Как найти напряжение при эквивалентном сопротивлении

Сопротивления
в электрических цепях могут быть
соединены последовательно, параллельно,
по смешанной схеме и по схемам «звезда»,
«треугольник». Расчет сложной схемы
упрощается, если сопротивления в этой
схеме заменяются одним эквивалентным
сопротивлением Rэкв,
и вся схема представляется в виде схемы
на рис. 1.3, где R=Rэкв,
а расчет токов и напряжений производится
с помощью законов Ома и Кирхгофа.

Электрическая
цепь с последовательным соединением
элементов


Рис.
1.4


Рис.
1.5

Последовательным
называют такое соединение элементов
цепи, при котором во всех включенных в
цепь элементах возникает один и тот же
ток I (рис. 1.4).

На
основании второго закона Кирхгофа (1.5)
общее напряжение U всей цепи равно сумме
напряжений на отдельных участках:

U
= U1
+ U2
+ U3 или
IRэкв
= IR1
+ IR2
+ IR3,

откуда
следует

(1.5)

Rэкв
= R1
+ R2
+ R3.

Таким
образом, при последовательном соединении
элементов цепи общее эквивалентное
сопротивление цепи равно арифметической
сумме сопротивлений отдельных участков.
Следовательно, цепь с любым числом
последовательно включенных сопротивлений
можно заменить простой цепью с одним
эквивалентным сопротивлением Rэкв
(рис. 1.5). После этого расчет цепи
сводится к определению тока I всей цепи
по закону Ома

,

и
по вышеприведенным формулам рассчитывают
падение напряжений U1,
U2,
U3
на соответствующих участках электрической
цепи (рис. 1.4).

Недостаток
последовательного включения элементов
заключается в том, что при выходе из
строя хотя бы одного элемента, прекращается
работа всех остальных элементов цепи.

Электрическая
цепь с параллельным соединением элементов

Параллельным
называют такое соединение, при котором
все включенные в цепь потребители
электрической энергии, находятся под
одним и тем же напряжением (рис. 1.6).

Рис.
1.6

В
этом случае они присоединены к двум
узлам цепи а и b, и на основании первого
закона Кирхгофа (1.3) можно записать, что
общий ток I всей цепи равен алгебраической
сумме токов отдельных ветвей:

I
= I1
+ I2
+ I3,
т.е.
,

откуда
следует, что

(1.6)

.

В
том случае, когда параллельно включены
два сопротивления R1
и R2,
они заменяются одним эквивалентным
сопротивлением

(1.7)

.

Из
соотношения (1.6), следует, что эквивалентная
проводимость цепи равна арифметической
сумме проводимостей отдельных ветвей:

gэкв
= g1
+ g2
+ g3.

По
мере роста числа параллельно включенных
потребителей проводимость цепи gэкв
возрастает, и наоборот, общее сопротивление
Rэкв
уменьшается.

Напряжения
в электрической цепи с параллельно
соединенными сопротивлениями (рис. 1.6)

U
= IRэкв
= I1R1
= I2R2 =
I3R3.

Отсюда
следует, что

,

т.е.
ток в цепи распределяется между
параллельными ветвями обратно
пропорционально их сопротивлениям.

По
параллельно включенной схеме работают
в номинальном режиме потребители любой
мощности, рассчитанные на одно и то же
напряжение. Причем включение или
отключение одного или нескольких
потребителей не отражается на работе
остальных. Поэтому эта схема является
основной схемой подключения потребителей
к источнику электрической энергии.

Электрическая
цепь со смешанным соединением элементов

Смешанным
называется такое соединение, при котором
в цепи имеются группы параллельно и
последовательно включенных сопротивлений.

Рис.
1.7

Для
цепи, представленной на рис. 1.7, расчет
эквивалентного сопротивления начинается
с конца схемы. Для упрощения расчетов
примем, что все сопротивления в этой
схеме являются одинаковыми: R1=R2=R3=R4=R5=R.
Сопротивления R4
и R5
включены параллельно, тогда сопротивление
участка цепи cd равно:

.

В
этом случае исходную схему (рис. 1.7)
можно представить в следующем виде
(рис. 1.8):

Рис.
1.8

На
схеме (рис. 1.8) сопротивление R3
и Rcd
соединены последовательно, и тогда
сопротивление участка цепи ad равно:

.

Тогда
схему (рис. 1.8) можно представить в
сокращенном варианте (рис. 1.9):

Рис.
1.9

На
схеме (рис. 1.9) сопротивление R2
и Rad
соединены параллельно, тогда сопротивление
участка цепи аb равно

.

Схему
(рис. 1.9) можно представить в упрощенном
варианте (рис. 1.10), где сопротивления
R1
и Rab
включены последовательно.

Тогда
эквивалентное сопротивление исходной
схемы (рис. 1.7) будет равно:

.


Рис.
1.10


Рис.
1.11

В
результате преобразований исходная
схема (рис. 1.7) представлена в виде
схемы (рис. 1.11) с одним сопротивлением
Rэкв.
Расчет токов и напряжений для всех
элементов схемы можно произвести по
законам Ома и Кирхгофа.

