Как найти не целый корень многочлена

10.5. НАХОЖДЕНИЕ РАЦИОНАЛЬНЫХ КОРНЕЙ МНОГОЧЛЕНА С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ

Теорема 4. Если многочлен с целыми коэффициентами f (x) = anxn + an-1xn-1 + … + a1x+a0  имеет рациональный корень x=p/q (q ≠ 0, дробь p/q  несократимая), то р является делителем свободного члена (a0), а q — делителем коэффициента при стар­шем члене аn.

     Если p/q является корнем многочлена f (х), то f(p/q) = 0. Подставляем p/q вместо х в f(x) и из последнего равенства имеем

an * pn/qn + an-1 * pn-1/qn-1 + … + a1 * p/q + a0 = 0.

(1)

            Умножим обе части равенства (1) на  (q ≠ 0). Получаем

аnрn + an-1pn-1q + … + a1pqn-1 + a0qn = 0.

(2)

В равенстве (2) все слагаемые, кроме последнего, делятся на р. Поэтому

a0qn = -(аnрn + an-1pn-1q + … + a1pqn-1) делится на р.

Но когда мы записываем рациональное число в виде p/q, то эта дробь счи­тается несократимой, то есть р и q не имеют общих делителей. Произве­дение a0qn может делиться на р (если р и q — взаимно простые числа) только тогда, когда a0 делится на р. Таким образом, р — делитель свобод­ного члена a0.

Аналогично все слагаемые равенства (2), кроме первого, делятся на q. Тогда

anpn = -(an-1pn-1q + … + a1pq-1 + a0qn) делится на q. Поскольку р и q — взаимно простые числа, то an делится на q, следовательно, q — де­литель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять q = 1, то корнем многочлена будет целое число р — делитель a0. Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффи­циентами является делителем его свободного члена.

Если в заданном многочлене f (х) коэффициент аn = 1, то делителями аn могут быть только числа ±1, то есть q =±1, и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Задача 1 Найдите рациональные корни многочлена 2х3х2 + 12х – 6.

Пусть несократимая дробь p/q является корнем многочлена. Тогда р не­обходимо искать среди делителей свободного члена, то есть среди чисел ±1, ±2, ±3, ±6, а q — среди делителей старшего коэффициента: ±1, ±2.

Таким образом, рациональные корни многочлена необходимо искать сре­ди чисел ±1/2, ±1, +±3/2, ±2, ±3, ±6. Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера. При x = 1/2 имеем следующую таблицу.

Кроме того, по схеме Горнера мож­но записать, что

3 – х2 + 12х – 6 = (x 1/2) (2x2 + 12).

Многочлен 2 + 12 не имеет действительных корней (а тем более рацио­нальных), поэтому заданный многочлен имеет единственный рациональ­ный корень x =1/2.

Задача 2 Разложите многочлен Р (х) = 2х4 + 3х3 – 2х2х – 2 на множители.

Ищем целые корни многочлена среди делителей свободного члена: ±1, ±2. Подходит 1. Делим Р (х) на х – 1 с помощью схемы Горнера.

Тогда Р (х) = (х – 1)(2х3 + 5х2 + 3х + 2). Ищем целые корни кубического многочлена 3 + 5х2 + 3х + 2 среди делителей его свободного члена: ±1, ±2. Подходит (–2). Делим на х + 2

Имеем  Р (х) = (х – 1)(х + 2)(2х2 + х +1).

Квадратный трехчлен 2х2 + х +1 не имеет действительных корней и на линейные множители не расклады­вается.

Ответ: Р (х) = (х – 1)(х + 2)(2х2 + х +1).

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен х2 + х + 1 не имеет действительных корней). Таким образом, многочлен n-й степени не всегда можно разложить на линейные множители. В курсах высшей алгебры дока­зывается, что многочлен нечетной степени всегда можно разложить на ли­нейные и квадратные множители, а многочлен четной степени представить в виде произведения квадратных трехчленов.

Например, многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов. Для нахождения коэффициентов этого раз­ложения иногда можно применить метод неопределенных коэффициентов.

Задача 3 Разложите на множители многочлен х4 + х3 + 3х2 + х + 6.

Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен в произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

х4 + х3 + 3х2 + х + 6 = (х2 + ах + b)(х2 + сх + d),

(3)

где а, b, с и d — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях х у них равны. Рас­кроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

х4 + х3 + 3х2 + х + 6 = x4 + cx3 + dx2 +

                                                      + ax3 + acx2 + adx +

                                                                    + bx2 + bcx + bd.

Получаем систему

(4)

Попытка решить эту систему методом подстановки приводит к уравне­нию 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что b и d могут быть толь­ко делителями числа 6. Все возможные варианты запишем в таблицу.

Коэффициенты b и d в равенстве (3) равноправны, поэтому мы не рас­сматриваем случаи b = 6 и d = 1 или b = –6 и d = –1 и т. д.

Для каждой пары значений b и d из третьего равенства системы (4) най­дем ас = 3 – (b + d), а из второго равенства имеем а + с = 1.

Зная а + с и ас, по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения а, b, с, d подставим в четвертое равенство системы (4) + ad = 1, чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Как видим, системе (4) удовлетворяет набор целых чисел а = –1, b = 2, с = 2, d = 3. Тогда равенство (3) имеет вид

x4 + х3 + 3х2 + х + 6 = (х2х + 2)(х2 + 2х + 3).

(5)

Поскольку квадратные трехчлены х2х + 2 и х2 + 2х + 3 не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Упражнения

  1. Найдите целые корни многочлена:

1) х3 – 5х + 4;

2) 2x3 + x2 – 13x + 6;

3) 5х3 + 18х2 – 10х – 8;

4) 4х4 – 11х2 + 9х – 2.

