алюминиевых проводов можно
принять равным 0,32—0,44 Ом/км, причем
меньшее значение следует брать при
малых расстояниях между проводами
(500—600 мм) и сечениях провода выше 95 мм2,
а большее — при расстояниях 1000 мм и выше
и сечениях 10—25 мм2.

Потеря
напряжения в каждом проводе трехфазной
линии с учетом индуктивного сопротивления
проводов подсчитывается по формуле

где
первый член в правой части представляет
собой активную, а второй — реактивную
составляющую потери напряжения.

Порядок
расчета линии электропередачи на потерю
напряжения с проводами из цветных
металлов с учетом индуктивного
сопротивления проводов следующий:

1.
Задаемся средним значением индуктивного
сопротивления для алюминиевого или
сталеалюминевого провода в 0,35 Ом/км.

2.
Рассчитываем активную и реактивную
нагрузки P, Q.

3.
Подсчитываем реактивную (индуктивную)
потерю напряжения

4.
Допустимая активная потеря напряжения
определяется как разность между заданной
потерей линейного напряжения и реактивной:

5.
Определяем сечение провода s, мм2

где γ —
величина, обратная удельному сопротивлению
( γ
= 1/ro —
удельная проводимость).

6.
Подбираем ближайшее стандартное значение
s и находим для него по справочной таблице
активное и индуктивное сопротивления
на 1 км линии ( ro, хо).

7.
Подсчитываем уточненную величину потери
напряжения по
формуле.

Полученная
величина не должна быть больше допустимой
потери напряжения. Если же она оказалась
больше допустимой, то придется взять
провод большего (следующего) сечения и
произвести расчет повторно.

Для
линий постоянного тока индуктивное
сопротивление отсутствует и общие
формулы, приведенные выше, упрощаются.

Расчет
сетей
 постоянного
тока по потерям напряжения.

Пусть
мощность P, Вт, надо передать по линии
длиной l, мм, этой мощности соответствует
ток

где
U — номинальное напряжение, В.

Сопротивление
провода линии в оба конца

где
р — удельное сопротивление провода, s
— сечение провода, мм2.

Потеря
напряжения на линии

Последнее
выражение дает возможность произвести
проверочный расчет потери напряжения
в уже существующей линии, когда известна
ее нагрузка, или выбрать сечение провода
по заданной нагрузке

Расчет
сетей однофазного переменного тока по
потерям напряжения.

Если
нагрузка чисто активная (освещение,
нагревательные приборы и т. п.), то расчет
ничем не отличается от приведенного
расчета линии постоянного тока. Если
же нагрузка смешанная, т. е. коэффициент
мощности отличается от единицы, то
расчетные формулы принимают вид:

потери
напряжения в линии

а
необходимое сечение провода линии

Для
распределительной сети 0,4 кВ, питающей
технологические линии и другие
электроприемники лесопромышленных или
деревообрабатывающих предприятий,
составляют ее расчетную схему и расчет
потери напряжения ведут по отдельным
участкам. Для удобства расчетов в таких
случаях пользуются специальными
таблицами. Приведем пример такой таблицы,
где приведены потери напряжения в
трехфазной ВЛ с алюминиевыми проводами
напряжением 0,4 кВ.

Потери
напряжения определены следующей
формулой:

где ΔU—потеря
напряжения, В, ΔUтабл —
значение относительных потерь, % на 1
кВт•км, Ма —
произведение передаваемой мощности Р
(кВт) на длину линии, кВт•км.

Автор статьи

Демьян Бондарь

Эксперт по предмету «Электроника, электротехника, радиотехника»

преподавательский стаж — 5 лет

Задать вопрос автору статьи

Воздушные линии электропередач

Определение 1

Воздушная линия электропередач – это устройство, которое предназначено для распределения или передачи электроэнергии по проводам, находящимся на открытом воздухе и прикрепленными к опорам и прочим сооружениям.

В состав воздушной линии могут входить (в зависимости от условий эксплуатации):

  • Элементы маркировки.
  • Провода.
  • Вспомогательное оборудование.
  • Траверсы.
  • Изоляторы.
  • Секционирующее оборудование.
  • Арматура.
  • Заземление.
  • Разрядники.
  • Грозозащитные тросы.
  • Опоры.

