Как найти напряженность заряда формула

Электростатика – раздел электродинамики,
изучающий взаимодействие неподвижных
электрических зарядов.

Электрический заряд – физическая
величина, определяющая силу электромагнитного
взаимодействия. Заряд обозначается
буквой q, измеряется
в кулонах (Кл).

В природе существует два вида
электрических зарядов
, которые условно
назвали «положительный» и «отрицательный».
Заряды одного знака отталкиваются,
разных знаков – притягиваются.

Электрический заряд всегда связан с
частицей. Существуют частицы без заряда,
но не существует заряда без частицы.
Величина электрического заряда не
зависит от скорости движения частицы.

Минимальный заряд, встречающийся в
природе, называется элементарным.
Величина элементарного заряда е =
1,6
10-19
Кл.
Заряды электрона, протона, позитрона
(античастица для электрона) равны по
модулю элементарному. Заряд любого
макроскопического тела кратен
элементарному, т. е. электрический заряд
– дискретная величина.

Все вещества состоят из атомов или
молекул. Атом состоит из положительно
заряженного ядра и отрицательно
заряженных электронов, движущихся
вокруг ядра. Поэтому любое макроскопическое
тело содержит электрически заряженные
частицы. Если суммарный заряд тела равен
нулю, то говорят что тело электрически
нейтральное или незаряженное. Электрический
заряд любой системы равен алгебраической
сумме зарядов тел, входящих в систему.
Заряды могут перераспределятся между
телами системы. Если система тел
электрически изолирована (через границу
системы не проникают другие заряды), то
в ней выполняется закон сохранения
заряда
:

алгебраическая сумма зарядов электрически
изолированной системы постоянна:

q1
+ q
2
+ … + q
n
= const.

Электризация – это процесс получения
электрически заряженных тел из
нейтральных.

При электризации трением одни вещества
отдают электроны, а другие их присоединяют.
Причина этого явления — в различии
энергии связи электронов с атомами в
этих веществах. Атом, потерявший электрон
называется положительным ионом,
присоединивший к себе электрон –
отрицательным ионом.

Точечный заряд – это заряженное
тело, размер которого много меньше
расстояния его возможного действия на
другие тела.

Закон Кулона (1875 г.): Сила взаимодействия
между двумя неподвижными точечными
зарядами, находящимися в вакууме, прямо
пропорциональна произведению модулей
зарядов, обратно пропорциональна
квадрату расстояния между ними и
направлена по прямой, соединяющей
заряды:
.

Коэффициент k, входящий
в закон Кулона, зависит от выбора системы
единиц. В системе СИ
.
Здесь

— электрическая постоянная.

Закон Кулона был получен экспериментально.
Он справедлив только для точечных
зарядов или равномерно заряженных
шаров. Электростатические взаимодействия
осуществляются посредством
электростатического поля.

Электростатическое поле это вид
материи который образуется неподвижными
электрическими зарядами и его можно
обнаружить по его действию на неподвижные
электрические заряды.

Силовой характеристикой электростатического
поля является напряженность
векторная физическая величина, численно
равная силе с которой поле действует
на единичный пробный положительный
заряд, помещенный в заданной точке поля.
.
Направление вектора напряженности
совпадает с направлением вектора силы,
действующей на положительный заряд,
помещенный в данной точке поля. Из закона
Кулона на основании определения
напряженности поля получаем формулу
для напряженности поля точечного заряда
на расстоянии r от него:

.

Для наглядности электростатическое
поле представляют непрерывными линиями
напряженности
– касательные к которым
в каждой точке совпадают по направлению
с направлением вектора напряженности
электростатического поля в данной
точке.

Линии напряженности не пересекаются
(в противном поле напряженность поля в
точке пересечения не имела бы определенного
значения); начинаются на положительных
зарядах (источники поля) и стекаются к
отрицательным зарядам (стоки). Модуль
вектора напряженности пропорционален
числу линий напряженности на густоте
линий напряженности можно судить о
модуле вектора напряженности на единицу
поверхности (густоте линий напряженности).

Электростатическое поле, векторы
напряженности которого одинаковы во
всех точках пространства, называется
однородным.