  1. Найдите рациональные корни уравнения:

1) х3 – 3х2 + 2 = 0;

2) 2х3 – 5х2х + 1 = 0;

3) 3х4 + 5х3х2 – 5х – 2 = 0;

4) 3х4 – 8х3 – 2х2 + 7х – 2 = 0.

  1. Разложите многочлен на множители:

1) 2х3х2 – 5х – 2;

2) х3 + 9х2 + 23х +15;

3) х4 – 2х3 + 2х – 1;

4) х4 – 2х3 – 24х2 + 50х – 25.

  1. Найдите действительные корни уравнения:

1) х3 + х2 – 4х + 2 = 0;

2) х3 – 7х – 6 = 0;

3) 2х4 – 5х3 + 5х2 – 2 = 0;

4) 2х3 – 5х2 + 1 = 0.

5*. Разложите многочлен на множители методом неопределенных коэффи­циентов:

1) х4 + х3 – 5х2 + 13х – 6;

2) х4 – 4х3 – 20х2 + 13х – 2.

6*. Разложите многочлен на множители, заранее записав его с помощью ме­тода неопределенных коэффициентов в виде (х2 + + с)2 – (+ n)2: :

1) х4+ 4х – 1;

2) х4 – 4х3 – 1;

3) х4 + 4а3х а4.

Нахождение рациональных корней

Содержание:

Теорема о рациональных корнях

Если для многочлена с целыми коэффициентами существует рациональный корень, то этот корень имеет вид

Доказательство:

Пусть несократимая дробь является корнем многочлена с целыми коэффициентами:

Умножим обе части равенства на :

Так как в последнем равенстве каждый член, кроме члена , содержит множитель и каждый член, кроме члена , содержит множитель , то коэффициент должен делится на , а коэффициент должен делится на .

Задача пример №8

Найдите рациональные корни многочлена .

Решение:

свободный член 6, старший коэффициент 2.

Для , запишем все возможные числа вида

, т.е. одним из множителей является двучлен . Другие множители найдем, используя синтетическое деление:

Так как, , получим, что являются корнями многочлена.

Следствие 1. Если старший коэффициент ±1 и многочлен имеет рациональный корень, то он является целым числом.

Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.

Задача пример №9

Найдите корни многочлена .

Решение:

по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.

Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.

Так как , то, решив квадратное уравнение , получим другие корни: . Значит данный многочлен третьей степени имеет три корня: —.

Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми.

Например, для нахождения корней многочлена надо умножить все члены уравнения на 12, а затем решить полученное уравнение .

Для нахождения рациональных корней выполните следующие действия:

1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.

2. Из этих чисел выбирается число (обращающее значение многочлена в нуль), которое является корнем многочлена, т.е. определяется двучлен , на который многочлен делится без остатка.

3. Для данного многочлена при помощи синтетического деления на двучлен определяется другой множитель.

4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.

5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена могут являться числа ±1.

Проверим: ; . Значит, многочленах не имеет рациональных корней.

Исследование:

1) Перепишите примеры в тетрадь и проведите обсуждение.

a) Многочлен первой степени имеет один корень:

b) Многочлен второй степени имеет два корня: , ;

c) Многочлен третьей степени имеет три корня:

d) Многочлен четвертой степени имеет четыре корня:

e) Принимая во внимание, что уравнение имеет кратные корни, получим 5 корней:

2) Укажите степень и найдите корни многочленов, разложение на множители которых имеет вид .

3) Равна ли степень произвольного многочлена количеству его корней?

Покажем на примере, что многочлен n-ой степени имеет n корней.

Задача пример №10

Найдите все корни многочлена .

Решение:

рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:

.

Значит, является корнем данного многочлена . Другие корни найдем синтетическим делением.

В выражении для множителя вновь применим теорему о рациональных корнях и синтетическое деление. Тогда ; . Решим уравнение ; ; (корень кратности 2); ;

Корни:

Во всех рассмотренных нами примерах уравнение n-ой степени всегда имеет n корней, включая кратные корни (действительных или комплексных).

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Математика: полный курс решений задач в виде лекций

Другие темы которые вам помогут понять математику:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Рациональные корни многочленов с целыми коэффициентами. Алгебраические и трансцендентные числа

Рациональные корни многочленов с целыми коэффициентами

Прежде, чем дать общую формулировку теоремы о рациональных корнях многочленов с целыми коэффициентами , решим следующую задачу.

Задача . Найти все корни уравнения

Решение . Предположим, что рассматриваемое уравнение имеет корень, являющийся рациональным числом. Тогда, поскольку каждое рациональное число можно представить в виде несократимой дроби

,

где m – число целое, а n – число натуральное, то выполняется равенство:

Умножая это равенство на n 3 , получаем равенство:

2m 3 + m 2 n – 5 m n 2 –
– 3n 3 = 0.
(1)

Теперь преобразуем равенство (1):

Отсюда вытекает, что число 2m 3 нацело делится на число n . А из этого, в свою очередь, следует, что, поскольку числа m и n не имеют общих простых делителей, то число n является делителем числа 2 . Таким образом, число n равно 1 или 2 .

Теперь преобразуем равенство (1) по-другому:

Значит, число 3n 3 нацело делится на число m . А из этого, в свою очередь, следует, что, так как числа m и n не имеют общих простых делителей, то число m является делителем числа 3. Таким образом, число m может быть равно: – 1, 1, – 3 или 3 .

Далее, рассматривая все возможные комбинации чисел m и n , получаем, что дробь

может принимать только следующие значения:

Таким образом, если у исходного уравнения и есть рациональный корень, то искать его нужно среди полученных шести чисел. Других рациональных корней у исходного уравнения быть не может.

Подставляя поочередно каждое из этих чисел в исходное уравнение, получаем, что корнем уравнения является лишь число .