Воздушные линии электропередач классифицируются по следующим признакам:

  1. Род тока. Согласно данному признаку воздушные линии электропередач делятся на линии переменного и постоянного тока.
  2. Назначение. Согласно данному признаку воздушные линии электропередач делятся на дальние межсистемные, магистральные, распределительные, а также линии напряжением 35 киловольт и линии напряжением ниже 20 киловольт.
  3. Напряжение. Согласно данному признаку воздушные линии электропередач делятся на линии напряжением до и более 1000 вольт.
  4. Режим работы нейтралей в электрических установках. Согласно данному признаку воздушные линии электропередач делятся на трехфазные сети с незаземленными, компенсированными или эффективно-заземленными нейтралями, а также с глухозаземленной нейтралью.
  5. Режим работы в зависимости от механического состояния. Согласно данному признаку воздушные линии электропередач делятся на линии монтажного, аварийного или нормального режима работы.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Электрический расчет воздушной линии электропередач

Определение 2

Электрический расчет воздушной линии электропередач – это расчет, позволяющий определить потери напряжения и мощности на всем протяжении линии.

При электрическом расчете воздушной линии электропередач определяются: допустимое сечение по механической прочности, допустимое сечение по нагреву, допустимое сечение по потерям напряжения, допустимое сечение по экономической плотности тока, допустимое сечение по термической прочности к токам. Выбор сечения жил кабелей осуществляется по нагреву, и начинается он с определения расчетного тока по следующей формуле:

$Ip = Sp / (√3*Uн*cosф)$

где Sp — мощность максимального приемника; Uн — номинальное напряжение

После этого по значению расчетного тока выбирается марка провода, которая удовлетворяет полученному результату. Теперь необходимо проверить сечение провода, которое было выбрано по нагреву, по экономической плотности электрического тока по следующей формуле:

«Электрический расчет воздушной линии» 👇

$Sэк = Ip/j$

где j — экономическая плотность тока.

Полученное значение сечения провода по экономической плотности тока должно удовлетворять условиям.

Выбор сечений жил проводов и кабелей по потере напряжения нужен для проверки обеспечения стабильности у приемников электроэнергии, поддержание необходимых уровней напряжений играет важную роль для нормального функционирования электрического оборудования, потому что отклонения напряжения в любую сторону может стать причиной существенного ущерба. Выбранное ранее сечение жил проверяется с учетом отклонений напряжения между электроприемником и источником тока по формуле:

$S = (√3*Ip*L*cosф) / (y*u)$

где L — длина воздушной линии электропередач; cosф — коэффициент мощности приемника электрической энергии; у — удельная проводимость проводника; u — максимально допустимое значение потери напряжения.

После этого выбранное сечение жил проверяется на термическую стойкость к току короткого замыкания:

$Sтс = a*Iуст*√tп$

где а — расчетный коэффициент, который определяется ограничением максимальной допустимой температуры нагрева, а также материалом жил (для меди а=7, для алюминия а=12); Iуст — установившийся ток короткого замыкания; tп — приведенное время протекания короткого замыкания.

Затем выбранные провода проверяются на механическую прочность по нормативным данным. Теперь необходимо рассчитать шинопровод динамическую стойкость шин, термическую стойкость и разрушающую стойкость изоляторов. Сечение шин должно выбираться в зависимости от расчетной нагрузки всех потребителей электроэнергии, которые запитаны от него с запасом по мощности в соответствии с правилами устройства электрических установок. Номинальный ток шинопровода рассчитывается по следующей формуле:

$Iв = (Рi*a*b*d) / (√3*Ue*cosф)$

где Pi — установленная мощность; а — коэффициент разновременности; b — коэффициент использования; d — коэффициент питания; Uе — номинальное напряжение; cosф — коэффициент мощности.

В некоторых случаях выбор шинопровода осуществляется более простым способом — по данным, которые предоставляются изготовителем. В данном случае определяющими параметрами не являются поправочные коэффициенты и выбор изоляционных материалов.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Большинство обывателей никогда не задумывается об окружающих их линиях электропередач. Чаще всего  такое отношение обуславливается отсутствием практического использования этого знания в быту, однако в некоторых ситуациях такая осведомленность может обезопасить от поражения электрическим током и даже спасти жизнь. Поэтому далее мы рассмотрим,  как определить напряжение ЛЭП посредством доступных вам факторов.

Классификация ВЛ

Специалисты в области электротехники прекрасно ориентируются не только в обслуживаемых электроустановках, но и в мерах безопасности, которые необходимо соблюдать при выполнении работ и нахождении в непосредственной близи от трасы ВЛ. Однако если вам чужды понятия электробезопасности в части эксплуатации электроустановок, то все попытки порыбачить под опорами ВЛ или произвести какие-либо погрузочно-разгрузочные работы в охранной зоне могут закончиться плачевно.

