Как найти напряженность точки между двумя зарядами

Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о
    линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении
    несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности
электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на
    отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.


Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.

В системе СИ
Н·м2/Кл2,

где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.

Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества  и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.

Тогда логика электромагнитного взаимодействия такова: заряд displaystyle q создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд displaystyle q, находящийся на любом расстоянии от источника.

Закон Кулона описывает взаимодействие между двумя зарядами:

displaystyle left| {{F}_{k}} right|=kfrac{left| Q right|left| q right|}{{{r}^{2}}} (1)

  • где

Закон Кулона. Пробный заряд

Рис. 1. Закон Кулона. Пробный заряд

Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд displaystyle left| Q right| — некий малый заряд, который не будет искажать поле исследуемого нами заряда displaystyle left| Q right|. Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

displaystyle vec{E}=frac{{{{vec{F}}}_{k}}}{q} (2)

  • где
    • displaystyle vec{E} — вектор напряжённости электрического поля.

Подставим силу Кулона в (1):

displaystyle vec{E}=kfrac{Qq}{q{{r}^{3}}}vec{r}=kfrac{Q}{{{r}^{3}}}vec{r} (3)

Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

Напряжённость электрического поля

Рис. 2. Напряжённость электрического поля

Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность displaystyle vec{E} — В/м.

Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

displaystyle left| {vec{E}} right|=kfrac{left| Q right|}{{{r}^{3}}}left| {vec{r}} right|=kfrac{left| Q right|}{{{r}^{2}}} (4)

Напряжённость электрического поля (направление)

Рис. 3. Напряжённость электрического поля (направление)

Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

displaystyle {{vec{E}}_{o}}=sumlimits_{i}{{{{vec{E}}}_{i}}} (5)

  • где

Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.

Принцип суперпозиции напряжённости

Рис. 4. Принцип суперпозиции напряжённости

Проиллюстрируем: пусть в системе присутствует 3 заряда (displaystyle {{q}_{2}}, displaystyle {{q}_{3}}, displaystyle {{vec{r}}_{1}}), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (displaystyle {{vec{r}}_{2}}, displaystyle {{vec{r}}_{3}}, displaystyle {{vec{r}}_{3}}) (рис. 4).

Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый displaystyle {{vec{E}}_{o}}.

Напряжённость поля бесконечной заряженной плоскости.

Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

Напряжённость бесконечной плоскости

Рис. 5. Напряжённость бесконечной плоскости

Напряжённость такой плоскости вблизи её:

displaystyle E=frac{sigma }{2varepsilon {{varepsilon }_{0}}} (6)

  • где

В (6) использовалось определение поверхностной плотности заряда:

displaystyle sigma =frac{Q}{S} (7)

  • где

Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.

Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).

Напряжённость двух бесконечных плоскостей

Рис. 6. Напряжённость двух бесконечных плоскостей

Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:

displaystyle {{E}_{0}}=frac{sigma }{2varepsilon {{varepsilon }_{0}}}+frac{sigma }{2varepsilon {{varepsilon }_{0}}}=frac{sigma }{varepsilon {{varepsilon }_{0}}}=frac{q}{varepsilon {{varepsilon }_{0}}S} (8)

Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).

Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.

Методика
решения задач на нахождение напряжённости
результирующего поля аналогична методике
нахождения результирующей силы,
действующей на точечный заряд со стороны
других точечных зарядов (см. раздел
1.1), только вместо закона Кулона
используется формула напряженности
точечного заряда (2.2).

.

Задача
2.1.
Два
точечных заряда q1
и q2
находятся на расстоянии d
друг от друга. Найти напряжённость в
точках А, В, С и D
(рис. 13). Считаем расстояния от зарядов
q1
и q2
до заданных точек известными и во всех
случаях обозначаем r1
и r2
соответственно.

Решение.
Сделаем рисунок для каждого случая
отдельно. Так как заряды оба отрицательные,
то векторы напряжённостей
инаправлены в каждом случае к зарядамq1
и q2
вдоль линии, соединяющей заряд и заданную
точку, и берут начало в заданной точке.

