Как найти напряжения через момент

Важнейшим критерием оценки прочности балок при изгибе являются напряжения.

Рассмотрим способы расчета напряжений при плоском поперечном изгибе балки

Расчет напряжений

Возникающий в поперечных сечениях при чистом прямом изгибе изгибающий момент Mx

представляет собой равнодействующий момент внутренних нормальных сил, распределенных по сечению и вызывающих нормальные напряжения в точках сечения.

Закон распределения нормальных напряжений по высоте сечения выражается формулой:

где:
M — изгибающий момент, действующий в рассматриваемом сечении относительно его нейтральной линии X;
Ix — осевой момент инерции поперечного сечения балки относительно нейтральной оси;
y – расстояние от нейтральной оси до точки, в которой определяется напряжение.

Нейтральная ось при изгибе проходит через центр тяжести поперечного сечения.

По вышеуказанной формуле, нормальные напряжения по высоте сечения изменяются по линейному закону.

Наибольшие значения имеют напряжения у верхнего и нижнего краев сечения.

Например, для симметричного относительно нейтральной оси сечения, где y1=y2=h/2:

Напряжения в крайних точках по вертикали (точки 1 и 2) равны по величине, но противоположны по знаку.

Для несимметричного сечения

напряжения определяются отдельно для нижней точки 1 и верхней точки 2:

где:

WX — осевой момент сопротивления симметричного сечения;
WX(1) и WX(2) — осевые моменты сопротивления несимметричного сечения для нижних и верхних слоев балки.

Знаки нормальных напряжений при их расчете, рекомендуется определять по физическому смыслу в зависимости от того, растянуты или сжаты рассматриваемые слои балки.

Условия прочности при изгибе

Прочность по нормальным напряжениям

Условие прочности по нормальным напряжениям для балок из пластичного материала записывается в одной крайней точке.

В случае балки из хрупких материалов, которые, как известно, по-разному сопротивляются растяжению и сжатию – в двух крайних точках сечения.

Здесь:
Mmax — максимальное значение изгибающего момента, определяемого по эпюре Mx;
[σ], [σ]р, [σ]с — допустимые значения напряжений для материала балки (для хрупких материалов – на растяжение (р) и сжатие (с)).

Для балки из хрупкого материала обычно применяют сечения, несимметричные относительно нейтральной оси. При этом сечения располагают таким образом, чтобы наиболее удаленная точка сечения размещалась в зоне сжатия, так как [σ]с>[σ]р.

В таких случаях, проверку прочности следует обязательно проводить в двух сечениях: с наибольшим положительным изгибающим моментом и с наибольшим по абсолютной величине (модулю) отрицательным значением изгибающего момента.

При расчете элементов конструкций, работающих на изгиб, с использованием вышеуказанных условий прочности решаются три типа задач:

  1. Проверка прочности
  2. Подбор сечений
  3. Определение максимально допустимой нагрузки

Прочность по касательным напряжениям

В случае прямого поперечного изгиба в сечениях балки, кроме нормальных напряжений σ от изгибающего момента, возникают касательные напряжения τ от поперечной силы Q.

Закон распределения касательных напряжений по высоте сечения выражается формулой Д.И. Журавского

где
Sx отс — статический момент относительно нейтральной оси отсеченной части площади поперечного сечения балки, расположенной выше или ниже точки, в которой определяются касательные напряжения;
by — ширина поперечного сечения балки на уровне рассматриваемой точки, в которой рассчитывается величина касательных напряжений τ.

Другие видео

Условие прочности по касательным напряжениям записывается для сечения с максимальным значением поперечной силы Qmax:

где [τ] – допустимое значение касательных напряжений для материала балки.

Полная проверка прочности

Полную проверку прочности балки производят в следующей последовательности:

  1. По максимальным нормальным напряжениям для сечения, в котором возникает наибольший по абсолютному значению изгибающий момент M.
  2. По максимальным касательным напряжениям для сечения, в котором возникает наибольшая по абсолютному значению поперечная сила Q.
  3. По главным напряжениям для сечения, в котором изгибающий момент и поперечная сила одновременно достигают значительных величин (или когда Mmax и Qmax действуют в одном и том же сечении балки).

При анализе плоского напряженного состояния главные напряжения при изгибе, примут вид:

так как нормальные напряжения в поперечном направлении к оси балки принимаются равными нулю.

Другие видео

Проверка прочности осуществляется с помощью соответствующих гипотез прочности, например, гипотезы наибольших касательных напряжений:

Деформации при изгибе >
Угловые и линейные перемещения в балках >
Примеры решения задач >
Лекции по сопромату >

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту, а поперечная сила оказывается равной нулю. Этот случай изгиба носит название чистого изгиба. Рассмотрим средний участок балки, подвергающийся чистому изгибу.

2015-04-18 18-51-23 Скриншот экранаВ нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.2015-04-18 18-53-48 Скриншот экрана

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза Бернулли). Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1)   Выполняется гипотеза плоских сечений.   2)   Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия.  3)   Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.   4)   Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.   5)   Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.   6)   Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.2015-04-18 19-24-58 Скриншот экранаИзгибающий момент представляет собой результирующий момент внутренних нормальных сил2015-04-18 19-27-34 Скриншот экрана, возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: 2015-04-18 20-15-56 Скриншот экрана (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения. 

