Как найти напряженность магнитного поля в центре

Содержание:

  • Определение и формула напряженности магнитного поля
  • Закон Био-Савара-Лапласа
  • Единицы измерения
  • Примеры решения задач

Определение и формула напряженности магнитного поля

Определение

Напряженностью магнитного поля $bar{H}$ называют
векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

$$bar{H}=frac{bar{B}}{mu_{0}}-bar{J}(1)$$

где $bar{B}$ – вектор магнитной индукции,
$mu_{0}=4 pi cdot 10^{-7}$ Гн/м(Н/А2)- магнитная постоянная,
$bar{j}$ – вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

$$bar{H}=frac{bar{B}}{mu_{0}}$$

В изотропной среде формула (1) преобразуется к виду:

$$bar{H}=frac{bar{B}}{mu_{0} mu}$$

где $mu$ – скалярная величина, называемая
относительной магнитной проницаемостью среды (или просто магнитной проницаемостью). В изотропной среде векторы напряженности
магнитного поля и магнитной индукции совпадают по направлению.

Иногда напряженность магнитного поля $d bar{H}$ определяют как
векторную величину, направленную по касательной к силовой линии поля, по модулю равной отношению силы (dF), с которой поле
воздействует на единичный элемент тока (dl), который расположен перпендикулярно полю в вакууме, к магнитной постоянной:

$$d H=frac{d F}{mu_{0} I d l}$$

Закон Био-Савара-Лапласа

Это важнейший в электромагнетизме закон. Он определяет вектор напряженности $d bar{H}$
в произвольной точке магнитного поля, которое создает в вакууме элементарный проводник длинны dl с постоянным током I:

$$d bar{H}=frac{1}{4 pi} frac{I}{r^{3}} d bar{l} times bar{r}(5)$$

где $d bar{l}$ – вектор элемента проводника, который по модулю равен длине
проводника, направление совпадает с направлением тока; $bar{r}$ – радиус–вектор,
который проводят от рассматриваемого элементарного проводника к точке рассмотрения поля;
$r=|bar{r}|$ .

Вектор $d bar{H}$ – перпендикулярен плоскости, в которой находятся
векторы $d bar{l}$ и
$bar{r}$, и направлен так, что из его конца вращение вектора
$d bar{l}$ по кратчайшему пути до совмещения с вектором
$bar{r}$ происходило по часовой стрелке. Для нахождения направления вектора
$d bar{H}$ можно использовать правило буравчика (Буравчик (винт) вращаем так,
чтобы его поступательное движение совпадало с направлением тока, тогда направление, по которому вращается ручка винта, совпадает с направлением
вектора напряженности поля, которое создает рассматриваемый ток).

Закон Био-Савара-Лапласа дает возможность вычислять величину полной напряженности магнитного поля, которое создает ток, текущий по проводнику любой формы.

Для нахождения полной напряженности магнитного поля, которое создает в исследуемой точке ток I, который течет по проводнику l, следует
векторно суммировать все элементарные напряженности $d bar{H}$, порождаемые
элементами проводника и найденные по формуле (4).

Единицы измерения

Основной единицей измерения момента силы в системе СИ является: [H]=А/м

Примеры решения задач

Пример

Задание. Чему равна напряженность (H) в центре кругового витка (R — радиус витка) с током I.

Решение. Каждый элементарный ток витка магнитное поле в центре окружности, напряженность которого направлена по
положительной нормали к плоскости контура витка (рис.1). Поэтому, если элементарную напряженность поля найти по закону Био-Савара –
Лапласа, то векторное сложение элементарных полей можно будет заменить на алгебраическое.

В соответствии с законом Био-Савара – Лапласа dH равно:

$$d bar{H}=frac{1}{4 pi} frac{I}{r^{3}} d bar{l} times bar{r}(1.1)$$

Применяя выражение (1.1) к нашему случаю, получим:

$$d H=frac{1}{4 pi} frac{I d l}{R^{2}}(1.2)$$

Возьмем интеграл по контуру, получим:

$$H=oint_{L} frac{1}{4 pi} frac{I d l}{R^{2}}=frac{1}{4 pi} I cdot frac{2 pi R}{R^{2}}=frac{I}{2 R}$$

Ответ. $H=frac{I}{2 R}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова напряженность магнитного поля, которую создает электрон, движущийся прямолинейно и равномерно со
скоростью v? Если точка, в которой исследуется поле, находится на расстоянии r от электрона на перпендикуляре к вектору скорости,
если перпендикуляр провести через мгновенное положение частицы.