Оставляя читателю проверку того, что другие числа корнями исходного уравнения не являются, покажем, что число действительно является его корнем:

Ответ . Число является единственным рациональным корнем исходного уравнения.

Замечание . Для того, чтобы найти все остальные корни исходного уравнения, нужно, воспользовавшись теоремой Безу, разделить многочлен

В результате деления получится квадратный трехчлен

Теорема . Если рациональное число (несократимая дробь)

,

где m – число целое, а n – число натуральное, является корнем многочлена k -ой степени

которого являются целыми числами, то числитель дроби m является делителем коэффициента ak , а знаменатель дроби n является делителем коэффициента a0 .

Коэффициент a0 называют старшим коэффициентом многочлена, а коэффициент ak – свободным членом многочлена.

Алгебраические и трансцендентные числа

Определение . Действительное число называют действительным алгебраическим числом , если существует многочлен с целочисленными коэффициентами, корнем которого это число является. Если же такой многочлен не существует, то указанное число называют действительным трансцендентным числом .

Замечание . Числа π и e – наиболее известные примеры действительных трансцендентных чисел.

Утверждение . Каждое рациональное число является алгебраическим числом.

Доказательство . Каждое рациональное число представимо в виде несократимой дроби

,

где m – число целое, а n – число натуральное. Но указанная дробь является корнем уравнения первой степени

что и требовалось доказать.

Следствие . Каждое действительное трансцендентное число является иррациональным числом.

10.5. НАХОЖДЕНИЕ РАЦИОНАЛЬНЫХ КОРНЕЙ МНОГОЧЛЕНА С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ

Умножим обе части равенства (1) на (q ≠ 0). Получаем

В равенстве (2) все слагаемые, кроме последнего, делятся на р. Поэтому

Но когда мы записываем рациональное число в виде p/q, то эта дробь счи­тается несократимой, то есть р и q не имеют общих делителей. Произве­дение a0q n может делиться на р (если р и q — взаимно простые числа) только тогда, когда a0 делится на р. Таким образом, р — делитель свобод­ного члена a0.

Аналогично все слагаемые равенства (2), кроме первого, делятся на q. Тогда

Отметим два следствия из этой теоремы. Если взять q = 1, то корнем многочлена будет целое число р — делитель a0. Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффи­циентами является делителем его свободного члена.

Если в заданном многочлене f (х) коэффициент аn = 1, то делителями аn могут быть только числа ±1, то есть q =±1, и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Задача 1 Найдите рациональные корни многочлена 2х 3 – х 2 + 12х – 6.

Пусть несократимая дробь p/q является корнем многочлена. Тогда р не­обходимо искать среди делителей свободного члена, то есть среди чисел ±1, ±2, ±3, ±6, а q — среди делителей старшего коэффициента: ±1, ±2.

Таким образом, рациональные корни многочлена необходимо искать сре­ди чисел ±1/2, ±1, +±3/2, ±2, ±3, ±6. Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера. При x = 1/2 имеем следующую таблицу.

Кроме того, по схеме Горнера мож­но записать, что

Многочлен 2х 2 + 12 не имеет действительных корней (а тем более рацио­нальных), поэтому заданный многочлен имеет единственный рациональ­ный корень x =1/2.

Задача 2 Разложите многочлен Р (х) = 2х 4 + 3х 3 – 2х 2 – х – 2 на множители.

Ищем целые корни многочлена среди делителей свободного члена: ±1, ±2. Подходит 1. Делим Р (х) на х – 1 с помощью схемы Горнера.

Тогда Р (х) = (х – 1)(2х3 + 5х 2 + 3х + 2). Ищем целые корни кубического многочлена 2х 3 + 5х 2 + 3х + 2 среди делителей его свободного члена: ±1, ±2. Подходит (–2). Делим на х + 2

Квадратный трехчлен 2х 2 + х +1 не имеет действительных корней и на линейные множители не расклады­вается.

Ответ: Р (х) = (х – 1)(х + 2)(2х 2 + х +1).

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен х 2 + х + 1 не имеет действительных корней). Таким образом, многочлен n-й степени не всегда можно разложить на линейные множители. В курсах высшей алгебры дока­зывается, что многочлен нечетной степени всегда можно разложить на ли­нейные и квадратные множители, а многочлен четной степени представить в виде произведения квадратных трехчленов.

Например, многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов. Для нахождения коэффициентов этого раз­ложения иногда можно применить метод неопределенных коэффициентов.

Задача 3 Разложите на множители многочлен х 4 + х 3 + 3х 2 + х + 6.

Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен в произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

где а, b, с и d — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях х у них равны. Рас­кроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Попытка решить эту систему методом подстановки приводит к уравне­нию 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что b и d могут быть толь­ко делителями числа 6. Все возможные варианты запишем в таблицу.

Коэффициенты b и d в равенстве (3) равноправны, поэтому мы не рас­сматриваем случаи b = 6 и d = 1 или b = –6 и d = –1 и т. д.

Для каждой пары значений b и d из третьего равенства системы (4) най­дем ас = 3 – (b + d), а из второго равенства имеем а + с = 1.

Зная а + с и ас, по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения а, b, с, d подставим в четвертое равенство системы (4) + ad = 1, чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Как видим, системе (4) удовлетворяет набор целых чисел а = –1, b = 2, с = 2, d = 3. Тогда равенство (3) имеет вид

Поскольку квадратные трехчлены х 2 – х + 2 и х 2 + 2х + 3 не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Упражнения

  1. Найдите целые корни многочлена:
  1. Найдите рациональные корни уравнения:
  1. Разложите многочлен на множители:
  1. Найдите действительные корни уравнения:

5*. Разложите многочлен на множители методом неопределенных коэффи­циентов:

6*. Разложите многочлен на множители, заранее записав его с помощью ме­тода неопределенных коэффициентов в виде (х 2 + + с) 2 – ( + n) 2 : :

источники:

http://www.resolventa.ru/spr/algebra/ratroot.htm

http://ya-znau.ru/znaniya/zn/263

Разложение многочлена на множители. Часть 3. Теорема Безу и схема Горнера

Разложение  многочлена на множители.  Теорема Безу и схема Горнера

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим,  каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена  Подготовка к ГИА и ЕГЭ  на  двучлен Подготовка к ГИА и ЕГЭ равен Подготовка к ГИА и ЕГЭ.