Направление
результирующего вектора
определяетсяпо
принципу суперпозиции

путём векторного сложения. Поэтому
векторная запись для всех случаев
одинакова:

.

Модуль
(длина) каждого из векторов рассчитывается
по формуле напряженности точечного
заряда (2.2). Модуль результирующего
вектора определяется из геометрических
построений.

  1. В
    точке А (рис. 14, а) векторы
    инаправлены в противоположные стороны,
    поэтому модуль результирующего вектораопределяется как разность модулей
    векторовии направлен в сторону большего вектора:

.

  1. В
    точке В (рис. 14, б) векторы
    инаправлены в одну сторону, поэтому
    модуль результирующего вектораопределяется
    как сумма модулей векторовии направлен в эту же сторону:

.

  1. Вточке С (рис. 14, в) векторыивзаимно перпендикулярны, поэтому модуль
    результирующего вектораявляется гипотенузой прямоугольного
    треугольника и определяется по теореме
    Пифагора:

.

  1. В
    точке D
    (рис. 14, г) векторы
    иобразуют треугольник, поэтому модуль
    результирующего вектораопределяется
    по теореме косинусов:

.

Если
угол α
неизвестен, то его определяют, используя
теорему косинусов для треугольника со
сторонами r1,
r2,
d:

.

Задача
2.2.
Поле
создано тремя одинаковыми точечными
зарядами q,
расположенными в вершинах равностороннего
треугольника со стороной а.
Вычислить напряжённость электростатического
поля в точке, находящейся на пересечении
высот этого треугольника.

Решение.
Так как напряжённость электростатического
поля
– величина
векторная, то необходимо определить
направление этого вектора и его модуль
(длину).

Направление
вектора напряжённости результирующего
поля определяем с помощью принципа
суперпозиции:

,

где
,и— напряжённость электростатического
поля, созданного каждым зарядом в
отдельности.

  1. Сначала
    строим векторы,и,
    берущиеначало
    в заданной точке. Так как все заряды
    одинаковые, а заданная точка равноудалена
    от них, то длины этих векторов будут
    равны. Поскольку знак зарядов
    отрицательный, то векторы
    ,ибудут направлены к зарядам (рис. 15).

  2. Складываем
    геометрически векторы
    и.
    Результирующий векторбудет лежать на той же прямой, что и
    вектор.

  3. Находим
    длину вектора
    по теореме косинусов:

,

где
α
– угол между векторами
и.

С
учётом того, что Е1
= Е2,
α = 120º, cos 120º
= – 0,5, получим:

.

  1. Складываем
    геометрически векторы
    и.Так
    как эти векторы равны по длине и
    противоположны по направлению, то их
    векторная сумма равна нулю:

.

Методика
расчета не меняется, если образующие
систему заряды имеют другие знаки и
расположения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Закон Кулона 

Закон сохранения электрического заряда

Напряженность

Принцип суперпозиции

Электрическое поле

Потенциал электростатического поля

Разность потенциалов


Теория

Совсем чуть−чуть. 

Закон Кулона — сила, с которой два точечных заряда действуют друг на друга. Она обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов.

Заряды с одинаковым знаком отталкиваются, с разными — притягиваются. По III з. Ньютона сила действия одного заряда равна силе действия другого:

Наглядно рассказывается об этом в видео.
А напряженность — силовая характеристика электрического поля. По-простому: электрическое поле действует на заряд, и вот сила, с которой поле действует на заряд, и есть напряженность. 

Напряженность НЕ зависит от величины заряда, помещенного в поле!