Решение. Сделаем рисунок.

Напряженность магнитного поля будем искать, применяя закон Био – Савара – Лапласа:

$$d bar{H}=frac{1}{4 pi} frac{I}{r^{3}} d bar{l} times bar{r}(2.1)$$

Учтем, что:

$$I d l=S j d l(2.2)$$

Если все заряды одинаковы (q), то плотность тока равна:

$$bar{j}=q n bar{v}(2.3)$$

заряд отрицательный, следовательно, направления векторов
$bar{j}$ и
$bar{v}$ противоположны. n – концентрация зарядов. Подставим формулу (2.3)
в (2.2), результат в (2.1) получаем:

$$d bar{H}=frac{1}{4 pi} frac{S q n d l}{r^{3}} bar{v} times bar{r}(2.4)$$

где dN=Sdln — количество заряженных частиц в отрезке dl. В таком случае, напряженность поля, которое создает один заряд:

$$bar{H}=frac{d bar{H}}{d N}=frac{1}{4 pi} frac{q}{r^{3}} bar{v} times bar{r}(2.4)$$

По условию задачи $bar{v} perp bar{r}$ , значит модуль напряжённости магнитного поля в точке А (рис.2) будет равен:

$$H=frac{1}{4 pi} frac{q v}{r^{2}}$$

Ответ. $H=frac{1}{4 pi} frac{q v}{r^{2}}$

Читать дальше: Формула напряженности электрического поля.

Формула напряженности магнитного поля

Определение и формула напряженности магнитного поля

Напряженностью магнитного поля $bar$ называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

где $bar$ – вектор магнитной индукции, $mu_<0>=4 pi cdot 10^<-7>$ Гн/м(Н/А 2 )- магнитная постоянная, $bar$ – вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

В изотропной среде формула (1) преобразуется к виду:

где $mu$ – скалярная величина, называемая относительной магнитной проницаемостью среды (или просто магнитной проницаемостью). В изотропной среде векторы напряженности магнитного поля и магнитной индукции совпадают по направлению.

Иногда напряженность магнитного поля $d bar$ определяют как векторную величину, направленную по касательной к силовой линии поля, по модулю равной отношению силы (dF), с которой поле воздействует на единичный элемент тока (dl), который расположен перпендикулярно полю в вакууме, к магнитной постоянной:

Закон Био-Савара-Лапласа

Это важнейший в электромагнетизме закон. Он определяет вектор напряженности $d bar$ в произвольной точке магнитного поля, которое создает в вакууме элементарный проводник длинны dl с постоянным током I:

где $d bar$ – вектор элемента проводника, который по модулю равен длине проводника, направление совпадает с направлением тока; $bar$ – радиус–вектор, который проводят от рассматриваемого элементарного проводника к точке рассмотрения поля; $r=|bar|$ .

Вектор $d bar$ – перпендикулярен плоскости, в которой находятся векторы $d bar$ и $bar$, и направлен так, что из его конца вращение вектора $d bar$ по кратчайшему пути до совмещения с вектором $bar$ происходило по часовой стрелке. Для нахождения направления вектора $d bar$ можно использовать правило буравчика (Буравчик (винт) вращаем так, чтобы его поступательное движение совпадало с направлением тока, тогда направление, по которому вращается ручка винта, совпадает с направлением вектора напряженности поля, которое создает рассматриваемый ток).

Закон Био-Савара-Лапласа дает возможность вычислять величину полной напряженности магнитного поля, которое создает ток, текущий по проводнику любой формы.

Для нахождения полной напряженности магнитного поля, которое создает в исследуемой точке ток I, который течет по проводнику l, следует векторно суммировать все элементарные напряженности $d bar$, порождаемые элементами проводника и найденные по формуле (4).