Выделим на среднем участке балки и рассмотрим участок  длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

К выводу формул при изгибе: а) участок балки до деформации; б) участок балки после деформации

К выводу формул при изгибе: а) участок балки до деформации; б) участок балки после деформации

Сечения, ограничивающие участок dz, параллельны друг другу до деформации, а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол 2015-04-18 20-27-22 Скриншот экрана. Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:2015-04-18 20-30-57 Скриншот экрана, где 2015-04-18 20-31-30 Скриншот экрана -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину. Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине ,тогда:

2015-04-18 20-40-28 Скриншот экрана Сократим на2015-04-18 20-27-22 Скриншот экрана и приведем подобные члены, тогда получим:2015-04-18 20-42-00 Скриншот экрана(2) Эта  формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя. 

Теперь перейдем к напряжениям, т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем закон Гука при осевом растяжении-сжатии:2015-04-18 21-37-15 Скриншот экрана, тогда с учетом формулы (2) имеем2015-04-18 21-38-26 Скриншот экрана (3),т.е.  нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону. На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим  (3) в уравнение (1) и вынесем за знак интеграла дробь 2015-04-18 21-41-53 Скриншот экрана как постоянную величину, тогда имеем2015-04-18 21-44-49 Скриншот экрана. Но выражение 2015-04-18 21-45-28 Скриншот экрана — это осевой момент инерции сечения относительно оси х  — IхЕго размерность см4, м4

Тогда2015-04-18 21-48-38 Скриншот экрана ,откуда2015-04-18 21-51-09 Скриншот экрана (4) ,где2015-04-18 21-52-02 Скриншот экрана — это кривизна изогнутой оси балки, а2015-04-18 21-53-03 Скриншот экрана — жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения:2015-04-18 21-56-56 Скриншот экрана (5) 

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение 2015-04-18 22-01-02 Скриншот экрана (6) называют осевым моментом сопротивления сечения. Его размерность см3, м3. Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: 2015-04-18 22-02-34 Скриншот экрана (7)

Условие прочности при изгибе:2015-04-18 22-05-04 Скриншот экрана (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения,т.к. имеется поперечная сила. Касательные напряжения усложняют картину деформирования, они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений. Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5). Таким образом ,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии. 

При изгибе отсутствует продольная сила, поэтому можно записать 2015-04-18 22-27-18 Скриншот экранаПодставим сюда формулу нормальных напряжений (3) и получим2015-04-18 22-29-42 Скриншот экрана Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что 2015-04-18 22-31-54 Скриншот экрана этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х 2015-04-18 22-34-11 Скриншот экрана, и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие 2015-04-18 22-37-31 Скриншот экрана (отсутствие момента внутренних сил относительно силовой линии) даст2015-04-18 22-39-10 Скриншот экрана или с учетом (3) 2015-04-18 22-40-08 Скриншот экрана. По тем же соображениям (см. выше) 2015-04-18 22-41-13 Скриншот экрана. В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у  равен нулю, значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр  прямом изгибе взаимно перпендикулярны. 

Установив положение нейтральной линии, несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Сопротивление материалов

Напряжения при изгибе



Нормальные напряжения при чистом изгибе

Как было установлено ранее, в поперечных сечениях балки при чистом изгибе возникают только нормальные напряжения растяжения и сжатия. Вопрос о распределении этих напряжений по поперечному сечению решается путем рассмотрения деформаций волокон балки.

напряжения в брусе при чистом изгибе

Рассмотрим участок балки, подверженный деформации чистого изгиба. Двумя поперечными сечениями АВ и СD выделим элемент балки бесконечно малой длины ds (рис 1). Радиус кривизны нейтрального слоя балки обозначим ρ.

Рассмотрим слой волокон mn, находящийся на расстоянии y от нейтрального слоя NN. Это волокно в результате деформации изгиба удлинилось на величину nn1. Ввиду малости расстояния ds заштрихованные треугольники будем считать прямолинейными; эти треугольники подобны (n1F || mE):

Δ OEF ~ Δ Fnn1.

Из подобия треугольников запишем равенство:

nn1 / ds = y / ρ.

Так как левая часть этого равенства есть относительное удлинение, т. е. nn1 / ds = ε, то y / ρ = ε.

Применив закон Гука при растяжении и сжатии σ = Еε, получим:

σ = Еy / ρ.

Из этой формулы видно, что нормальные напряжения при изгибе распределены по высоте сечения неравномерно: максимальные напряжения возникают в волокнах, наиболее удаленных от нейтральной оси. По ширине сечения нормальные напряжения не меняются.
Распределение нормальных напряжений изображено на рис. 2.

закон Гука для чистого изгиба

Полученная формула для определения нормальных напряжений неудобна, так как в нее входит радиус кривизны нейтрального слоя.
Для вывода формулы, связывающей нормальные напряжения с изгибающим моментом, применим метод сечений и рассмотрим равновесие части балки, изображенной на рис. 3.
В плоскости поперечного сечения выделим бесконечно малую площадку dA, в пределах которой будем считать нормальные напряжения σ постоянными; тогда нормальная сила dN, действующая на площадку dA, будет равна:

dN = σdA.