Но для нас важна не сама теорема, а следствие из нее:

Если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то многочлен   Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корень многочлена. В результате мы  получаем многочлен,    степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена , и как разделить многочлен на двучлен.

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число Подготовка к ГИА и ЕГЭ является корнем многочлена.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов равна нулю: Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если сумма коэффициентов многочлена  при четных степенях Подготовка к ГИА и ЕГЭ равна сумме коэффициентов при нечетных степенях, то число Подготовка к ГИА и ЕГЭявляется корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку Подготовка к ГИА и ЕГЭ, а Подготовка к ГИА и ЕГЭ — четное число.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ, и сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ:   Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени Подготовка к ГИА и ЕГЭ (то есть многочлена, в котором старший коэффициент — коэффициент при Подготовка к ГИА и ЕГЭ — равен единице) справедлива формула Виета:

Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корни многочлена Подготовка к ГИА и ЕГЭ.

Если многочлен не является приведенным, то его можно сделать таковым, разделив на старший коэффициент.

Есть ещё Подготовка к ГИА и ЕГЭ формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни приведенного многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен Подготовка к ГИА и ЕГЭ.

Для этого многочлена произведение корней равно Подготовка к ГИА и ЕГЭ

Делители числа Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ

Сумма всех коэффициентов многочлена равна Подготовка к ГИА и ЕГЭ, следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ

Сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ

Подготовка к ГИА и ЕГЭ, следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем  многочлена: Подготовка к ГИА и ЕГЭ, следовательно, число 2  является корнем многочлена. Значит, по теореме Безу, многочлен Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен Подготовка к ГИА и ЕГЭ  на двучлен Подготовка к ГИА и ЕГЭ столбиком:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Есть и другой способ деления многочлена на двучлен — схема Горнера.

Разложение многочлена на множители. Теорема Безу и схема Горнера

Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 — так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен Подготовка к ГИА и ЕГЭна двучлен Подготовка к ГИА и ЕГЭ и в результате деления мы получаем многочлен Подготовка к ГИА и ЕГЭ, то коэффициенты многочлена  Подготовка к ГИА и ЕГЭ мы можем найти по схеме Горнера:

Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то остаток от деления многочлена на Подготовка к ГИА и ЕГЭ равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы «убиваем двух зайцев»: одновременно проверяем, является ли число Подготовка к ГИА и ЕГЭ корнем многочлена Подготовка к ГИА и ЕГЭ и делим этот многочлен на двучлен Подготовка к ГИА и ЕГЭ.

Пример. Решить уравнение:

Подготовка к ГИА и ЕГЭ

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24: Подготовка к ГИА и ЕГЭ

2. Проверим, является ли число 1  корнем многочлена.

Сумма коэффициентов многочлена Подготовка к ГИА и ЕГЭ, следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий Подготовка к ГИА и ЕГЭ отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при Подготовка к ГИА и ЕГЭ пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

aa

Будем делить дальше. Нам нужно найти корни многочлена Подготовка к ГИА и ЕГЭ. Корни также ищем среди делителей свободного члена, то есть теперь уже  числа -24.

Легко проверить, что числа 1 и -1 не являются корнями многочлена Подготовка к ГИА и ЕГЭ

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена Подготовка к ГИА и ЕГЭ:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 — число, не равное нулю, следовательно, многочлен Подготовка к ГИА и ЕГЭ делится на двучлен Подготовка к ГИА и ЕГЭ  с остатком, и число 2 не является корнем многочлена.

Идем дальше.

В) Проверим, является ли число -2 корнем многочлена Подготовка к ГИА и ЕГЭ. Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:

Отлично! В остатке мы получили ноль, следовательно, многочлен Подготовка к ГИА и ЕГЭ разделился на двучлен Подготовка к ГИА и ЕГЭ без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена Подготовка к ГИА и ЕГЭ на двучлен Подготовка к ГИА и ЕГЭ в таблице изображены зеленым цветом.

aa

В результате деления мы получили квадратный трехчлен Подготовка к ГИА и ЕГЭ, корни которого легко находятся по теореме Виета: Подготовка к ГИА и ЕГЭ

Итак, корни исходного уравнения Подготовка к ГИА и ЕГЭ:

{Подготовка к ГИА и ЕГЭ}

Ответ: {Подготовка к ГИА и ЕГЭ}

И.В. Фельдман, репетитор по математике.

Исходим
из следующего утверждения: если
целочисленный приведенный (!) многочлен
имеет рациональный корень, то этот
корень будет целым числом. В самом деле,
пусть

есть несократимая дробь и является
корнем уравнения

,то
есть

.
Умножим обе части уравнения на

:


,
откуда имеем:

,
то есть несократимая дробь

равна целому числу (сумме целых чисел),
что невозможно. Значит, доказательством
от противного установлено, что несократимая
дробь не может быть корнем приведенного
(!) целочисленного уравнения (многочлена).

Если
имеется целочисленный не приведенный
многочлен

,
то можно получить приведенный многочлен,
умножив исходный многочлен на

и сделав замену

:


,


.