Единицы измерения

Основной единицей измерения момента силы в системе СИ является: [H]=А/м

Примеры решения задач

Задание. Чему равна напряженность (H) в центре кругового витка (R — радиус витка) с током I.

Решение. Каждый элементарный ток витка магнитное поле в центре окружности, напряженность которого направлена по положительной нормали к плоскости контура витка (рис.1). Поэтому, если элементарную напряженность поля найти по закону Био-Савара – Лапласа, то векторное сложение элементарных полей можно будет заменить на алгебраическое.

В соответствии с законом Био-Савара – Лапласа dH равно:

Применяя выражение (1.1) к нашему случаю, получим:

Напряженность поля в центре окружности

Напряженность электрического поля

О чем эта статья:

8 класс, 10 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

расстояние между зарядами очень мало — порядка 10 -15 м;

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Напряженность электрического поля — это отношение вектора силы (vec ) , с которой поле действует на пробный заряд (q) , к самому пробному заряду с учетом его знака.

Единицы измерения: (displaystyle [text /text ]) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда (q) по поверхности площади (S) поверхностная плотность заряда (displaystyle sigma) постоянна и равна

Напряженность электростатического поля точечного заряда Q в точке A, удаленной на расстояние (r) от заряда (Q) , определяется формулой:

Принцип суперпозиции полей

Пусть заряды (displaystyle q_1, q_2, q_3. , q_n) по отдельности создают в данной точке поля (vec _1) , (vec _2) . (vec _n) . Тогда система этих зарядов создает в данной точке поле (vec ) , равное векторной сумме напряженностей полей отдельных зарядов.

Разберемся, что такое принцип суперпозиции на примере электрического поля. Благодаря ему, можно найти напряженность двух точечных зарядов, в каждой точке поля (А) . Рассмотрим рисунок:

здесь видно, что для нахождения направления результирующего вектора (vec ) , нужно сложить вектора (vec _1) и (vec _2) по правилу параллелограмма. Это и есть принцип суперпозиции.

Поток вектора напряженности электростатического поля (vec ) через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную (varepsilon_0) .

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Проведём сферическую поверхность радиусом (r>R) . Пусть её заряд равен (q) . По теореме Гаусса:

Заряженный шар

Рассмотрим электрическое поле равномерно заряженного шара. Напомним, что объём шара равен (V=dfrac pi R^3) . Тогда его заряд (q=dfrac pi R^3rho) . Напряжённость поля вне шара (r>R) можно найти так же, как и вне сферы:

Для нахождения напряжённости внутри шара применим теорему Гаусса для сферической поверхности радиусом (r . По теореме Гаусса:

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Напряженность магнитного поля

Одним из фундаментальных понятий всех происходящих в природе электромагнитных явлений выступает магнитное поле, важнейшей характеристикой которого служит напряжённость.

Определение и формула напряжённости магнитного поля

Вокруг постоянного магнита или проводника с протекающим по нему электрическим током всегда присутствует магнитное поле. Эта одна из форм существования электромагнитного поля, естественного или искусственного происхождения. Как и всякая физическая величина, она имеет свои характеристики, одной из которых выступает напряжённость магнитного поля.

Из курса физики известно, что напряжённость магнитного поля H – это векторная (не скалярная, то есть определённым образом направленная в пространстве) величина, являющейся геометрической разницей между векторами магнитной индукции B и вектором намагниченности M.

Небольшое пояснение. Магнитная индукция B – это силовая векторная характеристика магнитного поля в конкретной точке пространства, которая характеризует силу воздействия на электрический заряд определённой величины, движущийся в этом поле.

Намагниченность M – это векторный показатель, демонстрирующий магнитное состояние тела, являющегося источником возникшего магнитного поля. Формулы, описывающие величину напряжённости магнитного поля в разных системах единиц измерения, выглядят следующим образом:

В системе СИ (Международной системе единиц):

где μ0 – магнитная постоянная, равная 4π10 −7 Гн/м, или менее точно 1,2566370614 10 -6 Н/А 2 . Единицей измерения напряжённости здесь выступает ампер на метр. 1А/м = 4π/1000Э = 0,01256637Э.