Составим уравнения равновесия:

1.    Σ Z = 0;    ∫dN = 0,     или:     ∫σ dA = ∫Еy / ρ dA = Е / ρ ∫y dA = 0.

(ρ для данного сечения, а также модуль упругости Е – величины постоянные, поэтому вынесены за знак интеграла). Поскольку ρ и Е не равны нулю, значит, ∫y dA = 0.
Этот интеграл представляет собой статический момент площади сечения относительно оси x, т. е. нейтральной оси бруса (балки). Равенство нулю статического момента инерции означает, что при изгибе нейтральная ось проходит через центр тяжести площади поперечного сечения;

2.    Σ Ми = 0; — m + ∫y dN = 0.

Так как при чистом изгибе изгибающий момент равен внешнему моменту Ми = m, то

Ми = ∫y dN = ∫y dA = ∫y Еy / ρ dA = Е / ρ ∫y2 dA,

откуда:

Ми = Е I / ρ,

Расчеты на прочность при изгибе

где: I = ∫y2 dA – момент инерции поперечного сечения относительно нейтральной оси; ЕI – жесткость сечения при изгибе.

Так как при чистом изгибе балки постоянного сечения Ми = const, то:

ρ = EI / Ми = const.

Следовательно, изогнутая ось такой балки представляет собой дугу окружности. Выражение радиуса кривизны подставим в формулу для определения нормальных напряжений; тогда:

σ = Еy / ρ = Ey / EI / Ми = Ми y / I.

Максимальное значение нормальные напряжения будут иметь у волокон, наиболее удаленных от нейтральной оси:

σmax = Ми ymax / I = Ми / I / ymax = Ми / W,

где W = I / ymax – момент сопротивления изгибу (или осевой момент сопротивления).
Момент сопротивления изгибу есть отношение осевого момента инерции поперечного сечения относительно нейтральной оси к расстоянию от этой оси до наиболее удаленного волокна.
Единица момента сопротивления сечения изгибу [W] = м3.

Итак, наибольшие нормальные напряжения при чистом изгибе вычисляются по формуле

σmax = Ми / W.

Нетрудно заметить, что эта формула по своей структуре аналогична формулам для определения напряжений при растяжении, сжатии, сдвиге и кручении.

***



Касательные напряжения при изгибе

Очевидно, что при поперечном изгибе, вызванном приложением к балке поперечной силы, в сечениях балки должны возникнуть касательные напряжения.
Определением зависимости между внешними нагрузками, геометрическими и физическими параметрами балок и касательными напряжениями, возникающими в них, занимался русский мостостроитель Д. И. Журавский, который в 1855 году предложил следующую формулу:

τ = QS / (I d).

Эта формула называется формулой Журавского и читается так:
касательные напряжения в поперечном сечении балки равны произведению поперечной силы Q на статический момент S относительно центральной оси части сечения, лежащей выше рассматриваемого слоя волокон, деленному на момент инерции I всего сечения относительно нейтральной оси и на ширину b рассматриваемого слоя волокон.

По формуле Журавского можно вывести зависимости для определения касательных напряжений в балках, имеющих разную форму поперечного сечения (прямоугольную, круглую и т. п.).
Например, для балки круглого сечения формула Журавского в результате преобразований выглядит так:

τmax = 4Q / (3A) = 4τсред / 3,

где Q – поперечная сила, вызывающая изгиб, А – площадь сечения балки.

Большинство балок в конструкциях рассчитывается только по нормальным напряжениям, и только три вида балок проверяют по касательным напряжениям:

— деревянные балки, т. к. древесина плохо работает на скалывание;
— узкие балки (например, двутавровые), поскольку максимальные касательные напряжения обратно пропорциональны ширине нейтрального слоя;
— короткие балки, так как при относительно небольшом изгибающем моменте и нормальных напряжениях у таких балок могут возникать значительные поперечные силы и касательные напряжения.
Максимальное касательное напряжение в двутавровой балке определяется по формуле Журавского, при этом геометрические характеристики таких балок берутся из справочных таблиц .

***

Расчеты на прочность при изгибе

Условие на прочность при изгибе заключается в том, что максимальное нормальное напряжение в опасном сечении не должно превышать допускаемое.
Полагая, что гипотеза о не надавливании волокон справедлива не только при чистом, но и при поперечном изгибе, мы можем нормальные напряжения при поперечном изгибе определять по такой же формуле, что и при чистом изгибе, при этом расчетная формула выглядит так:

σmax = Миmax / W ≤ [σ]

и читается так: нормальное напряжение в опасном сечении, определенное по формуле σmax = Миmax / W ≤ [σ] не должно превышать допускаемое.
Допускаемое нормальное напряжение при изгибе выбирают таким же, как при растяжении и сжатии.
Максимальный изгибающий момент определяют по эпюре изгибающих моментов или расчетом.
Так как момент сопротивления изгибу W в расчетной формуле стоит в знаменателе, то чем больше W, тем меньшие напряжения возникают в сечении бруса.

Ниже приведены моменты сопротивления изгибу для наиболее часто встречающихся сечений:

1. Прямоугольное сечение размером b x h:    Wпр = bh2 / 6.

2. Круглое сечение диаметром d:    Wкруг = π d3 / 32 ≈ 0,1d3

3. Кольцо размером D x d:    Wкольца = ≈ 0,1 (D4 – d4) / D; (момент сопротивления кольцевого сечения нельзя определять, как разность моментов сопротивления большого и малого кругов).