Задачи

Задача 1 Два одинаковых маленьких положительно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Скажем, что заряд одного шарика q, другого 5q. Тогда сила Кулона между ними:

А если теперь соединить два шарика, то общий заряд разделится пополам (на каждый шарик). Общий заряд 5q + q = 6q, тогда на каждом шарике окажется по 3q. Тогда сила Кулона:

Отношение получится таким:

Ответ: 1,8

Задача 2 Два одинаковых маленьких разноименно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 4 раза. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Та же самая задача? А вот и нет, одно слово другое: разноименно вместо положительных. Это значит, что один шарик будет заряжен положительно, другой отрицательно. По сравнению с первым случаем сила Кулона никак не изменится по модулю (только по нарпавлению).

А вот после соприкосновения изменится. Общий заряд: 5q − q = 4q или q − 5q = − 4q, тогда на каждый шар пойдет по 2q:

Отношение:

Ответ: 0,8

Задача 3 На нерастяжимой нити висит шарик массой 100 г, имеющий заряд 20 мкКл. Как необходимо зарядить второй шарик, который подносят снизу к первому шарику на расстояние 30 см, чтобы сила натяжения: а) увеличилась в 4 раза; б) рассмотреть случай невесомости?

В начальный момент времени на шарик действуют две силы:

а) Чтобы сила натяжения увеличилась в 4 раза, сила Кулона должна быть направлена вниз, значит, нужно поднести отрицательно заряженный шарик. Запишем также уравнение на ось Y:

б) Невесомость возникает, когда сила натяжения равна нулю. Для этого нужно, чтобы сила Кулона была направлена вверх, значит, подносим положительный заряд:

Ответ: −1,5 мкКл, 500 нКл.

Задача 3 Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает с поверхности пластинки электрон, который попадает в электрическое поле с напряженностью 125 В/м. Найти расстояние, которое он пролетит прежде, чем разгонится до скорости, равной 1% от скорости света. 

В задаче говорится про электрон, значит, его массу m = 9,1×10⁻³¹ кг и заряд q = 1,6 × 10⁻¹⁹ Кл можно посмотреть в справочных данных.

Найдем ускорение электрона в электрическом поле:

Остается найти пройденный путь в равноускоренном движении при нулевой начальной скорости: 

Ответ: 0,2 м

Задача 4 Полый заряженный шарик массой m = 0,4 г. движется в однородном горизонтальном электрическом поле из состояния покоя. Модуль напряженности электрического поля E = 500 кВ/м. Траектория шарика образует с вертикалью угол α = 45°. Чему равен заряд шарика? 

Для начала разберемся, какие силы действуют на заряд:

Заряд движется под углом 45 градусов, значит, отношением сил будет тангенс 45°:

Ответ: 8×10⁻⁹ Кл

Задача 5 При нормальных условиях электрический «пробой» сухого воздуха наступает при напряжённости электрического поля 30 кВ/см. В результате «пробоя» молекулы газа, входящие в состав воздуха, ионизируются и появляются свободные электроны. Какую кинетическую энергию приобретёт такой электрон, пройдя в электрическом поле расстояние 10⁻⁵ см? Ответ выразите в электронвольтах. (ЕГЭ)

Задача кажется весьма тяжелой, но это обманчиво. Воспользуемся знакомой формулой напряженности: 

Домножим на длину обе части, тогда слева получится работа, а работа — это изменение энергии:

Переводить сантиметры не обязательно, они сократятся. Чтобы перевести джоули в электронвольты, нужно разделить на 1,6 × 10⁻¹⁹

Ответ: 0,3 эВ

Задача 6 В вершинах равностороннего треугольника со стороной «а» находятся заряды +q, +q и -q. Найти напряженность поля Е в центре треугольника.

Покажем, как направлена напряженность: для двух положительных зарядов — от них (красные стрелочки), для отрицательного заряда — к нему (синяя стрелочка).