В системе СГС (сантиметр-грамм-секунда):

Здесь единицей измерения служит эрстед (Э). 1Э = 1000/4πА/м = 79,5775 А/м. При этом надо в обязательном порядке учитывать, что намагниченность зависит от магнитной проницаемости среды следующим образом:

M = ((μ-1)/4πμ)B, где μ – магнитная проницаемость, составляющая:

  • для диамагнетиков (стекло, медь, вода) – 0,99999;
  • для парамагнетиков (алюминий, воздух, кислород) – 1,0000;
  • для ферромагнетиков: никель – 1100; железо – 8000.

Физический смысл

Физический смысл напряжённости находится в прямой зависимости от среды формирования магнитного поля:

  • при её отсутствии или в вакууме, напряжённость и вектор магнитного поля – H и B, совпадают между собой с точностью до величины магнитной постоянной μ0;
  • в магнитной среде напряжённость – H представляет собой величину воздействия «внешнего» поля. Поля, имеющего место быть при отсутствии самого магнитного материала. То есть она соответствует вектору магнитной индукции – B внешних полей воздействия.

Закон Био-Савара-Лапласа

Главный закон магнитостатики, действие которого экспериментально было обнаружено в начале XIX века французскими учёными Био и Саваром, принял свою формулировку благодаря другому французскому исследователю маркизу де Лапласу. Именно он показал, что «магнитное поле любого тока может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока». Аналогичный вывод несколько позже был сделан исходя из двух уравнений Максвелла, составляющих совместно с выражениями для силы Лоренца теоретическую основу классической электродинамики.

В обобщённом виде закон выглядит следующим образом:

Пользуясь системой единиц СИ, для вакуума получаем:

где I – ток; dl – вектор, совпадающий и сонаправленный с протекающим током, r – модуль радиус-вектора, направленный в точку определения dB, α – угол между dl и r.

Циркуляция вектора напряжённости магнитного поля

В 1826 году ещё один французский учёный – Андре Мари Ампер сформулировал теорему о циркуляции магнитного поля (позже она также была подтверждена шотландцем Максвеллом), гласящую, что «Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающий контур циркуляции».

Из которой следует, что циркуляция вектора напряжённости магнитного поля соответствует сумме свободных токов, сцепленных с контуром. Связанные токи, образованные в магнетике под воздействием внешних полей, явно здесь не присутствуют.

Формулы

что в дифференциальной форме выглядит следующим образом:

где j – плотность тока, а c – скорость света в вакууме.

Напряжённость магнитного поля в цилиндрической катушке

Напряжённость магнитного поля в цилиндрической катушке прямо пропорциональна силе тока, зависящей, в свою очередь, от прикладываемого напряжения, а также сопротивления, определяемого числом витков катушки и обратно пропорциональна длине катушки.

В приведённой формуле:

  • I – сила протекающего тока;
  • n – число витков катушки;
  • L – длина цилиндрической катушки.

Вокруг прямолинейного проводника

Магнитное поле, окружающее прямолинейный проводник, напрямую зависит от величины и направления протекающего тока:

Где I – величина тока, а r – расстояние точки замера от проводника.

В центре витка с током

Здесь формула расчёта напряжённости практически аналогична случаю прямолинейного проводника:

Лишь R – обозначает радиус токопроводящего витка.

Определение напряжённости магнитного поля, измерение его величины в разных местах и условиях имеет большое практическое значение. Прежде всего, потому что все мы живём в магнитном поле земли и нередко подвергаемся воздействию внеземных магнитных полей.

Кроме того, данная величина важна с электротехнических позиций, вследствие электромагнитного воздействия на физические тела, попадающие в зону влияния магнитного поля. Так большое практическое значение находит использование тороидального магнитного поля, образованного катушкой с сердечником, внутри которой оно максимально; а вне её – равняется нулю.

источники:

http://b4.cooksy.ru/articles/napryazhennost-polya-v-tsentre-okruzhnosti

http://principraboty.ru/napryazhennost-magnitnogo-polya-formuly-i-raschety-zakon-biosavaralaplasa/

Напряженность магнитного поля

Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит.
Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил.
Этот момент характеризует величину напряженности поля в данном месте.