Соединение
элементов электрической цепи по схемам
«звезда» и «треугольник»

В
электротехнических и электронных
устройствах элементы цепи соединяются
по мостовой схеме (рис. 1.12). Сопротивления
R12,
R13,
R24,
R34
включены в плечи моста, в диагональ 1–4
включен источник питания с ЭДС Е, другая
диагональ 3–4 называется измерительной
диагональю моста.


Рис.
1.12


Рис.
1.13

В
мостовой схеме сопротивления R13,
R12,
R23
и R24,
R34,
R23
соединены по схеме «треугольник».
Эквивалентное сопротивление этой схемы
можно определить только после замены
одного из треугольников, например
треугольника R24
R34
R23
звездой R2
R3
R4
(рис. 1.13). Такая замена будет
эквивалентной, если она не вызовет
изменения токов всех остальных элементов
цепи. Для этого величины сопротивлений
звезды должны рассчитываться по следующим
соотношениям:

(1.8)

;

;

.

Для
замены схемы «звезда» эквивалентным
треугольником необходимо рассчитать
сопротивления треугольника:

(1.9)

;

;

.

После
проведенных преобразований (рис. 1.13)
можно определить величину эквивалентного
сопротивления мостовой схемы (рис. 1.12)

.

Содержание:

Преобразование схем электрических цепей:

При расчете электрических цепей часто возникает целесообразность преобразования схем этих цепей в более простые и удобные для расчета. Так, при одном или нескольких источниках электрической энергии в ряде случаев удается преобразовать электрическую схему в одноконтурную или в схему с двумя узлами, что весьма упрощает последующий расчет.

Описываемые ниже приемы преобразования схем электрических цепей применимы для цепей постоянного и переменного тока-, ради общности изложения они приводятся в комплексной записи.

Одним из основных видов преобразования электрических схем, часто применяемых на практике, является преобразование схемы со смешанным соединением элементов. Смешанное соединение элементов представляет собой сочетание более простых соединений — последовательного и параллельного, рассмотрению которых и посвящен данный параграф.

Последовательное соединение

На рис. 4-1 изображена ветвь электрической цепи, в которой последовательно включены комплексные сопротивленияПреобразование схем электрических цепей

Напряжения на отдельных участках цепи обозначены через Преобразование схем электрических цепей

По второму закону Кирхгофа

Преобразование схем электрических цепей

или, что то же,

Преобразование схем электрических цепей

Сумма комплексных сопротивлений всех последовательно соединенных участков цепи

Преобразование схем электрических цепей

называется эквивалентным комплексным сопротивлением.

Преобразование схем электрических цепей
Если мнимые части комплексов Преобразование схем электрических цепей

представляют собой сопротивления одинакового характера— индуктивного или емкостного (рис. 4-2), то эквивалентное комплексное сопротивление Z находится в результате

Преобразование схем электрических цепей

арифметического сложения в отдельности сопротивленийПреобразование схем электрических цепей индуктивностей Преобразование схем электрических цепей или величин Преобразование схем электрических цепейобратных емкостям:

Преобразование схем электрических цепей

или

Преобразование схем электрических цепей

где
Преобразование схем электрических цепей
Ток в цепи равен:

Преобразование схем электрических цепей
Напряжения на участках цепи, соединенных последовательно, относятся как комплексные сопротивления этих участков: напряжение на k-м участке равно произведению суммарного напряжения Преобразование схем электрических цепей на отношение комплексного сопротивления Преобразование схем электрических цепей участка к эквивалентному комплексному сопротивлению цепи:

Преобразование схем электрических цепей
Приведенные выше формулы справедливы при любых значенияхПреобразование схем электрических цепей

Параллельное соединение

На рис. 4-3 изображена схема электрической цепи с двумя узлами. Между этими узлами параллельно соединены ветви с комплексными проводимостями Преобразование схем электрических цепейПреобразование схем электрических цепей Напряжение на всех ветвях одинаковое, равное Преобразование схем электрических цепей

Преобразование схем электрических цепей
Токи в ветвях обозначены черезПреобразование схем электрических цепей

По первому закону Кирхгофа

Преобразование схем электрических цепей

или, что то же,

Преобразование схем электрических цепей

Сумма комплексных проводимостей всех ветвей, соединенных параллельно,

Преобразование схем электрических цепей

называется эквивалентной комплексной проводимостью.

Если мнимые части комплексов Преобразование схем электрических цепей представляют собой проводимости одинакового характера — емкостного или индуктивного (рис. 4-4), то эквивалентная

Преобразование схем электрических цепей
комплексная проводимость Y находится в результате арифметического сложения отдельных активных проводимостей Преобразование схем электрических цепей, емкостей Преобразование схем электрических цепей или величин Преобразование схем электрических цепей обратных индуктивностям:

Преобразование схем электрических цепей

или

Преобразование схем электрических цепей

где

Преобразование схем электрических цепей

Суммарный ток в цепи равен:

Преобразование схем электрических цепей

Токи в ветвях относятся, как их комплексные проводимости: ток в Преобразование схем электрических цепей ветви равен произведению суммарного тока всех ветвей на отношение комплексной проводимости Преобразование схем электрических цепейветви к эквивалентной комплексной проводимости:

Преобразование схем электрических цепей
Данным выражением особенно удобно пользоваться при n > 2. При этом значения Преобразование схем электрических цепей могут быть любыми.