***

Материалы раздела «Изгиб»:

  • Понятие деформации изгиба.
  • Дифференциальные зависимости при изгибе. Теорема Журавского.

Деформации растяжения и сжатия



При
плоском поперечном изгибе в поперечных
сечениях балки возникают нормальные и
касательные напряжения, величина которых
зависит как от внутренних силовых
факторов, так и от формы и размеров
сечения.

Нормальное
напряжение в произвольно выбранной
точке поперечного сечения определяется
по формуле

(4.8)

где
Mx
— изгибающий момент в данном сечении;



момент инерции сечения относительно
нейтральной оси;
y
— расстояние
от нейтральной оси до точки, в которой
определяется напряжение (рис.4.58, а).

Рис.
4.58. К определению: а)
нормальных напряжений при изгибе,

б)
осевого момента сопротивления сечения
с одной осью симметрии 

Из формулы
(4.8) следует:

— величина
нормальных напряжений не зависит от
прочностных и деформационных свойств
материала, из которого изготовлена
балка;

— нормальные
напряжения, оставаясь постоянными по
ширине сечения, изменяются линейно по
его высоте, достигая экстремальных
значений в точках, наиболее удаленных
от нейтральной оси

(4.9)

Вводя
обозначение Wx
для геометрической характеристики
сечения, называемой осевым
моментом сопротивления
,


,
(4.10)

формулу
(4.9) можно записать иначе


.
(4.11)

Если
сечение несимметрично относительно
нейтральной оси, вычисляются два значения
осевых моментов сопротивления путем
подстановки в формулу (4.10) значений
ординат для крайних растянутых и крайних
сжатых волокон, балки (рис.4.58,б):


;

. (4.12)

Напряжения
в крайних растянутых и сжатых волокнах
при этом различаются не только знаком,
но и численным значением :


.
(4.13)

Формулы
для определения геометрических
характеристик простых геометрических
фигур и прокатных профилей приведены
в разделе «Приложения».

Пример
4.12.
Требуется
определить
максимальные нормальные напряжения в
балке прямоугольного сечения шириной
b=6см
и высотой h=12см,
если в поперечном сечении балки действует
изгибающий момент М,
равный 25 кНм.

Осевой момент сопротивления балки
прямоугольного сечения


.

Максимальные
нормальные напряжения действуют в
волокнах, наиболее удаленных от
нейтральной оси

Пример
4.13.
Требуется
определить
нормальное напряжение в точке А
поперечного сечения балки (рис.4.59) и
величину максимальных нормальных
напряжений, если в поперечном сечении
балки действует изгибающий момент М,
равный 30 кНм.

Рис. 4.59. Поперечное
сечение балки

Осевой
момент инерции заданного сечения балки
относительно оси x
мо­жет быть представлен как разность
моментов инерции двух фигур: квадрата
12×12 см
и отверстия — квадрата 6×6 см
относительно этой же оси

Осевой момент
сопротивления балки прямоугольного
сечения


.

Нормальные
напряжения в точке А
определяются по формуле 4.8

Максимальные
нормальные напряжения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В прошлой части мы выяснили, какие нормальные напряжения будут возникать при изгибе. Однако это не все воздействия, которые есть в сечении. Также необходимо учесть и касательные напряжения. Последние обычно возникают либо если сечение скручивают, либо если в нем возникают поперечные силы. О скручивании будет написано в других частях, а сегодня мы обсудим влияние поперечной силы на изгибающийся стержень. Для вычисления изменения поперечной силы и момента нам потребуется теорема Журавского, а для нахождения касательных напряжений формула Журавского

Какие силы действуют в изгибаемом стержне

В случае если на конструкцию давит сила или по ней распределена нагрузка, в ней возникают поперечные силы. Как мы уже говорили, момент – это произведение силы на плечо. И вполне естественно, что действующие в конструкциях поперечные силы будут приводить и к возникновению момента.

Для того, чтобы выяснить, как именно этот момент возникает, проведем мысленный эксперимент:
Жестко (чтобы не менял угол наклона в месте закрепления, противодействовал моменту) закрепим некоторый стержень на стене и надавим на его конец: 

балка жесткая заделка сила

На балку с жесткой заделкой воздействует сила P

Теперь разделим стержень на бесконечное количество пластинок с практически нулевой шириной dx:

балка разделенная на пластины сопромат математический анализ

Балку можно разделить на бесконечно большое количество маленьких пластин с шириной dx.

Сила P будет пытаться сдвинуть самую крайнюю пластинку вниз. В компенсацию этой силе в стержне возникает поперечная сила сопротивления материала Qy, направленная в противоположную приложенной сторону по плоскости сечения. По закону Ньютона, где действие, там противодействие. И по этому закону в компенсацию поперечной силы сопротивления возникает ей противоположная сила, которая будет воздействовать на следующую пластинку:

балка разделенная на пластины сопромат математический анализ жесткая заделка сила

На каждую следующую пластину будет передаваться поперечная сила P

В итоге получаем достаточно прозаичную формулу распределения поперечной силы:

Qy=P

балка жесткая заделка сила поперечная сила Q

В стержне будет возникать поперечная сила сопротивления равная силе P. Она будет действовать в противоположном направлении.