Многочлен

— целочисленный и приведенный (!); если
он имеет рациональные корни, то они
целые и содержатся в качестве делителей
свободного члена

,
то есть

,
откуда

,
что может быть как целым, так и дробным
числом. Итак, для нахождения всех
рациональных (дробных и целых) корней
неприведенного целочисленного многочлена
нужно его превратить в приведенный (!)
(умножив на

и сделав замену

),
найти все целые корни этого приведенного
уравнения и разделить каждый из них на
старший коэффициент исходного многочлена.

Пример
2.6
. Найти рациональные корни многочлена


.

Решение.
Умножая

на

(
)
и делая замену

(
),
получим:


,
то есть

;

;
значит,

есть корень уравнения

;
проверим его кратность:

,

;
значит, корень простой; делим

на разность

по схеме Горнера:

1

5

3

45

-54

с=1

1

6

9

54

0

Следовательно,

,
где

.
Делителями свободного члена будут
числа:

;

;

;

;

;

;

;

.

,

.
Заметим, кстати, что положительных
корней многочлен

не имеет. Пусть

,
тогда

;
пусть

,
тогда

;
пусть

,
тогда

,

;
стало быть,

корень многочлена

.
Испытаем этот корень по схеме Горнера
и заодно получим некое квадратное
уравнение, корни которого сразу же и
оценим.

1

6

9

54

с=-6

1

0

9

0

Таким
образом,

,
что говорит о том, что остальные два
корня комплексные. Итак, у=1;-6, откуда
получаем:

;

.

Ответ:

.

Упражнения
2.5
. Найти рациональные корни целочисленных
многочленов:

а).
,

б).
,

в).
,

г).
,

д).
,

е).
,

ж).
,

з).
.

§3. Общий подход к решению уравнений высших степеней

Если изложенные
ранее методы не позволяют решить
некоторое уравнение, то возникает
вопрос: имеет ли данное уравнение
действительные корни вообще? Из следствий
основной теоремы алгебры вытекает, что
уравнение нечетной степени имеет по
крайней мере один действительный корень.
В случае уравнения четной степени вопрос
остается открытым. Число действительных
корней в уравнении (многочлене) однозначно
устанавливается с помощью так называемой
последовательности Штурма, построение
которой описано в приложении 2. Это
построение бывает достаточно громоздко,
поэтому имеет смысл использовать более
простые способы, которые зачастую решают
задачу. Например, всегда можно построить
график многочлена третьей степени с
помощью производной, что и решает задачу
о числе действительных корней в данном
многочлене.

Вопрос о верхней
границе числа корней в уравнении
(многочлене) решает теорема Декарта:
число действительных положительных
корней в уравнении

(3.1)
anx­­­­­n+an-1xn-1+…+a1x+a0=0

с учетом их кратности
равно числу перемен знаков (W+)
в системе коэффициентов ai
(i0)
или меньше этого числа на четное
число; коэффициенты, равные нулю, не
учитываются, и все коэффициенты в
уравнении предполагаются вещественными,
причем an>0.

Пример 3.1.
Сколько положительных корней в
уравнении

3x4+6x3+10x2-2x-24=0
?

Решение. Система
знаков коэффициентов уравнения ai
суть: (+, +, +, -, -); стало быть, в наличии
одна смена знака, то есть W+=1,
а потому и положительный корень в
уравнении только один.

Ответ: xi>0,
i=1.

Если в уравнении
(3.1) вместо ”x” подставить
(-x), то получим систему
знаков для определения количества
отрицательных корней исходного уравнения.
Так, в примере (3.1) при замене “x”
на (-x) имеем следующую
систему знаков: (+, -, +, +, -); стало быть,
имеем три смены знаков, то есть W=3,
что означает наличие в уравнении числа
отрицательных корней, равного трем
или одному.

Неопределенность
в количестве действительных корней
возникает из-за возможного наличия
комплексно сопряженных корней.

Уточнить количество
действительных корней в уравнении
помогает иногда теорема Гюа: если
уравнение имеет все действительные
коэффициенты и все его корни действительны,
то квадрат каждого не крайнего коэффициента
этого уравнения больше произведения
двух его соседних коэффициентов
(предшествующего и последующего), то
есть

(3.2)
ak2>ak-1*ak+1
при k=n-1, n-2, …, 1.

Пример 3.2.
Доказать, что уравнение

x5+3x4+2x3+4x2-7x+4=0

имеет комплексные
корни.

Решение.
Согласно теореме Гюа имеем совокупность
неравенств:

Так
как второе неравенство ложно, то не все
корни исходного уравнения являются
действительными; стало быть, комплексные
корни в исходном уравнении есть.

Ответ. x=i,
где i=

Замечание.
Теорема Гюа содержит только необходимое
условие; если оно выполняется, то
заключение о существовании всех корней
как действительных зачастую может и не
иметь места. Так, в примере (3.1) из уравнения
3x4+6x3+10x2-2x-24=0
согласно теореме Гюа имеем следующую
совокупность неравенств:



Все
неравенства верны, но никакого заключения
о наличии всех корней уравнения как
действительных сделать нельзя.

Когда наличие
действительных корней в уравнении
установлено, то можно определить
интервал, в котором они располагаются,
по теореме Лагранжа, а именно: пусть
в уравнении (3.1)

anxn+an-1xn-1+…+a1x+a0=0,
an>0,

A
– наибольшая из абсолютных величин
отрицательных коэффициентов, ak
– первый из отрицательных коэффициентов
(подсчет «k» ведется слева
направо, причем первый член уравнения
считается нулевым, то есть k1),
тогда любой положительный корень
уравнения удовлетворяет оценке:

(3.3) 0<x<1+(A/an)1/k.