В случае параллельного соединения двух ветвей (n = 2) обычно пользуются выражениями, в которые входят сопротивленияПреобразование схем электрических цепей ветвей; эквивалентное комплексное сопротивление равно: v 1    1    Z,Z2

Преобразование схем электрических цепей
Токи в параллельных ветвях:

Преобразование схем электрических цепей
t. e. ток одной из двух параллельных ветвей равен суммарному току, умноженному на сопротивление другой ветви и деленному на сумму сопротивлений обеих ветвей.
 

Смешанное соединение

Электрические схемы, имеющие смешанное соединение, могут быть преобразованы в более простую электрическую схему путем замены параллельных ветвей одной ветвью и соответственно последовательно соединенных участков цепи — одним участком.

Преобразование схем электрических цепей

На рис. 4-5 показан пример электрической цепи со смешанным соединением. Эта схема легко приводится к одноконтурной. Первоначально вычисляется эквивалентная комплексная проводимость параллельных ветвей; затем находится величина, обратная проводимости, т. е. общее комплексное сопротивление параллельных ветвей; найденное комплексное сопротивление суммируется с комплексным сопротивлением последовательно включенного участка. Полученное суммарное

комплексное сопротивление эквивалентно сопротивлению исходной цепи со смешанным соединением.

Расчетные выражения для рассматриваемого случая будут следующие:

Преобразование схем электрических цепей

Суммарное комплексное сопротивление всей цепи равно:

Преобразование схем электрических цепей

а суммарный ток
Преобразование схем электрических цепей
Токи в ветвях относятся, как комплексные проводимости ветвей:

Преобразование схем электрических цепей

Таким юбразом, многоконтурная электрическая схема со смешанным соединением приводится к одноконтурной,
Преобразование схем электрических цепей
имеющей суммарное комплексное сопротивление Z или соответственно суммарную комплексную проводимость Y. Распределение токов и напряжений в смешанной цепи подчиняется правилам, указанным в предыдущем параграфе.

Описанный выше порядок преобразования схемы и нахождения распределения токов принципиально применим и для так называемой цепной схемы, показанной на рис. 4-6. Просуммировав комплексные сопротивления Преобразование схем электрических цепей в последней ветви, найдем комплексную проводимость ветви, которую алгебраически сложим с Преобразование схем электрических цепей и получим суммарную комплексную проводимость двух последних ветвей; вычислив обратную величину, т. е. комплексное сопротивление, прибавим к ней Преобразование схем электрических цепейПродолжая

таким образом дальше, получим в итоге результирующее комплексное сопротивление цепи и соответственно суммарный токПреобразование схем электрических цепей который может быть путем последовательных вычислений распределен между всеми ветвями сложной цепи.

Однако такой способ расчета цепной схемы является достаточно трудоемким и утомительным. Более целесообразно в этом случае воспользоваться другим методом, который известен под названием метода подобия или единичного тока.

Задавшись током в последней ветви, равным единице Преобразование схем электрических цепей находим напряжение на комплексном сопротивлении Преобразование схем электрических цепейравное Преобразование схем электрических цепей При этом ток Преобразование схем электрических цепей  .

Следовательно,

Преобразование схем электрических цепей

Прибавив к напряжению наПреобразование схем электрических цепей падение напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Преобразование схем электрических цепей получим напряжение наПреобразование схем электрических цепей Продолжая таким образом дальше, найдем в конечном итоге ток Преобразование схем электрических цепейи напряжение Преобразование схем электрических цепейВвиду того что ток Преобразование схем электрических цепей был произвольно выбран равным единице, полученное напряжение не будет равно заданному напряжению Преобразование схем электрических цепей на выводах цепи. Для нахождения действительного распределения токов в схеме необходимо все вычисленные значения токов умножить на отношение Преобразование схем электрических цепей
 

Эквивалентные участки цепи с последовательным и параллельным соединениями

Обозначим комплексное сопротивление участка цепи, состоящего из двух последовательно соединенных элементов, через Преобразование схем электрических цепей Комплексная проводимость данного участка цепи равна Преобразование схем электрических цепей причем активная и реактивная проводимости:

Преобразование схем электрических цепей

Если два элемента с проводимостями g и b, вычисленными по этим формулам, соединить параллельно, то суммарная комплексная проводимость будет равна Y и соответственно комплексное сопротивление будет равно Z,

Такие две цепи с последовательным и параллельным соединениями, имеющие одинаковые сопротивления на выводах, называются эквивалентными.

Ввиду того что реактивное сопротивление х, входящее в расчетные формулы, в общем случае зависит от частоты, условие эквивалентности этих цепей выполняется только при той частоте, для которой вычислено х.

Пусть, например, задана схема с последовательным соединением сопротивления Преобразование схем электрических цепей и индуктивности Преобразование схем электрических цепей(рис. 4-7, а). Преобразуем ее в схему с параллельным соединением элементов (рис. 4-7, б).