Принцип суперпозиции электрических
полей
: напряженность поля системы
зарядов в данной точке равна векторной
сумме напряженностей полей, созданным
в этой точке каждым зарядом в отдельности:
.

Теорема Гаусса.

Потоком вектора напряженности через
замкнутый контур площадью S
называется произведение проекции
вектора напряженности на нормаль к
контуру на площадь контура:
.

Поток вектора напряженности через
произвольную замкнутую поверхность
равен алгебраической сумме зарядов,
расположенных внутри этой поверхности,
деленной на электрическую постоянную:
.

Напряженность поля точечного заряда.

Для
определения напряженности проведем
сферическую поверхность S
радиусом r с центром
совпадающим с зарядом и воспользуемся
теоремой Гаусса. Так как внутри указанной
области находится только один заряд q,
то согласно указанной теореме получим
равенство:

(1), где En
— нормальная составляющая напряженности
электрического поля. Из соображений
симметрии нормальная составляющая
должна быть равна самой напряженности
и постоянна для всех точек сферической
поверхности, поэтому E=En=const.
Поэтому ее можно вынести за знак суммы.
Тогда равенство (1) примет вид
,
что и было получено из закона Кулона и
определения напряженности электрического
поля.

Электрическое поле заряженной сферы

Если
сфера проводящая, то весь заряд находится
на поверхности. Рассмотрим две области
I – внутри сферы радиуса
R с зарядом q
и вне сферы область II.

Для определения напряженности в области
I проведем сферическую
поверхность S1
радиусом r1 (0<r1<R)
и воспользуемся теоремой Гаусса. Так
как внутри указанной области зарядов
нет, то согласно указанной теореме
получим равенство:

(1), где En
— нормальная составляющая напряженности
электрического поля. Из соображений
симметрии нормальная составляющая
должна быть равна самой напряженности
и постоянна для всех точек сферической
поверхности, поэтому E1=En=const.
Поэтому ее можно вынести за знак суммы.
Тогда равенство (1) примет вид
.
Т. к. площадь сферы не равна нулю, то Е1=0
(во всех точках области I)
– внутри проводника зарядов нет и
напряженность поля равна нулю.

В области II Rr2
проведем сферическую поверхность S2
радиусом r2 и
воспользуемся теоремой Гаусса:


(2), 

— напряженность поля вне сферы
рассчитывается по той же формуле, что
и напряженность поля точечного заряда.

Электрическое поле заряженного шара

Заряд равномерно распределен по всему
объему шара, поэтому введем понятие
объемной плотности заряда:
.
Рассмотрим две области I
– внутри сферы радиуса R
с зарядом q и вне сферы
область II.

Для определения напряженности в области
I проведем сферическую
поверхность S1
радиусом r1 (0<r1<R)
и воспользуемся теоремой Гаусса:

— напряженность поля внутри шара
увеличивается прямо пропорционально
расстоянию до центра шара.

В области II R
 r2
проведем сферическую поверхность S2
радиусом r2 и
воспользуемся теоремой Гаусса:


(2), 

— напряженность поля вне шара рассчитывается
по той же формуле, что и напряженность
поля точечного заряда.

Электрическое поле заряженной нити

Для
равномерно заряженной нити введем
понятие линейной плотности заряда.
Для определения напряженности окружим
участок проволоки длиной ℓ
цилиндрической поверхностью S
радиусом r с осью совпадающей
с проволокой и воспользуемся теоремой
Гаусса. При этом весь поток вектора
напряженности будет проходить только
через боковую поверхность цилиндра,
площадь которой
,
т.к. поток через оба основания цилиндра
равен нулю. Тогда

— напряженность поля нити убывает обратно
пропорционально расстоянию.

Напряженность поля заряженной плоскости

Если
плоскость бесконечна и заряжена
равномерно, т. е. поверхностная плотность
заряда  = q/S
одинакова в любом ее месте, то линии
напряженности электрического поля в
любой точке перпендикулярны этой
плоскости. Такое же направление они
сохраняют и на любом расстоянии от
плоскости, т.е. поле заряженной плоскости
однородное.