Угол между синим вектором и красным составляет 60°. Если продлить красный вектор до стороны, получится прямоугольный треугольник. Тогда, чтобы посчитать результирующую напряженность, спроецируем красные векторы на синий: 

Остается разобрать на каком расстоянии находятся заряды от центра треугольника. Высоту треугольника можно найти по т. Пифагора, равна она а√3/2. А расстояние тогда составит 2/3 от высоты:

Ответ: 6kq/a²

Задача 6 Два шарика с зарядами Q = –1 нКл и q = 5 нКл соответственно, находятся в однородном электрическом поле с напряженностью Е = 18 В/м, на расстоянии r = 1 м друг от друга. Масса первого шарика равна M = 5 г. Определите, какую массу должен иметь второй шарик, чтобы они двигались с прежним между ними расстоянием и с постоянным по модулю ускорением. (ЕГЭ — 2016)

Направим ось X вправо и покажем, какие силы действуют на каждый заряд.

На положительный заряд электрическая сила действует по линиям напряженности, для отрицательного заряда все наоборот. Силы кулона направлены к зарядам, они разноименные. Составим уравнение для каждого заряда:

Сумма всех сила равна ma, потому что в условии сказано, что шарики двигаются с постоянным ускорением, а чтобы расстояние не менялось, двигаться они должны в одном направлении.

Разделим одно уравнение на другое и выразим массу:

Ответ: 8,3 гр.

Задача 7 Четыре маленьких одинаковых шарика, связанных нерастяжимыми нитями одинаковой длины, заряженызарядами q, q, q и 2q. Сила натяжения нити, связывающей первый и второй шарики, равна T. Найти силу натяжения нити, связывающейвторой и третий шарики. (Росатом)

Покажем, каким силам противодействует сила натяжения Т. Воспользуемся принципом суперпозиции и законом Кулона:

Сила натяжения Т удерживает первый шарик, других сил для него нет, значит, больше ничего для первого случая не требуется. 

Как проще это запомнить: проводим линию перпендикулярно той нити, о которой говорим (красная черточка), после записываем только те силы между шариками, которые появляются по разные стороны от проведенной линии:

Теперь также составим уравнения для силы натяжения между вторым и третьим шариком:

Распишим каждое уравнение по закону кулона, скажем, что расстояние между соседними шариками равно «а»:

Второе уравнение с подстановкой выражения из первого:

Ответ: 71T/53

Задача 8 Точечный заряд, расположенный в точке C, создаёт в точках A и B поле с напряжённостью Ea и Eb соответственно (см. рисунок; угол ACB — прямой). Найти напряжённость электрическогополя, создаваемого этим зарядом в точке M, являющейся основанием перпендикуляра, опущенного из точки C на прямую AB. (Росатом)

Запишем, чему равна напряженность в каждой из этих точек, взяв длины отрезков за a; b; h:

Площадь прямоугольного треугольника можно найти как полупроизведение катетов или как полупроизведение высоты и основания:

Возведем в квадрат получившиеся уравнение, а дальше смертельный номер: возводим в −1 степень и домножаем обе части на kq:

Выразим a² и b² через напряженность:

Ответ: Ea+Eb

Задача 9 Частицы с массами M и m, и зарядами q и −q соответственно вращаются с угловой скоростью ω по окружностям вокруг оси, направленной по внешнемуоднородному электрическому полю с напряжённостью E (рис.). Найдите расстояние L между частицами и расстояние H между плоскостями их орбит. (Всеросс. 2008)

Накрест лежащие углы при параллельных прямых (движения частиц) и секущей силы Кулона равны α. Покажем какие силы действуют на каждую частицу:

Запишем уравнения по осям на верхнюю частицу:

На нижнюю частицу:

Построим два треугольника, которые показывают расстояние между частицами и высоту между ними. 