Активная и реактивная проводимости исходной цепи:

Преобразование схем электрических цепей

Из условия эквивалентности цепей следует, что параметры новой цепи будут:

Преобразование схем электрических цепей
Вычислив по этим формулам Преобразование схем электрических цепей получим схему цепи, эквивалентной исходной при данной частоте Преобразование схем электрических цепей При других значениях частоты Преобразование схем электрических цепейпараметры Преобразование схем электрических цепей будут иметь другие значения, следовательно эквивалентность цепей нарушится.

Преобразование схем электрических цепей

При Преобразование схем электрических цепей например, при достаточно высокой частоте:
Преобразование схем электрических цепей
Если исходной является схема рис. 4-7, б и заданными параметрами являются Преобразование схем электрических цепей то параметры эквивалентной цепи (рис. 4-7, а) определятся из выражений:

Преобразование схем электрических цепей

Из полученных выражений видно, что числовые значения Преобразование схем электрических цепейэквивалентной цепи зависят от частоты.

Условия эквивалентности для цепей с последовательным и параллельным соединением сопротивления и емкости имеют вид:
Преобразование схем электрических цепей
При достаточно высокой частоте Преобразование схем электрических цепей и тогда

Преобразование схем электрических цепей

Преобразование схем электрических цепей
 

Преобразование треугольника в эквивалентную звезду

Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи

Преобразование схем электрических цепей
сохраняются неизменными. Иначе говоря, эквивалентность треугольника и звезды понимается в том смысле, что при одинаковых напряжениях между одноименными выводами токи, входящие в одноименные выводы, одинаковы. Это равносильно тому, что мощности в этих цепях одинаковы.

На рис. 4-8 показан случай, когда преобразование треугольника в эквивалентную звезду дает возможность преобразовать многоконтурную схему в одноконтурную.

Для вывода расчетных выражений, служащих для преобразования треугольника в эквивалентную звезду, ниже приняты следующие обозначения (рис. 4-9):

Выразим токи в ветвях треугольника через приходящие токи.

Преобразование схем электрических цепей
По второму закону Кирхгофа сумма напряжений в контуре треугольника равна нулю:

Преобразование схем электрических цепей

По первому закону Кирхгофа для узлов 2 и 1

Преобразование схем электрических цепей

Решение этих уравнений относительно Преобразование схем электрических цепейДает:

Преобразование схем электрических цепей
Напряжение между выводами 1 и 2 схемы рис. 4-9, а будет:

Преобразование схем электрических цепей

a в схеме рис. 4-9, б оно равно:
Преобразование схем электрических цепей
Для эквивалентности необходимо равенство напряжений Преобразование схем электрических цепей при всяких токах Преобразование схем электрических цепей
Преобразование схем электрических цепей

Это возможно при условии:

Преобразование схем электрических цепей

Третье выражение получается в результате круговой замены индексов.

Итак, комплексное сопротивление луча звезды равно произведению комплексных сопротивлений прилегающих сторон треугольника, деленному на сумму комплексных сопротивлений трех сторон треугольника.

Выше было получено выражение для тока в стороне 1—2 треугольника в зависимости от токов Преобразование схем электрических цепей Круговой заменой индексов можно получить токи в двух других сторонах треугольника:

Преобразование схем электрических цепей
 

Преобразование звезды в эквивалентный треугольник

В расчетах также возникает необходимость замены звезды эквивалентным треугольником. На рис. 4-10 показан, например, случай, когда такая замена позволяет

Преобразование схем электрических цепей
преобразовать сложную электрическую схему в одноконтурную.

При переходе от звезды к треугольнику заданными являются сопротивления звездыПреобразование схем электрических цепей Выражения для искомых сопротивлений треугольника находятся в результате совместного решения трех уравнений (4-1).

Деление третьего уравнения на первое, а затем на второе дает:

Преобразование схем электрических цепей

Выражая отсюда Преобразование схем электрических цепей и подставляя их в первое уравнение (4-1), получим:

Преобразование схем электрических цепей

откуда

Преобразование схем электрических цепей

Аналогично круговой заменой индексов получим:

Преобразование схем электрических цепей

И

Преобразование схем электрических цепей
Отедовательно, комплексное сопротивление стороны треугольника равно сумме комплексных сопротивлений прилегающих лучей звезды и произведения их, деленного на сопротивление третьего луча.

Токи в лучах звезды легко выражаются через токи в сторонах треугольника. С учетом положительных направлений на рис. 4-9 имеем:
Преобразование схем электрических цепей
 

Эквивалентные источники э. д. с. и тока

Два разнородных источника электрической энергии — источник э. д. с. и источник тока — считаются эквивалентными,, если при замене одного источника другим токи и напряжения во внешней электрической цепи, с которой эти источники соединяются, остаются неизменными. На рис. 4-11 изображены эквивалентные источники тока, посылающие во внешнюю цепь ток Преобразование схем электрических цепейи поддерживающие на своих выводах одинаковое напряжениеПреобразование схем электрических цепей

Условием эквивалентности источников, именуемым в дальнейшем правилом об эквивалентных источниках э.д.с. и тока, служит следующее соотношение между э. д. с. Ё источника э. д. с. и токомПреобразование схем электрических цепей

источника тока:

Преобразование схем электрических цепей

где Z — внутреннее комплексное сопротивление как источника э. д. с., так и источника тока.