Не менее прозаично будет выглядеть и эпюра продольных сил:

Численно она будет равна приложенной к концу стержня силе. При этом, так как между центрами пластинок будет некоторое расстояние dx, на следующий элемент будет передаваться момент равный произведению силы на dx:

балка разделенная на пластины сопромат математический анализ жесткая заделка сила момент

На каждую следующую пластину будет передаваться момент с предыдущей. К этому моменту будет добавляться момент равный произведению силы P на плечо dx.

Итого, на первой пластинке, так как сила будет приложена к ее центру, момента m1 не будет. Момент m2 на второй пластинке будет равен произведению силы на расстояние между центрами пластинок:

m2=P*dx=P*dx

Момент третьей пластинки будет складываться из момента, который перейдет со второй пластинки и момента возникающего под действием силы:

m3=m2+P*dx=2*P*dx

В конечном счете, каждый раз, когда мы будем смещаться в сторону от места приложения силы на одну пластинку, будет меняться лишь множитель. Общая формула для момента m n-ной пластинки будет выглядеть так:

mn=n*P*dx

Ну если мы умножаем количество пластинок n на их ширину dx, то получаем расстояние от места приложения силы c. В итоге, эпюра момента под действием силы P будет выглядеть вот так:

балка жесткая заделка сила поперечная сила Q и момент M

Момент M будет возрастать по мере удаления от места приложения силы P (так как момент равен произведению силы на плечо).

Впрочем, помимо сил нам может попасться и распределенная нагрузка. Как в таком случае будет изменяться момент?

балка жесткая заделка распределенная нагрузка

На балку с жесткой заделкой под воздействием распределенной нагрузки q

Рассуждения нашим будут абсолютно аналогичны. Разделим стержень на много тоненьких пластинок. 

балка разделенная на пластины сопромат математический анализ

Делим стержень на бесконечное количество пластинок с бесконечно малой шириной dx

На каждую пластинку ширины dx будет действовать небольшая сила q и поперечная сила от соседней пластинки:

балка разделенная на пластины сопромат математический анализ жесткая заделка распределенная нагрузка

На каждую следующую пластину будет передаваться поперечная сила с предыдущей пластинки. Она будет суммироваться с воздействием на эту пластинку распределенной нагрузки q

Сила взаимодействия между пластинками в таком случае будет накапливаться.

Найти ее можно просто перемножив расстояние от начала действия распределенной нагрузки до интересующей нас точки на величину распределенной нагрузки:

Qy=q*n*dx=q*l

балка разделенная на пластины сопромат математический анализ жесткая заделка распределенная нагрузка момент

На каждую следующую пластину будет передаваться момент с предыдущей. К этому моменту будет добавляться момент равный произведению реакции от поперечной силы Qy (т.е. — Qy=q*n), которая будет увеличиваться от пластинки к пластинке на величину q, на плечо dx. Таким образом момент будет возрастать от пластинки к пластинке.

Теперь разберемся с моментом. На первой пластинке момента не будет, по допущению, что сила q действует по ее середине. 

На вторую пластинку же по касательной будет действовать сила q. Так как между центрами пластинок есть расстояние dx, в ней возникнет момент равный произведению q на dx:

m2=q*dx.

На третью пластинку будет действовать по касательной уже вдвое большая сила. Как следствие, для этой пластинки момент увеличится уже на 2q*dx:

dm2-3=2q*dx

Суммарный момент третьей пластинки будет складываться из момента передавшегося со второй пластинки и момента возникающего под действием нагрузки:

m3=m2+2q*dx=(2+1)dx*q

Если мы будем продолжать данную операцию и дальше, то получим общую формулу для момента m n-ной пластинки:

mn=(n+…+2+1)dx*q

Многочлен Sn=(n+…+2+1)dx- это сумма арифметической прогрессии. Ее находят как полусумму первого и последнего элемента умноженную на количество элементов:

S_n=frac{a_1+a_n}{2}cdot n

Примечание: желающие могут взглянуть на вывод этой формулы в числах (в общем виде вывод практически аналогичен, но на числах он нагляднее), с сайта umath.ru[7]:

математический анализ сумма первых n членов, арифметическая прогрессия, сумма арифметической прогрессии, формула Карла Гаусса

По легенде эту формулу вывел Карл Гаусс, когда школьный учитель математики решил подшутить над учениками, заставив посчитать сумму чисел от 1 до 100.

Подставляем нашу последовательность x1=ndx+…+2dx+dx и получаем:
xn=ndx+…+2dx+dx=(dx+ndx)*ndx/2=(n+n2)dx2/2

Так как число пластинок мы сделали ну очень большим (практически бесконечным), по сравнению с n2 обычное n будет пренебрежительно мало. Например, если мы разделим стержень на 1000 пластинок, n2 от n2+n будет отличаться на одну тысячную.

В итоге, получившуюся формулу можно представить как простейшее n2/2.

Подставляем все в исходную формулу: 

mn=(n+…+2+1)*q*dx=n2*dx2*q/2=ql2/2

А эпюра момента под равномерно-распределенной нагрузкой будет выглядеть как полупарабола:

балка жесткая заделка распределенная нагрузка эпюра поперечной силы эпюра момента в балке с жесткой заделкой

Момент M будет возрастать по параболе.