Так,
в уравнении примера (3.1) 3x4+6x3+10x2-2x-24=0
имеем: A=|-24|=24,
an=3,
k=3; что дает оценку для положительного
корня уравнения: 0<x<1+(24/3)1/3=3,
0<x<3. Таким образом,
произошло как бы отделение корня в
интервал (0;3), при этом N0=3
считается верхней границей положительных
корней
исходного уравнения. Для
определения нижней границы отрицательных
корней
уравнения f(x)
используем многочлен f(-x), для которого
ищем верхнюю положительную границу
корней N2,
значение которой с противоположным
знаком будет служить нижней границей
отрицательных корней многочлена
f(x). Для уравнения примера (3.1) имеем:
f(x)=3x4+6x3+10x2-2x-24,
f(-x)=3x4-6x3+10x2+2x—24,
0<-x<1+24/3=9, 0<-x<9, -9<x<0.

Если согласно
теореме Лагранжа указываются границы,
между которыми содержаться действительные
корни уравнения, то этим вовсе не
утверждается, что такие
корни на самом деле есть. Стало быть,
вначале надо определить наличие
действительных корней в уравнении (как
положительных, так и отрицательных), а
потом уже искать интервалы, в которых
они находятся.

После установления
количества действительных корней в
уравнении (пусть пока и с избытком) имеет
смысл построить график или просто
таблицу исходного многочлена по легко
просчитываемым точкам (0; 1;
2; …), входящим в
интервалы расположения корней. В ряде
случаев это дает полезную информацию.
Так, для многочлена из примера (3.1)
f(x)=3x4+6x3+10x2-2x-24
имеем: f(0)=-24, f(1)=-7,
f(2)=108; что дает “заужение” отделения
этого корня до интервала (1;2), в котором
многочлен меняет знак (раньше отделения
корня приходилось на интервал (0;3)).
Далее, f(-1)=-20, f(-2)=20, что дает в интервале
(-1; -2) по крайней мере один отрицательный
корень.

Пример
3.3.
Отделить
отрицательные корни многочлена

f(x)=x5+2x4-5x3+8x2-7x-3.

Решение.
Система знаков для
отрицательных корней суть: (-, +, +, +, -);
стало быть, количество отрицательных
корней 2 или 0 (W=2).
f(0)=-3, f(-1)=18; стало быть,
в интервале (-1;0) может быть по крайней
мере один отрицательный корень; далее:
f(-2)=83, f(-3)=144, f(-4)=-39; стало быть,
в интервале (-4;-3) находится второй
отрицательный корень.

Ответ:
x1<0,
x1(-1;
0); x2<0,
x2(-4;
-3).

Пример
3.4.
Решить уравнение


=x3-12x+18.

Решение. ОДЗ:
4х-х20,
х(4-х)0, х(х-4)0.



0
— 4 х

х[0;4].

Далее
используем графическую иллюстрацию
задачи. Пусть у12, где

у1=

представляет собой верхнюю часть
полуокружности, расположенной в верхней
полуплоскости (у10);
центр полуокружности смещен на две
единицы от начала координат (у12=4х-х2,
х2-4х+4-4+у12=0, (х-2)212=2).
у23-12х+18 представляет собой
график многочлена третьей степени.


у


у23-12х+18

2

у1=

-5
-4 -2 2
х

Исследуем этот
график в области определения задачи с
помощью производной. у2=3x2-12,
y2=0,
3x2-12=0,
x2-4=0,
x1,2=2.
В область определения задачи
попадает только х=2. у2=6х,
sgn у2(2)=12>0

min у2= у2(2)=8-24+18= =2. Как
видим, max у1 совпадает
с min у2;
стало быть, х=2 есть решение задачи.

Сделаем
некоторые замечания о многочлене третьей
степени, рассматривая его при хR.
Во-первых,
имеем по
крайней мере один действительный корень
многочлена нечетной степени. Так как
Ф+
(смена
знаков при х>0)
равно двум, то
положительных корней у многочлена 2 или
их нет вовсе. Так как Ф
(смена знаков при х<0
(-, +, +)) равно 1, то и отрицательный корень
у многочлена один. Из решенной задачи
следует, что, кроме min
у22(2)=2,
есть еще экстремум в точке х=-2. sgn
у2(-2)=-12<0

max
y22(-2)=34.
Стало быть,
как это видно из рисунка, многочлен
имеет только один отрицательный корень,
расположенный в интервале (-5; -4), так как
у2(-4)=-64+48+18=2,
а у2(-5)=-125+60+18=-47.
Исследованный многочлен целочисленный,
приведенный, неполный, целых рациональных
корней не имеет. Если сдвинуть график
многочлена на две единицы вниз, то у
полученного вновь многочлена х3-12х+16
будет три действительных корня, один
из которых кратный ({-4;
2; 2}).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Теорема Безу и следствия из неё

19 июля 2022

Теорема Безу позволяет решать уравнения высших степеней, которые на первый взгляд не решаются, и раскладывать на множители многочлены, которые не раскладываются.:)

Формулировка теоремы довольно проста:

Терема Безу. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $x- color{red}{a}$ равен значению этого многочлена в точке $x= color{red}{a}$:

[r=Pleft( color{red}{a} right)]

На практике нас интересует не сама теорема Безу, а некоторые следствия из неё — именно они помогают решать уравнения и раскладывать многочлены на множители. В этом уроке мы рассмотрим все такие следствия и станем настоящими мастерами в работе с многочленами.

Содержание

  1. Деление с остатком
  2. Разложение на множители
  3. Целые корни многочленов
  4. Рациональные корни многочленов
  5. Доказательства

В разных учебниках теорему Безу проходят то в 9-м классе, то в 10-м. Этот урок построен так, что вы поймёте его вне зависимости от школы, класса и учебника.