Действительно, напряжение Преобразование схем электрических цепей на источнике э. д. с. получается в результате вычитания из э. д. с. Преобразование схем электрических цепей падения напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Z источника (рис. 4-11, а).

Соответственно напряжение Преобразование схем электрических цепей на источнике тока при том же токе Преобразование схем электрических цепейпосылаемом во внешнюю цепь, равно падению напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Z источника (рис. 4-11,6).

В обоих случаях напряжения на выводах обоих источников одинаковы:

Преобразование схем электрических цепей
т. е. получается условие (4-3), не зависящее от тока Преобразование схем электрических цепей нагрузки.

Преобразование схем электрических цепей

При отсоединении эквивалентных источников э. д. с.

и тока от внешней цепи Преобразование схем электрических цепей напряжение на выводах обоих источников равно Ё. Именно это обстоятельство и равенство внутренних комплексных сопротивлений обоих источников и обеспечивают их эквивалентность при любом режиме работы.

Следует заметить, что мощности, расходуемые во внутренних сопротивлениях эквивалентных источников э. д. с. и тока, неодинаковы. В первом случае полная мощность, расходуемая в источнике, равнаПреобразование схем электрических цепей во втором случае

Преобразование схем электрических цепей

Например, при отсоединении источников от внешней цепи в первом случае мощность в источнике не расходуется, а во втором случае она составляет Преобразование схем электрических цепей

Поэтому эквивалентность источников следует понимать только в смысле неизменности токов, напряжений и мощностей во внешней электрической цепи, присоединенной к источникам.

Если внутреннее сопротивление источника э. д. с. равно нулю, то непосредственное применение формулы (4-3) для нахождения эквивалентного источника тока по, заданной э. д. с. источника не представляется возможным. В таких случаях сопротивление внешней цепи, включенной последовательно с э. д. с., можно рассматривать в качестве внутреннего сопротивления источника, что позволит применить формулу (4-3).

В случае сложной электрической цепи замена источника э. д. с. эквивалентным источником тока или обратно может иногда упростить расчет.

Целесообразность такой замены проиллюстрирована, в частности, в следующем параграфе.
 

Преобразование схем с двумя узлами

Применим правило об эквивалентных источниках э. д. с. и тока к преобразованию схемы с параллельным соединением n ветвей, содержащих источники э. д. с. (рис. 4-12, а).

Преобразование схем электрических цепей
Заменяя заданные источники э. д. с. источниками тока, получаем схему рис. 4-12, б. Источники тока в совокупности образуют эквивалентный источник тока Преобразование схем электрических цепей(рис. 4-12, в), причем

Преобразование схем электрических цепей

и

Преобразование схем электрических цепей

Пользуясь этим соотношением, можно в конечном итоге перейти от схемы рис. 4-12, в к схеме рис. 4-12, s, являющейся эквивалентом исходной схемы рис. 4-21, а. Здесь
Преобразование схем электрических цепей
Таким образом, n параллельных ветвей с источниками э. д. с. между двумя узлами могут быть заменены одним источником тока (рис. 4-12, в) или источником э. д. с. (рис. 4-12, s).

Ток во внешней цепи (в ветви с сопротивлением Преобразование схем электрических цепей равен:

Преобразование схем электрических цепей
Напряжение между двумя узлами находится по формуле

Преобразование схем электрических цепей
Выведенные здесь выражения широко используются для расчета электрических цепей с двумя узлами, а также более сложных цепей, приводящихся к двум узлам.
 

Перенос источников в схеме

Расчет электрической цепи облегчается в ряде случаев в результате переноса в схеме источников э. д. с. или тока. Как это видно из уравнений Кирхгофа, токи в схеме определяются заданными величинами суммарных э. д. с. в контурах независимо от того, из каких отдельных слагающих они состоят. Поэтому изменение расположения в схеме источников э. д. с., при котором суммарные э. д. с. во всех контурах сохраняются неизменными, не влияет на токи в ветвях. Аналогично напряжения на ветвях определяются заданными суммарными токами источников тока в узлах, и поэтому изменение расположения в схеме источников тока, при котором их суммарные токи во всех узлах сохраняются неизменными, не влияет на напряжения в схеме.

Если, например, требуется исключить источник э. д. с. из какой-либо ветви, то в данную ветвь вводится компенсирующая э. д. с., причем точно такая же э. д. с. вводится одновременно во все остальные ветви, сходящиеся

Преобразование схем электрических цепей
в одном из узлов данной ветви. Компенсирующая и дополнительные э. д. с. имеют одинаковое направление по отношению к рассматриваемому узлу. В результате этого источник э. д. с. из ветви исключается и появляются источники э. д. с. в других ветвях схемы. Суммарные э. д. с. во всех контурах и соответственно токи в ветвях остаются прежними.

Итак, источник э. д. с. может быть перенесен из какой-либо ветви схемы во все другие ветви, присоединенные к узлу данной ветви, без изменения токов в схеме.

Справедливо и обратное положение: если во всех ветвях, кроме одной, сходящихся в узле, имеются одинаковые источники э. д. с. (рис. 4-13, а), направленные все к одному узлу или все от узла, то они могут быть заменены одним источником э. д. с. в ветви, в которой источник отсутствовал (рис. 4-13, б).