Теорема Журавского

Обобщает и упрощает расчет интегрирование. А метод нахождения поперечных сил и моментов известен как теорема Журавского. Для того, чтобы найти момент в определенной точке, необходимо взять интеграл от поперечной силы по длине:

Поперечная сила не всегда постоянна на всем протяжении участка, как это, например, бывает при распределенной нагрузке. Чтобы найти поперечную силу, если балка находится под воздействием распределенной нагрузки, необходимо последнюю проинтегрировать:

Ну а для нахождения момента при распределенной нагрузке, нужно эту нагрузку дважды проинтегрировать:

M_z=int_{0}^{x}int_{0}^{x}q_y dx

Если обобщить, то для нахождения момента в сечении надо дважды проинтегрировать распределенную нагрузку, сложить это с интегралом силы по расстоянию до опоры и с моментами, которые мы приложили к этом сечении.

Теорема Журавского в дифференциальной форме выглядит так:

q=frac{dQ_y}{dx}=frac{d^2M_z}{dx^2}

Теорема Журавского позволяет вычислять попереченые силы и моменты. Отрезок балки под воздействием сложной системы сил:

эпюра поперечной силы и моменты для сложной балки. Теорема Журавского

Так будут выглядеть эпюры поперечной силы и момента в сложно нагруженной балке. Позволяет вычислить изменение попереченой силы и момента теорема Журавского.
Изображение расчета балки взято из онлайн-калькулятора.

Подробнее почитать о построении эпюр можно в соответствующей статье.

Выражены формулы взаимосвязи распределенной нагрузки, поперечных напряжений и моментов были Дмитрием Ивановичем Журавским и обобщаются как теорема Журавского.

Формула Журавского

В процессе проектирования железнодорожных мостов деревянные балки часто давали скол. На тот момент не было теоретического аппарата для выяснения точных значений касательных напряжений в сечении.  Их либо не учитывали, либо, по аналогии с нормальными напряжениями при растяжении/сжатии, считали равномерно-распределенными по всему сечению (т.е. τ=Qy/F). 

Однако реальность упорно не хотела следовать расчетам: конструкции разрушались, хотя не должны были. 

При этом нормальных напряжений явно было недостаточно для скола. Журавский данную проблему решил за счет добавления в уравнение касательных напряжений и нашёл закон их распределения по сечению. Попробуем и сами вывести закон распределения касательных напряжений (более известный как формула Журавского).

У нас есть балка произвольного сечения под нагрузкой:

сечение изгибаемого стержня под распределенной нагрузкой элемент изгибаемого стержня под распределенной нагрузкой

В этом стержне, под действием распределенной нагрузки изменяются момент и нормальные напряжения:

сечение изгибаемого стержня элемент изгибаемого стержня изменение момента дифференциальное уравнение изменения момента сечение изгибаемого стержня элемент изгибаемого стержня изменение нормальных напряжений дифференциальное уравнение изменения нормальных напряжений вывод формулы журавского вывод формулы касательных напряжений

Если мы отсечем верхнюю или нижнюю часть стержня (так, чтобы линия среза была параллельна нейтральной линии), на данном участке возникнет нескомпенсированная продольная сила:

сечение изгибаемого стержня элемент изгибаемого стержня изменение нормальных напряжений дифференциальное уравнение изменения нормальных напряжений отсеченная часть изгибаемого стержня под нагрузкой вывод формулы журавского вывод формулы касательных напряжений

Журавский предположил, что ключом к ответу на вопрос, как именно распределяются по сечению касательные напряжения, может стать решение проблемы этой нескомпенсированной силы.

Разберемся в том, как касательные напряжения вообще могут распространяться в материале. 

Для этого вырежем из какой-то не разрушившейся конструкции куб с пренебрежительно малыми сторонами. Затем приложим к одной из его граней силу по касательной. Для того, чтобы куб уравновесить, необходимо приложить к поверхности этой грани касательную силу, но в другом направлении:

Касательные напряжения в элементарной объеме.

От касательных сил возникнет момент. А так как мы вырезаем куб из целой, не разрушенной конструкции, все силы и моменты должны быть скомпенсированы. Поэтому на соседних гранях возникнут такие же касательные напряжения с противоположным моментом:

Касательные напряжения в элементарной объеме.

Иными словами, если конструкция сохраняет свою форму, каждое касательное напряжение по оси x на одной из сторон куба будет уравновешено точно таким же, но в обратном направлении на противоположной стороне куба. А получившийся момент будет скомпенсирован касательными напряжениями по оси y.

Так как касательные напряжения по y приведут к возникновению точно таких же касательных напряжений по x, разумно предположить, что приращение нормальных напряжений можно скомпенсировать касательными напряжениями.