1. Деление с остатком

Итак, есть многочлен $Pleft( x right)$ и двучлен $x- color{red}{a}$. Разделим $Pleft( x right)$ на $x- color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x- color{red}{a} right)+r]

Теперь найдём значение многочлена $Pleft( x right)$ в точке $x= color{red}{a}$:

[Pleft( color{red}{a} right)=Qleft( color{red}{a} right)cdot left( color{red}{a}- color{red}{a} right)+r=r]

Собственно, мы только что доказали теорему Безу. А заодно подготовили основу для первого важного следствия.

Следствие 1. Деление на произвольный двучлен

Теорема Безу прекрасно работает не только для двучлена $x-color{red}{a}$, но и для любого линейного выражения вида $color{blue}{k}x+color{red}{b}$.

Следствие 1. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $color{blue}{k}x+color{red}{b}$ равен значению этого многочлена в точке $x=-color{red}{b}/ color{blue}{k};$:

[r=Pleft( -frac{color{red}{b}}{color{blue}{k}} right)]

На практике для большей надёжности рекомендуется приравнять двучлен $color{blue}{k}x+color{red}{b}$ к нулю:

[begin{align} color{blue}{k}x+color{red}{b} &=0 \ x &=-frac{color{red}{b}}{color{blue}{k}} \ end{align}]

Затем подставить найденное значение $x=-{color{red}{b}}/{color{blue}{k}};$ в многочлен $Pleft( x right)$ и таким образом найти $Pleft( -{color{red}{b}}/{color{blue}{k}}; right)$:

[r=Pleft( -frac{color{red}{b}}{color{blue}{k}} right)]

Пример 1. Стандартный многочлен

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)=4{{x}^{3}}-3{{x}^{2}}+5x-6]

на двучлен $Tleft( x right)=x-2$.

Решение. Это стандартный двучлен вида $x-color{red}{a}$, поэтому решаем по стандартной теореме Безу, согласно которой остаток от деления многочлена $Pleft( x right)$ на двучлен $x-color{red}{2}$ равен $Pleft( color{red}{2} right)$:

[begin{align}r &=Pleft( color{red}{2} right)= \ &=4cdot {color{red}{2}^{3}}-3cdot {color{red}{2}^{2}}+5cdotcolor{red}{2}-6 \ &=32-12+10-6=24 end{align}]

Ответ: 24.

Пример 2. Более сложный многочлен

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)={{left( {{x}^{3}}-2{{x}^{2}}+5 right)}^{3}}{{left( 2x+1 right)}^{5}}]

на двучлен $Tleft( x right)=x+1$.

Решение. Многочлен $Pleft( x right)$ представлен в виде произведения двух других многочленов, которые ещё и возведены в степени. Если раскрыть скобки и привести подобные слагаемые, получится обычный многочлен вида

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

По свойствам степеней найдём степень такого многочлена:

[deg Pleft( x right)=3cdot 3+1cdot 5=14]

Раскрывать скобки и приводить подобные в многочлене 14-й степени долго и трудно, а главное — в этом нет никакой необходимости. Ведь по теореме Безу остаток от деления $Pleft( x right)$ на двучлен $x-color{red}{a}$ всегда равен $Pleft( color{red}{a} right)$ — и не важно, как записан исходный многочлен $Pleft( x right)$.

Для надёжности, чтобы найти $color{red}{a}$, приравняем к нулю двучлен $Tleft( x right)=x+1$:

[begin{align}x+1 &=0 \ x &=color{red}{-1} \ end{align}]

Теперь подставим $x=color{red}{-1}$ в многочлен $Pleft( x right)$ и найдём остаток:

[begin{align}r &=Pleft( color{red}{-1} right)= \ &={{left( {{left( color{red}{-1} right)}^{3}}-2cdot {{left( color{red}{-1} right)}^{2}}+5 right)}^{3}}cdot {{left( 2cdot left( color{red}{-1} right)+1 right)}^{5}}= \ &={{left( -1-2+5 right)}^{3}}cdot {{left( -2+1 right)}^{5}}=-8 end{align}]

Ответ: −8.

Пример 3. Рациональные коэффициенты

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)=3{{x}^{20}}+{{x}^{19}}-7x+1]

на двучлен $Tleft( x right)=3x+1$.

Решение. Воспользуемся Следствием 1 из теоремы Безу. Для надёжности приравняем к нулю двучлен $Tleft( x right)$ и найдём $color{red}{a}$:

[begin{align}3x+1 &=0 \ x &=color{red}{-{1}/{3};} end{align}]

Подставим найденное $x=color{red}{-{1}/{3};}$ в многочлен $Pleft( x right)$ и найдём остаток:

[begin{align} Pleft( color{red}{-frac{1}{3}} right) &=3cdot {{left( color{red}{-frac{1}{3}} right)}^{20}}+{{left( color{red}{-frac{1}{3}} right)}^{19}}-7cdot left( color{red}{-frac{1}{3}} right)+1= \ &=frac{1}{{{3}^{19}}}-frac{1}{{{3}^{19}}}+frac{7}{3}+1=frac{10}{3} end{align}]

Ответ: ${10}/{3};$.

Пример 4. Иррациональные коэффициенты

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)={{x}^{6}}-12{{x}^{4}}+48{{x}^{2}}+64]

на двучлен $Tleft( x right)=left( 1-sqrt{3} right)x+2$.