Это положение подтверждается тем, что суммарные э. д. с. в контурах схем на рис. 4-13, а и б одинаковы.

Имеется и другое доказательство данного положения: ввиду равенства э. д. с. всех источников вторые выводы

их могут быть объединены, как имеющие одинаковый потенциал. В результате такого объединения, показанного на рис. 4-13, а пунктиром, получается схема рис. 4-13, б.

Преобразование схем электрических цепей

В случае переноса источников тока они присоединяются к узлам схемы так, чтобы оставались неизменными их суммарные токи в узлах.

Так, например, несмотря на то, что источники тока размещены в схемах рис.

4-14, а и б различно, суммарные токи источников в узлах обеих схем одинаковы. Поэтому и напряжения между узлами не изменились.

Итак, источник тока может быть заменен источниками тока, подключенными. параллельно всем

ветвям, которые составляли контур с рассматриваемым источником.

• Перенос источников в схеме успешно сочетается на практике с различными методами преобразований и расчетов (см. пример 4-1).
Преобразование схем электрических цепей

Пример 4-1.

Вычислить ток в диагональной ветви Преобразование схем электрических цепеймостовой схемы рис. 4-15, а.

Дано:Преобразование схем электрических цепейПреобразование схем электрических цепей

Заданный источник тока может быть заменен двумя источниками, подключенными параллельно сопротивлениям Преобразование схем электрических цепей (рис. 4-15, б). Пользуясь условием эквивалентности источников э, д, с, и тока, получаем схему рис, 4-15, в с двумя узлами. По формуле (4-4) напряжение на ветви Преобразование схем электрических цепей равно Преобразование схем электрических цепей

В. Искомый ток

Преобразование схем электрических цепей

Преобразование симметричных схем

Схема электрической цепи, в которой имеется ось симметрии, называется симметричной. Например, схема рис. 4-16, а симметрична относительно вертикальной оси. В симметричных схемах легко выявляются точки или узлы с одинаковым потенциалом. В ветвях, присоединенных к таким узлам, токи равны нулю. Поэтому эти ветви

Преобразование схем электрических цепей
можно разрезать, не нарушая распределения токов и напряжений в схеме. Точки, имеющие одинаковый потенциал, могут быть объединены. Рассечение ветвей, по которым не проходит ток, и объединение точек равного потенциала упрощают схему и облегчают расчет.

Так, в симметричной схеме рис. 4-16, б токи в соединениях, пересекающих ось симметрии, отсутствуют. Разрезав схему по оси симметрии, получим с обеих сторон одноконтурную схему рис. 4-16, в, которая легко рассчитывается.

Допустим теперь, что полярность источников в симметричной схеме неодинакова (рис. 4-17, а). В этом случае (равенство э. д. с. источников и различие их полярности) токи в симметричных ветвях (например, Преобразование схем электрических цепей и напряжения между соответствующими парами выводов, симметрично расположенными относительно оси, равны и противоположны по знаку. Отсюда следует, что напряжения между всеми точками, лежащими на оси симметрии, равны нулю Преобразование схем электрических цепейПоэтому все точки схемы на оси симметрии могут быть замкнуты накоротко (рис. 4-17, б).

Преобразование схем электрических цепей
Таким образом, расчет сложных симметричных схем приводится к расчету более простых схем.

На рис. 4-18, а и б показана симметричная мостовая схема, имеющая две оси симметрии — вертикальную и

Преобразование схем электрических цепей
горизонтальную. В продольных ветвях ток отсутствует; потенциалы средних точек поперечных (перекрещенных) ветвей одинаковы.

Поэтому продольные ветви могут быть рассечены, а средние точки поперечных ветвей — объединены. В результате с обеих сторон получится одноконтурная схема (рис. 4-18, в), расчет которой крайне прост.

Если изменить полярность одного из источников (рис. 4-19, а), то роли продольных и поперечных ветвей поменяются и преобразованная часть схемы примет вид, показанный на рис. 4-19, б.

Преобразование схем электрических цепей
В разобранных выше примерах э. д. с. источников были равны. В случае неравенства э. д. с. источников преобразование симметричной схемы удобно сочетается с методом наложения (см. пример 7-5).

  • Установившиеся процессы в линейных электрических цепях
  • Методы расчета простых электрических цепей
  • Метод сигнальных графов
  • Электрическая ёмкость и ее расчет
  • Топологии электрических цепей
  • Уравнения электрического равновесия цепей
  • Линейные цепи при гармоническом воздействии
  • Нелинейные резистивные цепи

Метод эквивалентного преобразования электрических цепей

Сущность и цель преобразований

Цель преобразования электрических цепей состоит в упрощении схем путем эквивалентных преобразований, приводящих к уменьшению числа ветвей и узлов. Эквивалентные преобразования входят во все методы расчета в качестве первого шага в последовательностях расчета. Под эквивалентными преобразованиями мы будем понимать преобразования одной части схемы, при которых в остальной части величины токов и напряжений остаются неизменными, как и сама схема.