Возвращаемся к нашему стержню. Мы вырезали некоторую его часть и хотим компенсировать избыток продольной силы, за счет касательных напряжений приложенных к поверхности горизонтального сечения:

Касательные и нормальные напряжения в сегменте изгибаемого стержня вывод формулы журавского

Для того, чтобы система оставалась неподвижной, необходимо, чтобы продольные и касательные силы в сумме давали ноль:

-N+(N+dN)-τ*b(y)=0

dN-τ*b(y)=0

dN=τ*b(y)

Остается дело за малым: выяснить чему будет равно изменение продольной силы на отсеченной нами части. Для этого нам нужно просуммировать все напряжения в ней возникающие:

dN=∑dσ=∫dσdF

Подставляем формулу из прошлой части для нахождения нормальных напряжений при изгибе и изменения момента под действием поперечной силы из этой:

dσ=ydMz/Jz, dMz=Qy

Примечание: дальше мы будем использовать такие понятия как момент инерции I и статический момент S. Если вы хотите поподробнее узнать про то, откуда появились данные величины, каков их физический смысл и как их находить, то вы можете это сделать прочитав наши статьи:

  1. Статический момент
  2. Момент инерции
  3. Момент сопротивления изгибу

В итоге избыток продольной силы будет равен:

dN=frac{Q_ycdot dx}{I_z} int y dF

Fотс.∫ydF — это статический момент инерции отсеченной фигуры Sотс. Таким образом формулу можно записать чуть элегантнее:

dN=frac{Q_ycdot S_{отс.}cdot dx}{I_z} 

Как мы уже говорили, чтобы тело находилось в равновесии необходимо, чтобы избыточная продольная сила компенсировалась касательной:

dN-τcdot bcdot dx=dx(frac{Q_ycdot S_{отс.}}{I_z}-τcdot b)=0; 

Или:

 τcdot b=frac{Q_ycdot S_{отс.}}{I_z}

Теперь мы можем сказать, по какому закону будут распределяться касательные напряжения при изгибе:

 τ=frac{Q_ycdot S_{отс.}}{I_zcdot b}

Вычисление касательных напряжений по формуле Журавского

Разберем распределение касательных нагрузок на простейшем примере. На прямоугольном брусе.

Нам нужно выяснить, какие касательные напряжения будут в каждой точке сечения. Величина Qy нам задана. Ширина b тоже. Момент инерции Iz мы тоже для всего сечения мы тоже знаем:

 I_z=frac{bcdot h^3}{12}

Остаётся найти момент отсеченной части. В данном случае мы отсекаем все, что снизу:

Касательные напряжения при изгибе балки прямоугольного сечения вывод формулы журавского

Статический момент (посмотреть как вычисляется можно по ссылке) равен произведению площади на центр масс:

Sотс=F*l

Где l расстояние до центра масс (в данном случае до середины) отсеченной фигуры, а F площадь, которую можно найти перемножив высоту отсекаемого прямоугольника (h/2-y) на его ширину b. Расстояние до центра масс же можно найти сложив верхнюю (h/2) и нижнюю (y) границу и поделив это выражение на два (потому-что нам интересно найти середину):

 I_z=frac{frac{h}{2}+y}{2}
S_{отс.}=Fcdot l=frac{b(frac{h}{2}+y)(frac{h}{2}-y)}{2}

Получаем напряжение в середине:

τ=frac{Q_ycdot S_{отс.}}{bcdot I_z}=frac{12cdot Q_y cdot bcdot(frac{h^2}{4}-y^2)}{2cdot b^3cdot h^3}=frac{6cdot Q_y cdot (frac{h^2}{4}-y^2)}{b^2cdot h^3}

Теперь остается только подставить в уравнение получившуюся для этого сечения поперечную силу Qy и можно посчитать, какие касательные напряжения будут возникать на каждом расстоянии y от нейтральной линии.

Так как в уравнении меняться будет только y, выражение можно представить в виде:

τ=C-B*y^2

Где B и C константы, а при y=h/2 τ=0.

Ну и, очевидно, что когда y=0 (т.е. посередине сечения), напряжение максимально. 

Касательные напряжения при изгибе балки прямоугольного сечения вывод формулы журавского

Т.е. изменяться касательные напряжения будут по параболе, где максимум будет на средней линии, а ноль на верхней и нижней грани сечения. 

Касательные напряжения при изгибе балки прямоугольного сечения вывод формулы журавского

Если сечение не прямоугольное, ширину b надо будет представить как некую функцию b(y).

τ=frac{Q_y cdot S_{отс.}(y)}{b(y)cdot I_z}

Форма эпюры напряжений могут меняться, но характер будет будет остаться прежним: по мере движения к центру напряжения будут расти. 

Касательные напряжения при изгибе балки круглого сечения вывод формулы журавского

Ещё в прошлой части мы вывели закон распределения нормальных напряжений при изгибе: напряжения изменяются по линейному закону от своего минимального (максимальное сжатие) до максимального (максимальное растяжение) значения. 

Касательные и нормальные напряжения при изгибе балки прямоугольного сечения

А сейчас мы выяснили, как распределяются по сечению касательные напряжения. Если стержень имеет одинаковую ширину на всей высоте сечения, то напряжения меняются по параболе. Но в прошлой части мы также говорили, что для экономии материала гораздо целесообразнее использовать сечения сложной формы (для нахождения моментов инерции гуглить “сортамент, прокатные профили”).

Теорема Журавского. Распределение касательных напряжений при изгибе

Например двутавр, у которого максимальная ширина по краям, где нормальные напряжения максимальны. Как мы уже выяснили, касательные напряжения сильно зависят от ширины сечения. Есть точки, где ширина уменьшается и происходит увеличение касательных напряжений, но нормальные напряжения все ещё велики. Их следует проверить, точно ли они выдержат нагрузки. И необходим математический аппарат для предсказания прочности, учитывающий эти два вида нагрузок.