Именно для предотвращения поражения электрическим током все ваши действия должны производиться в безопасной зоне. Чтобы определить это пространство или зону ЛЭП, вы должны иметь хотя бы элементарные представления о существующих разновидностях.

Все ЛЭП можно разделить по нескольким категориям в зависимости от величины номинального напряжения:

  • Низковольтные – это ЛЭП, используемые для питания напряжение до 1 кВ, чаще всего на 0,23 и 0,4 кВ;
  • Среднего напряжения – номиналом в 6 и 10 кВ, как правило, применяются в распределительных сетях для питания объектов на расстоянии до 10 км, на 35 кВ для питания поселков, передачи электроэнергии между ними;
  • Высоковольтные – это ЛЭП электрических сетей между городами, подстанциями на 110, 154, 220 кВ;
  • Сверхвысокие – в них напряжение передается на большие расстояния с номиналом 330 и 500 кВ;
  • Ультравысокие – используются для питания от электростанции до распределительных узлов, передают напряжение номиналом в 750 или 1150 кВ.

В целях безопасности для каждого из типа линий предусмотрено расстояние вдоль воздушных ЛЭП, как на постоянной основе, так и при выполнении каких-либо работ. Эти величины регламентированы п.1.3.3 «Правил Охраны Труда При Работе В Электроустановках«, которые приведены в таблице ниже:

Таблица: допустимые расстояния до токоведущих частей, находящихся под напряжением

Таблица допустимые расстояния до токоведущих частей

Виктор Коротун / Заметки Электрика

Соблюдение вышеперечисленных минимальных расстояний обязательно, так как их несоблюдение приведет к пробою воздушного промежутка . Также существует охранная зона высоковольтных ЛЭП, в которой запрещается строительство домов, размещение технических средств и постоянное нахождение человека.

Определение напряжения ЛЭП

Разумеется, что кабельные линии электропередач в большинстве своем скрыты, да и находящиеся на открытом воздухе далеко не всегда можно различить визуально.

А вот воздушные линии можно определить по:

  • Типу применяемых в ЛЭП опор;
  • Внешнему виду и числу изоляторов;
  • Проводам;
  • Размеру охранной зоны;
  • Буквенной маркировке на опорах (Т – 35кВ, С – 110кВ, Д – 220кВ).

Буквенная маркировка на опоре

Буквенная маркировка на опоре

Поэтому далее рассмотрим систему определения величины напряжения ЛЭП по основным визуальным критериям.

По количеству проводов

В зависимости от числа проводов все ЛЭП подразделяются таким образом:

  • На напряжение 0,23 и 0,4кВ число проводов будет составлять 2 и 4 соответственно, в некоторых случаях присутствует еще один провод заземления;
  • Для напряжения ВЛ 6 – 10кВ используются 3 провода;
  • В линиях от 35 до 220кВ один провод для каждой фазы, помимо них могут монтироваться провода грозозащиты. Нередко на опорах ЛЭП устанавливаются сразу две линии то есть 6 проводов.
  • При напряжении 330кВ и выше фаза выполняется не одним, а несколькими проводами, уже применяется расщепление фазных проводов для минимизации потерь.

По внешнему виду опор

Помимо этого, многое можно сказать о напряжении в ЛЭП по виду установленных опор. Как указано в таблице выше, каждый номинал напряжения имеет допустимое  минимальное безопасное расстояние. Поэтому, чем он больше, тем выше располагаются провода. Соответственно, габариты и конструкция опоры должна обеспечивать допустимые расстояния в стреле провеса.

Сегодня опоры подразделяются по материалу, из которого они изготовлены:

  • деревянные;
  • металлические;
  • железобетонные.

По конструктивному исполнению встречаются:

  • стойки;
  • мачтовые;
  • портальные.

Внешнему виду и числу изоляторов

Чем выше напряжение в ЛЭП, тем большей электрической прочностью должны обладать изоляторы. Соответственно сопротивление электрическому току повышается за счет увеличения длины пути тока утечки, чем выше напряжение, тем больше сам изолятор, тем больше ребер расположено на рубашке, помимо этого ребра могут усиливаться несколькими кольцами. Еще одним приемом для повышения диэлектрической устойчивости ЛЭП по отношению к опоре является сборка из нескольких последовательно включенных изоляторов – гирлянда ВЛ.