В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки.
Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному,
вне катушки — от северного к южному.

Единица СИ напряженности магнитного поля

Единица СИ напряженности магнитного поля:

[ [H] = frac{Ампер}{Метр} ]

Эрстед — Единица напряженности магнитного поля

Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.

[ 1 Эрстед = frac{1000}{4π} frac{Ампер}{метр} ]

[ 1 frac{Ампер}{метр} = frac{4π}{1000} Эрстед ]

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Если

H напряженность магнитного поля внутри цилиндрической катушки, Ампер/метр
I сила тока в катушке, Ампер
n число витков, Ампер
l длина катушки (т. е. силовых линий в области однородного поля), метр

то напряженность магнитного поля определяется формулой

[ H = frac{I n}{l} ]

Напряженность магнитного поля вокруг прямолинейного проводника

Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.

Если

H напряженность магнитного поля прямолинейного проводника, Ампер/метр
I сила тока в проводнике, Ампер
r расстояние от проводника в плоскости, перпендикулярной проводнику, метр

то напряженность магнитного поля определяется формулой

[ H = frac{I}{2πr} ]

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Если

H напряженность магнитного поля в центре витка с током, Ампер/метр
I сила тока в витке, Ампер
r радиус витка, метр

то напряженность магнитного поля определяется формулой

[ H = frac{I}{2r} ]

Напряженность магнитного поля

стр. 645

5

Лабораторная работа № 31

определение
напряжённости магнитного поля в
центре кругового тока

Цель работы

  1. Проверить закон
    Био-Савара-Лапласа.

  2. Определить напряжённость магнитного
    поля в лаборатории.

Теоретическое введение

Если по проводнику протекает электрический
ток, то в окружающем его пространстве
возникает магнитное поле. Количественными
характеристиками магнитного поля
являются магнитная индукция

(Тл)
и напряжённость
(А/м).
Эти величины связаны между собой
соотношением:


, (1)

где μо = 4π∙10-7 Гн/м — магнитная
постоянная, μ – магнитная проницаемость
среды.

Численное
значение напряжённости dH
магнитного поля, создаваемого элементом
проводника dl, по
которому идёт ток силой I,
в точке, отстоящей от данного
элемента проводника на расстояние r,
определяется по закону
Био
Савара-Лапласа:


(2)

где α – угол между направлением тока в
данном элементе проводника dl
и радиус-вектором
,
проведённым из этого элемента в
точку, в которой определяется напряжённость
поля.

Направление
вектора

находится по правилу буравчика.

Вектор
напряжённости

общего магнитного поля, создаваемого
всем проводником, есть векторная сумма
напряжённостей полей, создаваемых
отдельными элементами:


, (3)

где интегрирование ведётся по всей
длине проводника.

Таким
способом можно рассчитать и напряжённость
магнитного поля в центре кругового
витка с током. В этом случае для всех
элементов проводника расстояние r
до точки, в которой определяется
напряжённость (центра), равно радиусу
витка R, а угол α = 90о.
В центре кругового тока все векторы
напряжённостей, создаваемых отдельными
элементами, совпадают по направлению
(перпендикулярны плоскости витка),
поэтому

.
(4)

В
последней формуле интегрирование
ведётся по всей длине кругового витка.
Из (4) и (2), с учётом того, что r
= R и
sin α = sin
90о = 1, получаем:


. (5)

Напряжённость
в центре плоской короткой катушки,
содержащей N одинаковых
витков,


. (6)

В данной
работе проводится экспериментальная
проверка последней формулы и, следовательно,
проверка справедливости закона
Био-Савара-Лапласа (2).

Описание установки и метода

Установка, схема которой приведена на
рис. 1, состоит из следующих последовательно
соединённых элементов:

  • источника
    постоянного тока GB,

  • выключателя
    SA,

  • реостата
    для изменения силы тока в цепи R1,

  • амперметра
    РА,




тангенс-гальванометра РН – прибора,
предназначенного для измерения
напряжённости магнитного поля в центре
кругового тока.