И на него нет однозначного, исчерпывающего ответа. Но есть ответы практические, каждый справедливый для своих границ применимости. И эти ответы называются теориями прочности. И о них мы расскажем в будущем.

В рамках темы изгиба наибольшую применимость имеет теория «Наибольших касательных напряжений» (Третья теория прочности). Чаще всего её используют для металлов или материалов, плохо сопротивляющихся сдвигу.

Для того, чтобы понять, выдержит ли материал, в рамках теории наибольших касательных напряжений, нормальные и касательные напряжения приводят к эквивалентным напряжениям, которые должны быть меньше предельных напряжений при растяжении/сжатии по определенной формуле. Ее вывод мы сейчас производить не будем, предлагаем просто поверить на слово, что эквивалентные напряжения должны быть меньше опасных и рассчитываются так:
σэкв.=√(σ2+4τ2)<[σ]

Возвращаемся к двутавру. Какие у него будут самые опасные точки, которые надо проверить? Такие, где возникают максимальные напряжения и где высокие и нормальные и касательные напряжения:

Теорема Журавского. Распределение касательных напряжений при изгибе

Из прошлой части мы знаем, что наибольшие нормальные напряжения находятся на самых удаленных от нейтральной линии участках сечения. Так как там отсутствуют касательные напряжения, достаточно чтобы нормальные напряжения были меньше опасных:

134МПа<[σ]

Максимальные касательные напряжения возникают в середине сечения. Так как нормальные напряжения будут равны нулю, формула σэкв.=√(σ2+4τ2) превращается в простейшее σэкв.=√(4τ2)=σэкв.=2τ

Подставляем значение и оказывается, что материал должен выдерживать аж 182 МПа:

2τ=91*2=182МПа<[σ]

Если данный материал такие напряжения выдерживать не способен, придется выбирать другой прокатный профиль (например, с большей шириной промежуточной полки). Ну а если способен, надо рассчитать третью точку. Она будет находиться на месте, где промежуточная узкая полка переходит в широкую. Подставляем в формулу значения нормальных и касательных напряжений:

σэкв.=√(σ2+4τ2)=√(1342+4*642)=√(19.000+4*4.100)=√35400=188,2 МПа<[σ]

Если допускаемые напряжения меньше, значит сечение подходит. Если нет, значит придется искать сечение с лучшей способностью сопротивления касательным и нормальным напряжениям. Например, следующий номер двутавра.

Для того, чтобы выяснить, выдержит ли деталь нагрузку, необходимо проверять эквивалентные напряжения (с чем поможет формула Журавского и третья теория прочности) в максимумах моментов и поперечных сил (с чем поможет теорема Журавского), а также на местах, где совпадают большие моменты и поперечные силы:

эпюра поперечной силы и моменты для сложной балки. Теорема Журавского. Расчет эквивалентных напряжений. Подбор сечения. Опасные сечения. Максимальные касательные напряжения. Максимальные нормальные напряжения. Максимальные эквивалентные напряжения

Чтобы убедиться, что эта балка устоит, необходимо посчитать эквивалентные напряжения для трех точек. В первой (I) момент сопротивления сечения достигает максимума. А значит, максимальны и нормальные напряжения. Во второй (II) точке максимальна поперечная сила и угрозу представляют касательные напряжения. А в третьей (III) совпадают достаточно большой момент и продольная сила. Расчет сделан на СопроматГуру.

Вот мы и разобрались с ещё одним источником опасности для прочности конструкции: с касательными напряжениями от поперечных сил. Главный инструмент в поиске поперечных сил, моментов — теорема Журавского. А найти касательные напряжения поможет формула Журавского.

Теперь в теме изгиба нам остаётся только научиться считать, как будет деформироваться балка под действием момента.

Информация о произведении
Автор
: К.А.Овчинников
Редактор, факт-чекер: Д.А. Сабуров, Марк Ершов
Иллюстратор: Михаил Корнев [I]

Информация о произведении:
Условия использования: свободное некоммерческое использование при условии указания людей участвовавших в его создании и ссылку на первоисточник (статьи на действующем сайте интернет-журнала «Стройка Века»).

Для коммерческого использования — обращаться на почту:
buildxxvek@gmail.com

Источники

  1. Лекции по сопротивлению материалов в СПбПУ им. Петра Великого
  2. Горшков А. Г., Трошин В. Н., Шалашилин В. И. Сопротивление материалов. – Физматлит, 2002. – С. 548-548.
  3. iSopromat Формула Журавского // https://youtu.be/4rsFdn5fSrU 
  4. Kirsanov2011 Формула Журавского // https://youtu.be/AZE70B9m2lA 
  5. Основные теории прочности // http://sopromat.in.ua/handbook/teorii-prochnosti 
  6. Гипотезы прочности // http://k-a-t.ru/tex_mex/5-sochetanie_defor2/index.shtml 
  7. https://umath.ru/theory/posledovatelnosti/arifmeticheskaya-progressiya/

5 778

Понравилась статья? Поделить с друзьями:
  • Как найти музыку по ссылке на видео
  • Как составить урок закрепление
  • Lобщ как найти электротехника
  • Составить коллаж это как
  • Как найти изумруд в земле