Разделим уравнения друг на друга, а также выразим тангенс угла из этих треугольников:

Сложим два уравнения, чтобы найти расстояние между плоскостями:

Пункт «а» решили, теперь с расстоянием разберемся: выразим из ур-ия (1) длину, а дальше из треугольника выразим синус угла альфа:

Вместо Н подставим то, что мы нашли:

Задача 10 В точке O к стержню привязана непроводящая нить длиной R c зарядом q на конце. Известный эталонный заряд Q и измеряемый заряд Q установлены на расстояниях L и L от точки O. Все заряды одногознака и могут считаться точечными. Найдите величину заряда Q, если в состоянии равновесия нить отклонена на угол β от отрезка, соединяющегозаряды Q и Q. (Всеросс. 2018)

Проведем оси, подпишем расстояние от Q₁ до q и от Q₂ до q. Запишем ур-ия сил на каждую ось:

Не хочется мучиться с силой натяжения нити, поэтому займемся ур-ем на ось Y:

Из прямоугольных треугольников можно получить такие соотношения, а также из теоремы косинусов выразить S₁ и S₂:

Подставим в ур-ие (1):

В качестве закрепления материала решите несколько похожих задач с ответами. 

Будь в курсе новых статеек, видео и легкого технического юмора.

Условие задачи:

Найти напряженность поля, создаваемого двумя точечными зарядами 2 и -4 нКл в точке, лежащей посередине прямой, соединяющей заряды, если напряженность поля, создаваемого только первым зарядом в этой точке, равна 2 мВ/м.

Задача №6.2.20 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(q_1=2) нКл, (q_2=-4) нКл, (r=frac{l}{2}), (E_1=2) мВ/м, (E-?)

Решение задачи:

Схема к решению задачиМодули напряженностей электрических полей (E_1) и (E_2), создаваемых зарядами (q_1) и (q_2), в точке A, находящейся посередине между зарядами, определим по таким формулам:

[left{ begin{gathered}
{E_1} = frac{{k{q_1}}}{{{r^2}}} hfill \
{E_2} = frac{{kleft| {{q_2}} right|}}{{{r^2}}} hfill \
end{gathered} right.]

Так как ({q_2} < 0), значит модуль в нижней формуле раскроем таким образом:

[left| {{q_2}} right| = – {q_2}]

Тогда:

[left{ begin{gathered}
{E_1} = frac{{k{q_1}}}{{{r^2}}} hfill \
{E_2} = frac{{ – k{q_2}}}{{{r^2}}} hfill \
end{gathered} right.]

Поделим нижнее равенство на верхнее:

[frac{{{E_2}}}{{{E_1}}} = frac{{ – {q_2}}}{{{q_1}}}]

[{E_2} = frac{{ – {q_2}}}{{{q_1}}}{E_1};;;;(1)]

Так как напряженность поля положительного заряда (E_1) направлено от заряда (q_1), а напряженность поля отрицательного заряда (E_2) направлено к заряду (q_2), то получается, что напряженности (E_1) и (E_2) будут сонаправлены (смотри схему). Тогда искомую напряженность поля (E) найдём по формуле:

[E = {E_1} + {E_2}]

Учитывая формулу (1), имеем:

[E = {E_1} – frac{{{q_2}}}{{{q_1}}}{E_1}]

[E = {E_1}left( {1 – frac{{{q_2}}}{{{q_1}}}} right)]

Численный ответ задачи равен:

[E = 2 cdot {10^{ – 3}} cdot left( {1 – frac{{left( { – 4} right) cdot {{10}^{ – 9}}}}{{2 cdot {{10}^{ – 9}}}}} right) = 6 cdot {10^{ – 3}};В/м = 0,06;мВ/см]

Ответ: 0,06 мВ/см.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

6.2.19 Два точечных заряда 4 и -2 нКл находятся друг от друга на расстоянии 60 см. Определить
6.2.21 Определить расстояние между двумя точечными зарядами 16 и -6 нКл, если
6.2.22 В однородном электрическом поле напряженностью 40 кВ/м, направленным

Понравилась статья? Поделить с друзьями:
  • Как найти собственные векторы для матрицы
  • Как в новосибирске найти клиентов
  • Как найти объем в чем измеряется объем
  • Как найти протечку под стяжкой
  • Фонит звук на телевизоре самсунг как исправить