Расчет цепи при последовательном соединении элементов и закон Ома для ветви, содержащей ЭДС

Метод эквивалентного преобразования электрических цепей

Рассмотрим электрическую цепь при последовательном соединении и ЭДС и резисторов, когда величина тока во всех элементах одинакова.

Все величины ЭДС и резисторов известны, как и напряжение на входе цепи. Необходимо упростить цепь до двух элементов (рисунок 3.6) и определить величину тока.

Метод эквивалентного преобразования электрических цепей

Для решения задачи выберем произвольное направление тока Метод эквивалентного преобразования электрических цепей и обхода контура и на основании второго закона Кирхгофа составим уравнение:

Метод эквивалентного преобразования электрических цепей

Учитывая, что ток Метод эквивалентного преобразования электрических цепей одинаковый во всех резисторах, выносим его за знак суммы и вводим обозначения:

Метод эквивалентного преобразования электрических цепей — эквивалентное сопротивление, определяемое в виде арифметической суммы всех последовательно соединенных сопротивлении;

Метод эквивалентного преобразования электрических цепей — эквивалентная ЭДС, определяемая как алгебраическая сумма ЭДС.

С учетом выполненных обозначений, уравнение приобретает вид:

Метод эквивалентного преобразования электрических цепей

Схема имеет вид (рисунок 3.6), а величина тока:

Метод эквивалентного преобразования электрических цепей

Расчет цепи при параллельном соединении элементов

Задана электрическая цепь, содержащая параллельно соединенные элементы, т.е. на всех элементах напряжения одинаковые (рисунок 3.7). Величины сопротивлений резисторов заданы Метод эквивалентного преобразования электрических цепей и токи источников тока Метод эквивалентного преобразования электрических цепей. Необходимо рассчитать ток Метод эквивалентного преобразования электрических цепей.

Метод эквивалентного преобразования электрических цепей

Решение задачи выполним на основании первого закона Кирхгофа, предварительно выбрав направления токов в ветвях, с резисторами от верхнего узла с большим потенциалом к нижнему с меньшим потенциалом:

Метод эквивалентного преобразования электрических цепей

В представленном уравнении все подтекающие токи взяты со знаком «+», а оттекающие — со знаком «-». Т.к. величина тока в любом резисторе может быть найдена по закону Ома:

Метод эквивалентного преобразования электрических цепей

то ток Метод эквивалентного преобразования электрических цепей на входе цепи может быть вычислен по выражению:

Метод эквивалентного преобразования электрических цепей

где Метод эквивалентного преобразования электрических цепей — эквивалентная проводимость всех ветвей с резисторами определяемая как арифметическая сумма проводимостей всех параллельно соединенных резисторов; Метод эквивалентного преобразования электрических цепей — ток эквивалентного источника тока, определяемый как алгебраическая сумма всех параллельно соединенных источников тока. Знак тока источника тока положителен, если он направлен от узла и отрицателен, если он направлен к узлу.

В соответствии с последним уравнением можно зарисовать эквивалентную схему замещения (рисунок 3.8).

Метод эквивалентного преобразования электрических цепей

Расчет цепи при смешанном соединении элементов

Под смешанным соединением элементов понимают такие соединения, при которых цепь содержит одновременно последовательно соединенные элементы и параллельно соединенные элементы.

Задача 3.1.

Рассчитать эквивалентное сопротивление для схемы, представленной на рисунке 3.9, если:

Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей

Решение:

На первом этапе объединим последовательно соединенные элементы Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей и параллельно соединенные элементы Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей: Метод эквивалентного преобразования электрических цепей

Метод эквивалентного преобразования электрических цепей

В результате получаем упрощенную схему (рисунок 3.10).

На втором этапе суммируем сопротивления Метод эквивалентного преобразования электрических цепей и получаем эквивалентное сопротивление всей схемы относительно входных зажимов 1 и 2: Метод эквивалентного преобразования электрических цепей Ом.

Задача 3.2.

Задана электрическая цепь (рисунок 3.11.). Для величин элементов: Метод эквивалентного преобразования электрических цепей Метод эквивалентного преобразования электрических цепей Метод эквивалентного преобразования электрических цепей выполнить расчет величин токов в ветвях электрической цепи.

Метод эквивалентного преобразования электрических цепей

Решение:

Выбираем направления токов в ветвях электрической цепи с учетом направления ЭДС Метод эквивалентного преобразования электрических цепей. На первом этапе объединяем резисторы Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей.

Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей

На рисунке 3.12 представлена упрощенная схема. Объединяем сопротивления ветвей, подключенных параллельно, к узлам Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей:

Метод эквивалентного преобразования электрических цепей

Следовательно:

Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей

На рисунке 3.13 получена неразветвленная электрическая цепь.

Применяем второй закон Кирхгофа для замкнутого контура:

Метод эквивалентного преобразования электрических цепей

Решаем уравнение относительно тока Метод эквивалентного преобразования электрических цепей

Метод эквивалентного преобразования электрических цепей

Вычисляем напряжение Метод эквивалентного преобразования электрических цепей по закону Ома:

Метод эквивалентного преобразования электрических цепей

Тогда:

Метод эквивалентного преобразования электрических цепей

Выполним проверку вычислений по балансу мощностей:

Метод эквивалентного преобразования электрических цепей

Задача 3.3.