Рисунок
1
. Принципиальная
схема установки

На рис.
2 показан вид сверху на тангенс-гальванометр.
Он представляет собой плоскую короткую
вертикальную катушку радиусом R с
числом витков N, в центре которой на
вертикальном острие расположена короткая
магнитная стрелка NS,
способная вращаться в горизонтальной
плоскости.

N

2R S

φ

S

Рисунок
2.
Вид сверху на
тангенс-гальванометр

Принцип
измерения основан на том, что, если при
отсутствии тока в катушке стрелка
ориентирована вдоль силовых линий
магнитного поля, имеющегося в лаборатории,
то при пропускании тока появляется
собственное магнитное поле катушки,
заставляющее стрелку отклониться на
некоторый угол φ.

В
исходном состоянии, когда тока в цепи
нет, катушку надо расположить так, чтобы
горизонтальная составляющая

вектора напряжённости магнитного поля
лаборатории лежала в её плоскости. Для
этого катушку без тока поворачивают
так, чтобы стрелка одним из концов была
направлена на нулевое деление круговой
шкалы, жёстко связанной с катушкой. При
пропускании тока возникает собственное
магнитное поле катушки, вектор
напряжённости которогоперпендикулярен
плоскости витков и, тем самым, вектору
.
Стрелка повернётся на угол φ и установится
вдоль вектора напряжённости результирующего
поля
.
Из рис. 2 видно, что


. (7)

Из
формул (6) и (7) вытекает, что, если закон
Био-Савара-Лапласа справедлив, то тангенс
угла отклонения стрелки прямо
пропорционален силе тока:


. (8)

Отсюда
же следует формула для определения
напряжённости магнитного поля лаборатории:


. (9)

Порядок
выполнения работы

  1. Собрать схему, показанную на рис. 1.

  2. Не
    подавая ток в цепь (I=0),
    вращением катушки вокруг вертикальной
    оси совместить её плоскость со стрелкой
    тангенс-гальванометра.

  3. Изменяя
    силу тока в контуре от 0 до 1А, снять
    зависимость φ(I) (8-10
    точек). Результаты занести в таблицу
    1.

  4. Определить
    и записать число витков в контуре
    N, радиус витков
    R и погрешность ∆R.

Таблица 1 Таблица расчетных и
экспериментальных данных

№ п/п

I,
А

φ

tgφ

Обработка результатов измерений

  1. Построить график зависимости tg
    φ(I)
    . Сделать вывод
    о справедливости закона Био-Савара-Лапласа.

  2. Определить,
    в каком из опытов угол φ был наиболее
    близок к 45о (в этом случае
    погрешность расчёта НЛ
    минимальна). Для этого опыта рассчитать
    по формуле (9) горизонтальную составляющую
    НЛ магнитного поля
    лаборатории. Погрешность ∆НЛ
    рассчитать по формуле:

НЛ
= Н
Л∙∙
, (10)

где ∆φ = 0,5о (перевести в радианы),
I определить по
классу точности прибора РА.

Сравнить
найденное значение НЛ с
известным значением напряжённости
магнитного поля Земли для Брянска НЗМ
= (16,0 ± 0,5) А/м. Сделать вывод о
влиянии лабораторного оборудования на
магнитное поле Земли.

Контрольные вопросы

  1. Характеристики магнитного поля:
    напряжённость и индукция. Их взаимосвязь
    и единицы измерения.

  2. Закон
    Био-Савара-Лапласа. Правило буравчика.

  3. Вывод
    формулы для напряжённости магнитного
    поля в центре кругового тока.

  4. Вывод
    формулы для напряжённости магнитного
    поля прямолинейного проводника с током.

  5. Принцип
    действия тангенс-гальванометра.

Список рекомендованной литературы

  1. Трофимова Т.И. Курс физики: Учебное
    пособие для вузов. – 7-е изд., испр. –
    М.: Высшая школа, 2003. – § 109, 110, 112.

  2. Детлаф
    А.А., Яворский Б.М. Курс физики: Учебное
    пособие для вузов. – 2-е изд., испр. и
    доп. — М.: Высшая школа, 1999. – §§ 21.1, 22.1,
    22.2.