Для нахождения напряженности электрического
поля заряженной плоскости мысленно
выделим в пространстве цилиндр, ось
которого перпендикулярна заряженной
плоскости, а основания параллельны ей
и одно из оснований проходит через
интересующую нас точку поля. Цилиндр
вырезает из заряженной плоскости участок
площадью S, и такую же
площадь имеют основания цилиндра,
расположенные по разные стороны от
плоскости (рис.). Согласно теореме Гаусса
поток Ф вектора напряженности
электрического поля через поверхность
цилиндра связан с электрическим зарядом
внутри цилиндра выражением
.
С другой стороны, так как линии
напряженности пересекают лишь основания
цилиндра, поток вектора напряженности
можно выразить через напряженность
электрического поля у обоих оснований
цилиндра:
.
В самом деле, поток через боковую
поверхность цилиндра (см. рис.), равен
нулю, поскольку линии напряженности
параллельны боковой поверхности
цилиндра.

Из двух выражений для потока вектора
напряженности получим:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
Напряженность поля точечного заряда.

Обозначим: q — заряд, создающий поле,

q0 — заряд, помещенный в поле (внешний заряд).

Закон Кулона: Закон Кулона. Напряженность поля: Напряженность поля.

Тогда напряженность поля точечного заряда: напряженность поля точечного заряда

напряженность поля точечного заряда

Теорема  Гаусса.

Потоком вектора напряженности наз. величина Ф, равная произведению модуля вектора напряженности на площадь контура S, ограничивающую некоторую площадь, и на косинус угла между вектором напряженности и нормалью (перпендикуляром) к площадке.

Теорема  Гаусса

Если считать, что напряженность пропорциональна числу силовых линий, приходящихся на единицу площади поверхности (т.е. густоте), то поток напряженности пропорционален полному числу силовых линий, пересекающих данный контур.

Поток линий напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален величине заряда, находящегося в области пространства,  ограниченного данной поверхностью.

Поток линий напряженности электростатического поля

Применения теоремы Гаусса.

1. Напряженность поля заряженной проводящей сферы радиуса R. Сфера заряжена по поверхности.

 А) Внутри сферы заряда нет . Е=0

Сфера заряжена по поверхности

Б) Снаружи сферы. Снаружи сферы

Применения теоремы Гаусса

На поверхности сферы: На поверхности сферы

2. Напряженность поля шара заряженного по объему.

Введем понятие объемной плотности заряда: онятие объемной плотности заряда

Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела. Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела

Объем шара произвольного радиуса Объем шара произвольного радиуса.

Обозначим q — заряд шара, q0 — заряд, находящийся внутри объема произвольного радиуса.

Объем шара произвольного радиуса

Тогда заряд сферы радиуса r , будет:  Тогда заряд сферы радиуса r                              

Следовательно: напряженность поля внутри шара, равномерно заряженного по объему

 – напряженность поля внутри шара, равномерно заряженного по объему. Снаружи — см. 1.

 напряженность поля внутри шара, равномерно заряженного по объему

3. Напряженность поля бесконечной заряженной плоскости.

Введем понятие поверхностной плотности заряда: понятие поверхностной плотности заряда.

Тогда .

Коэффициент 2 появляется, т.к. плоскость окружена двумя поверхностями площадью S. Поле бесконечной заряженной плоскости не зависит от расстояния от плоскости! Можно пользоваться, когда расстояние много меньше размеров плоскости.

4. Напряженность поля плоского воздушного конденсатора.

Из рисунка видим, что снаружи конденсатора поля пластин взаимно скомпенсированы, и общее поле равно нулю. Внутри конденсатора поля складываются.

Используя вывод п.3 получаем:  Напряженность поля плоского воздушного конденсатора.

Формула справедлива при условии, что расстояние между пластинами много меньше размеров самих пластин и вдали от краев пластин.

Напряженность поля бесконечной заряженной плоскости

понятие поверхностной плотности заряда

Напряженность поля плоского воздушного конденсатора

Напряженность электрического поля точечного заряда


Напряженность электрического поля точечного заряда

4.5

Средняя оценка: 4.5

Всего получено оценок: 126.

4.5

Средняя оценка: 4.5

Всего получено оценок: 126.