Пользуясь методом преобразования, рассчитать эквивалентное входное сопротивление электрической цепи (рисунок 3.14.) относительно точек Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей если величины элементов имеют значения:

Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей
Метод эквивалентного преобразования электрических цепей

Решение:

Так как схема содержит ветви без элементов, то узлы и точки с равными потенциалами можно объединить. Объединяем точку в и б и узел г с узлом д. Упрощенная схема представлена на рисунке 3.15. Рассчитаем эквивалентные сопротивления Метод эквивалентного преобразования электрических цепей и Метод эквивалентного преобразования электрических цепей:

Метод эквивалентного преобразования электрических цепей

Эквивалентное сопротивление всей цепи относительно точек а и б, в соответствии с новой схемой (рисунок 3.16):

Метод эквивалентного преобразования электрических цепей

Эта страница взята со страницы задач по электротехнике:

Электротехника — решения задач и примеры выполнения заданий

Возможно эти страницы вам будут полезны:

Расчет эквивалентного сопротивления электрической цепи

Любое последовательное соединение можно преобразовать к последовательному соединению одного эквивалентного резистора и одного источника ЭДС. Причем, сопротивление эквивалентного резистора равно сумме всех сопротивлений входящих в соединение, а ЭДС эквивалентного источника равна алгебраической сумме ЭДС источников входящих в соединение.

R4=20 Ом, R5=40 Ом, R6=15 Ом (пример)

Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.

9. СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

Схему еоедииения трех ветвей, образующих замкнутый контур с тремя узлами называют треугольником.

взаимные замены треугольника и звезды сопротивлений должны быть эквивалентными, т. е. при соответственно равных напряжениях между вершинами А, Б и В треугольника и звезды токи IA, IБ, 1В в подводящих проводах, соединяющих эти вершины с остальной частью цепи, должны остаться без изменений. Равенство токов должно выполняться при любых изменениях и переключениях в остальной части цепи и, в частности, при обрывах некоторых ее ветвей.

Рис 2.8 Соединение резисторов треугольником (а) и звездой (б)

Сопротивления эквивалентной звезды rа, rб, rв находятся в определенных соотношениях с сопротивлениями треугольника rаб, rбв, rва. Для выяснения этой зависимости допустим сначала, что в вершине А произошел обрыв подводящего провода и, следовательно, ток Iа=0. Сопротивления между двумя оставшимися присоединенными вершинами Б и В для обеих схем должны быть одинаковы, чтобы были соответственно равны токи IБ и Iв в обеих схемах.

Чтобы преобразовать треугольник в звезду при заданных сопротивлениях сторон треугольника rаб,rбв, rва, требуется определить сопротивления лучей эквивалентной звезды rа, rб, rв . Для этого составим полусумму левых и правых частей уравнений (2.15) и (2.16):

и вычтем из полученного выражения уменьшенные вдвое левую и правую части (2.14). В результате получим

(2.17)

Аналогично получим

(2.18)

(2.19)

сли сопротивления треугольника равны друг другу: rаб = rбв=rва=rΔ, то будут равны друг другу и сопротив

ления звезды, т. е. rа = rб=rв=r λ, причем из формул (2.17)—(2.19) получается простое соотношение

(2.20)

При обратном преобразовании звезды в эквивалентный треугольник, т. е. при заданных сопротивленияхrа, rб, rв, надо решить три уравнения (2.17)—(2 19) относительно сопротивлений rаб, rбв:

Таким образом, сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух лучей звезды, присоединенных к тем же вершинам, что и сторона треугольника, и их произведения, деленного на сопротивление третьего луча звезды.

11. Режимы работы электрической цепи

· Режим короткого замыкания ( КЗ )

В режиме короткого замыкания источник питания замкнут накоротко. Режим является аварийным. Ток короткого замыкания КЗ во много раз превышает значение номинального тока.

Rн = 0 I = max

· Режим холостого хода ( ХХ )

В режиме холостого хода источник питания отсоединен от нагрузки и работает вхолостую. Сопротивление внешнего участка цепи и ток равен 0. Rн = ∞

· Режим согласованной нагрузки

Свойства электрической цепи – наибольшая мощность нагрузки развивается источником, когда сопротивление нагрузки ровно внутреннему сопротивлению источника.

Rн = I0

Из графика видно с ростом сопротивления нагрузки растёт мощность на нагрузке при Rн = I0 мощность нагрузки наибольшая при дальнейшем росте Rн – PRн уменьшается.

Мощность электрического тока

P = UI

Параллельное соединение резисторов. Калькулятор для расчета

Как рассчитать эквивалентное сопротивление электрической цепи?

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны. Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

Требуется рассчитать токи на всех резистивных элементах.

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD:

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Стоит заметить! Ток, протекающий через R4 и R5, по своему значению равен току на отрезке, не имеющем разветвления.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Понравилась статья? Поделить с друзьями:
  • Как найти девушку в чехии
  • Как найти клавиатуру в настройках телефона
  • Как найти длину средней линии в квадрате
  • Как найти настройки электронной почты
  • Как найти несколько общих кратных чисел