Чем больше гирлянды изоляторов, тем выше разность потенциалов они могут выдержать, однако не стоит путать с параллельно собранными изоляторами, они предназначены для повышения надежности в местах прохода ЛЭП над дорогами, другими линиями, коммуникациями и сооружениями.

Фото примеры внешнего вида

Чтобы сопоставить изложенную выше информацию с ее практической реализацией следует разобрать особенности каждого класса напряжения. Для лучшего понимания, как неискушенному обывателю с первого взгляда определить величину напряжения в ЛЭП, рассмотрим наиболее распространенные примеры.

ВЛ-0.4 кВ

Это линии минимального напряжения, передающие питание к бытовым нагрузкам, опоры выполнены железобетонными или деревянными конструкциями. Изоляторы, как правило, штыревые из фарфора или стекла по одному на каждой консоли, число проводов 2 или 4, размеры охранной зоны составляют 10м.

ВЛ-0,4кВ

ВЛ-0,4кВ

ВЛ-10 кВ

Эти линии не сильно отличаются от низкого напряжения, как правило, имеют 3 провода, также располагаются на железобетонных стойках, значительно реже на деревянных. Охранная зона для ЛЭП 6, 10кВ составляет также 10м, изоляторы немного больше, имеют более ярко выраженную юбку и ребра.

ВЛ-10кВ

ВЛ-10кВ

ВЛ-35 кВ

Линии переменного тока на 35кВ устанавливаются на металлические или железобетонные конструкции, оснащаются крупными изоляторами штыревого или подвесного типа (гирлянда от 3 до 5 штук). Могут иметь разделение на несколько линий – три или шесть проводов на опоре, охранная зона составляет 15м.

ВЛ-35кВ

ВЛ-35кВ

ВЛ-110 кВ

Конструкция опоры для ЛЭП 110кВ идентична предыдущей, но для подвешивания проводов применяется гирлянда из 6 – 9 изоляторов. Охранная зона составляет 20м.

ВЛ-110кВ

ВЛ-110кВ

ВЛ-220 кВ

Для каждой фазы ЛЭП выделяется только один провод, но он значительно толще, чем при напряжении 110кВ, допустимое приближение не менее 25м. В гирлянде чаще всего 10 или 14 изоляторов, но в некоторых ситуациях встречаются конструкции из двух гирлянд по 20 единиц.

ВЛ-220кВ

ВЛ-220кВ

ВЛ-330 кВ

ЛЭП с напряжением 330кВ для передачи допустимой мощности уже используют расщепление, поэтому в каждой фазе присутствует два провода. В гирлянде от 16 до 20 изоляторов, охранная зона составляет 30м.

ВЛ-330кВ

ВЛ-330кВ

ВЛ-500 кВ

Такие ЛЭП сверхвысокого напряжения имеют расщепление на 3 провода для каждой фазы, в гирляндах устанавливается более 20 единиц. Охранная зона также 30м.

ВЛ-500кВ

ВЛ-500кВ

ВЛ-750 кВ

Здесь применяются исключительно металлические опоры, в каждой фазе используется от 4 до 5 расщепленных жил в форме квадрата или пятиугольника. Изоляторов также более 20, а допустимое приближение ограничено территорией в 40 м.

ВЛ-750кВ

ВЛ-750кВ

ВЛ-1150 кВ

Такая ЛЭП редко встречается, но в ее фазах расщепление состоит из 8 жил, расположенных по кругу. Гирлянды содержат около 50 изоляторов, а охранная зона составляет 55 м.

ВЛ-1150кВ

ВЛ-1150кВ

Видео по теме

Список использованной литературы

  • Бургсдорф В.В. «Линии электропередачи 345 кВ и выше» 1980
  • Александров Г.Н., Ершевич В.В., Крылов С.В. «Проектирование линий электропередачи сверхвысокого напряжения» 1983
  • Дьяков А.Ф. «Электрические сети сверх — и ультравысокого напряжения ЕЭС России. Теоретические и практические основы.» 2012
  • Магидин Ф.А., Берковский А.Г. «Устройство и монтаж воздушных линий электропередачи.» 1971
  • Крюков К.П., Новгородцев Б. П. «Конструкции и механический расчет линий электропередачи» 1979

Понравилась статья? Поделить с друзьями:
  • Как найти среднее значение углового ускорения
  • Как найти неопределенную форму существительного
  • Как найти объем пирамиды через координаты
  • Как найти пароли по номеру телефона
  • Как найти массу вещества в растворе формула