  3. Савельев
    И.В. Курс общей физики: Учеб: В 3-х т. Т.2:
    Электричество и магнетизм. Волны.
    Оптика. – 3-е изд., испр. — М.: Наука., 1989.
    – § 40, 42.

  4. Грабовский
    Р.И. Курс физики (для сельскохозяйственных
    вузов): Учеб. пособие. – 5-е изд., перераб.
    и доп. – М.: Высшая школа, 1980. – Ч.2 §§ 24,
    26, 27.

Соседние файлы в папке Сборник МУ часть 3

  • #
  • #
  • #
  • #
  • #
  • #

Вы здесь

Напряженность магнитных полей токов

СОДЕРЖАНИЕ

  • Напряженность магнитных полей токов
  • Литература

 Напряженность магнитных полей токов

Силовыми линиями магнитного поля называют такие линии, касательные к которым совпадают с направлением напряженности этого поля в данной точке. Магнитные силовые линии поля замкнуты (и отличие от силовых линий электростатического поля); такие поля называют вихревыми (рис.1, 2).

Силовые линии магнитного поля кругового тока
Рис.1. Силовые линии магнитного поля кругового тока обнаруживаемые по действию поля на железные опилки

Силовые линии магнитного поля соленоида
Рис.2. Силовые линии магнитного поля соленоида, обнаруживаемые по действию поля на железные опилки

Силовые линии прямолинейного тока представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной к проводнику (рис.3). Направление силовой линии магнитного поля определяется по правилу правого винта: если винт поворачивать так, чтобы он поступательно перемещался по направлению тока, то направление вращения его головки будет совпадать с направлением силовых линии.

Правило винта
Рис.3. К закону Био-Савара-Лапласа. Правило винта

Напряженность магнитного поля, отдаваемая элементом тока i·Δl равна в системе СГСМ (рис.3)

  Напряженность магнитного поля 1)
  Напряженность магнитного поля 2)

где

r расстояние от элемента тока до точки, в которой определяйся напряженность;
α угол между r и i·Δl.

Напряженность магнитного поля прямого длинного провода с током (эта и нижеследующие формулы даны в системах СГСМ и СИ):

  Напряженность магнитного поля 3)

где

а расстояние от проводника до точки поля, в которой определяется напряженность.

Напряженность магнитного поля в центре кругового тока:

  Напряженность магнитного поля в центре кругового тока 4)

где

Напряженность поля внутри тороидальной катушки (рис.4):

  Напряженность поля внутри тороидальной катушки 5)

где

N полное число витков;
r средний радиус тороида.

Тороидальная катушка
Рис.4. Тороидальная катушка (тороид)

Напряженность поля внутри прямого соленоида, длина которого значительно больше диаметра витков:

где

n число витков на единицу длины соленоида.

Напряженность поля в таком соленоиде имеет одинаковые величину и направление во всех точках, т. е. поле однородно.

Напряженность поля движущейся заряженной частицы (рис.5):

  Напряженность поля 7)

где

v скорость частицы;
r расстояние от частицы до точки поля, в которой определяется напряженность;
υ угол между направлением скорости и прямой, проведен¬ной от частицы в данную точку поля.

Магнитное поле движущейся частицы
Рис.5. Магнитное поле движущейся частицы

Единицей напряженности магнитного поля в системе СГСМ является эрстед (Э), в системе СИ – ампер на метр (А/м). 1 А/м – это напряженность магнитного поля, создаваемого прямолинейным бесконечно длинным проводником с током в 4π А на расстоянии 2 м от него. 1 Э – это напряженность магнитного поля, создаваемого прямолинейным бесконечно длинным проводником с током 1 ед. СГСМ (10 А) на расстоянии 2 см от него:

 ЛИТЕРАТУРА

  • Справочник по элементарной физике / Н.И. Кошкин, М.Г. Ширкевич. М.: Наука. 1976. 255 с.
  • 6713 просмотров

Понравилась статья? Поделить с друзьями:
  • Как найти ширину квадрата 4 класс
  • Как найти все комментарии пользователя одноклассников
  • Как исправить ботокс осложнения
  • Как найти кейс для скряги
  • Как найти мясо в лесу