Для характеристики электрического поля применяется такая величина, как напряженность. Любой электрический заряд создает поле, и, следовательно, всегда можно указать его напряженность. Найдем напряженность электрического поля точечного заряда.

Напряженность электрического поля

Электрические поля проявляются в силовом взаимодействии между зарядами. Сила взаимодействия между зарядами $q$ и $q_1$ находится с помощью закона Кулона:

$$F=k{qq_1over r^2}$$

Закон Кулона

Рис. 1. Закон Кулона.

Если рассмотреть поле, порождаемое зарядом $q$, то при фиксированном заряде $q_1$ и расстоянии $r$, сила взаимодействия между зарядами будет прямо пропорциональна величине заряда $q$. А значит, отношение этой силы к заряду $q$ не зависит от $q$, и может быть принято, как силовая характеристика поля.

Напряженность электрического поля — это отношение силы, действующей на пробный заряд, помещаемый в поле, к величине этого заряда.

$$overrightarrow E={overrightarrow F over q}$$

Напряженность поля — векторная величина, имеющая то же направление, что и направление силы, действующей на положительный заряд.

Если в каждой точке поля изобразить вектор напряженности, то эти векторы сольются в линии, которые называются линиями напряженности. Они полностью характеризуют распределение поля в пространстве. На пробный положительный заряд, помещенный в поле, будет действовать сила, касательная к линии напряженности, проходящей через эту точку.

Например, так выглядит поле двух разноименных зарядов, находящихся рядом:

Лини напряженности диполя

Рис. 2. Лини напряженности диполя.

Напряженность поля точечного заряда

Наиболее просто выглядит поле точечного заряда. Поскольку закон Кулона описывает взаимодействие между двумя точечными зарядами, то его можно непосредственно подставить в выражение для напряженности. В результате, мы получим формулу напряженности электрического поля точечного заряда:

$$E={F over q}=k{qover r^2}$$

Вектор напряженности лежит на линии, соединяющей точечный заряд с точкой, в которой находится напряженность. При этом вектор направлен в сторону заряда, если он отрицателен, и в противоположную, если он положителен.

Построив много таких векторов, можно получить картину линий напряженности поля точечного заряда. Линии будут начинаться на положительном заряде и радиальными лучами уходить в бесконечность. Если заряд отрицателен, то линии будут приходить в заряд радиальными лучами из бесконечности.

Чем ближе к заряду, тем линии будут располагаться гуще. Это иллюстрирует тот факт, что чем ближе к заряду, тем напряженность выше.

Линии напряженности точечного заряда

Рис. 3. Линии напряженности точечного заряда.

Заключение

Что мы узнали?

Напряженность электрического поля — это отношение силы, действующей на пробный заряд, помещенный в поле, к величине этого пробного заряда. Поле можно изобразить в виде множества векторов напряженности, которые сливаются в линии. Линии напряженности поля точечного заряда являются радиальными лучами, уходящими в бесконечность.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.5

Средняя оценка: 4.5

Всего получено оценок: 126.


А какая ваша оценка?

ads

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.


Содержание:

    • Электрический заряд
    • Напряженность
    • Потенциал, напряжение
  •  

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

Формула Электрического заряда

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Формула кулоновская сила

Сила взаимодействия зарядов

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Переход незаряженного объекта в заряженное состояние

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Формула Напряженности электрического поля

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Вектор напряженности E, созданной зарядом q, в точке А

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

напряженности поля в точке А

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

изолированные заряды

а) изолированные заряды
Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов
б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Формула потенциала электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Графическая интерпретация напряжения электрического поля

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле
Напряжение формула

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Потенциал

Электрический заряд

Напряжение

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Один отрицательный заряд, а другой положительный

Два положительных заряда

Два отрицательных заряда

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … — это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Потенциал

Напряжение

Сопротивление

Результат

Отлично!

Попытайтесь снова(

Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о
    линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении
    несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности
электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на
    отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.


Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.

В системе СИ
Н·м2/Кл2,

где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.

Понравилась статья? Поделить с друзьями:
  • Как найти добрую ведьму
  • Как найти обьявление по номеру телефона
  • Как найти личного юриста
  • Как найти плотность дымовых газов
  • Как составить семейный бюджет по пунктам