Решение. Вновь воспользуемся Следствием 1 из теоремы Безу. Приравняем двучлен $Tleft( x right)$ к нулю и найдём $color{red}{a}$:

[left( 1-sqrt{3} right)x+2=0]

Это линейное уравнение с иррациональными коэффициентами. Такое уравнение решается стандартно (см. урок «Линейные уравнения»):

[x=-frac{2}{1-sqrt{3}}=frac{2}{sqrt{3}-1}]

Избавимся от иррациональности в знаменателе, домножив числитель и знаменатель на сопряжённое:

[x=frac{2color{blue}{left( sqrt{3}+1 right)}}{left( sqrt{3}-1 right) color{blue}{left( sqrt{3}+1 right)}}=frac{2left( sqrt{3}+1 right)}{2}= color{red}{sqrt{3}+1}]

Степень исходного многочлена: $deg Pleft( x right)=6$. Если подставить в такой многочлен иррациональное число, то это число придётся возводить в шестую степень. Это слишком долго и трудно, поэтому перепишем многочлен $Pleft( x right)$ так:

[begin{align} Pleft( x right) &=left( {{x}^{6}}-12{{x}^{4}}+48{{x}^{2}}-64 right)+128= \ &={{left( {{x}^{2}}-4 right)}^{3}}+128 end{align}]

Мы выделили точный куб разности — классическую формулу сокращённого умножения. Как это работает — см. уроки «Формулы сокращённого умножения» и «Куб суммы и разности».

В такую формулу намного проще подставить $x=color{red}{sqrt{3}+1}$:

[begin{align}Pleft( color{red}{sqrt{3}+1} right) &={{left( {{left( color{red}{sqrt{3}+1} right)}^{2}}-4 right)}^{3}}+128= \ &={{left( {{left( sqrt{3} right)}^{2}}+2sqrt{3}+{{1}^{2}}-4 right)}^{3}}+128= \ &={{left( 2sqrt{3} right)}^{3}}+128= \ &=24sqrt{3}+128 end{align}]

Ответ получился некрасивым, но это и есть искомый остаток от деления.

Ответ: $24sqrt{3}+128$.

2. Разложение на множители

Сейчас будет немного теории, которая может показаться непонятной, но далее на примерах всё встанет на свои места.

Рассмотрим ещё раз деление многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

По теореме Безу мы легко найдём остаток $r=Pleft( color{red}{a} right)$. В частности, при $Pleft( color{red}{a} right)=0$ многочлен примет вид

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

А это значит, что многочлен $Pleft( x right)$ разделился на двучлен $x-color{red}{a}$ без остатка, и мы получили разложение на множители.

Кроме того, равенство $Pleft( color{red}{a} right)=0$ означает, что число $x=color{red}{a}$ — корень многочлена $Pleft( x right)$. И это ещё одно замечательное следствие теоремы Безу.

Следствие 2. Корни многочлена и деление

Следствие 2. Число $x=color{red}{a}$ является корнем многочлена $Pleft( x right)$ тогда и только тогда, когда $Pleft( x right)$ делится без остатка на $left( x-color{red}{a} right)$.

На практике это означает, что для разложения многочлена на множители мы просто перебираем разные числа $x=color{red}{a}$ до тех пор, пока не окажется, что $Pleft( color{red}{a} right)=0$. В этот момент многочлен перепишется в виде

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

Такой перебор особенно эффективен в сочетании со схемой Горнера (см. урок «Схема Горнера»). Потому что параллельно с вычислением $Pleft( color{red}{a} right)$ мы получаем ещё и коэффициенты нового многочлена $Qleft( x right)$.

Пример 10. Обычный многочлен

Разложите на множители многочлен

[Pleft( x right)={{x}^{4}}+3{{x}^{3}}-3{{x}^{2}}-11x-6]

Решение. Для наглядности отметим синим цветом коэффициенты многочлена $Pleft( x right)$:

[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{3}cdot {{x}^{3}}+left( color{blue}{-3} right)cdot {{x}^{2}}+left( color{blue}{-11} right)cdot x+left( color{blue}{-6} right)]

Составим из них таблицу для схемы Горнера:

[begin{array}{r|r|r|r|r|r} {} & color{blue}{1} & color{blue}{3} & color{blue}{-3} & color{blue}{-11} & color{blue}{-6}\ hline{} & {} & {} & {} & {} & {}\ end{array}]

Все коэффициенты целые, поэтому логично проверять целые $x=color{red}{a}$, начиная с самых простых и маленьких чисел:

[x=pm 1; pm 2; pm 3; ldots ]

Проверим $x=color{red}{1}$ и $x=color{red}{-1}$:

[begin{array}{r|r|r|r|r|r}{} & color{blue}{1} & color{blue}{3} & color{blue}{-3} & color{blue}{-11} & color{blue}{-6}\ hline color{red}{1} & 1 & 4 & 1 & -10 & color{red}{-16}\ hline color{red}{-1} & 1 & 2 & -5 & -6 & color{green}{0}\ end{array}]

Проверка числа $x=color{red}{1}$ окончилась неудачей: остаток $r=color{red}{-16}$. Зато проверка $x=color{red}{-1}$ дала остаток $r=color{green}{0}$. Следовательно, $x=color{red}{-1}$ является корнем многочлена $Pleft( x right)$, и сам многочлен можно переписать так:

[begin{align}Pleft( x right) &=Qleft( x right)cdot left( x-left( color{red}{-1} right) right) \ &=left( {{x}^{3}}+2{{x}^{2}}-5x-6 right)left( x+1 right) end{align}]

Теперь разложим многочлен $Qleft( x right)$ по схеме Горнера. Проверим ещё раз число $x=color{red}{-1}$:

[begin{array}{r|r|r|r|r|r}{} & 1 & 3 & -3 & -11 & -6\ hline color{red}{-1} & color{blue}{1} & color{blue}{2} & color{blue}{-5} & color{blue}{-6} & color{green}{0}\ hline color{red}{-1} & 1 & 1 & -6 & color{green}{0} & {}\ end{array}]

И вновь получили $r=color{green}{0}$. Исходный многочлен примет вид

[Pleft( x right)=left( {{x}^{2}}+x-6 right){{left( x-1 right)}^{2}}]

В первой скобке стоит квадратный трёхчлен. Разложим его на множители по теореме Виета:

[{{x}^{2}}+x-6=left( x+3 right)left( x-2 right)]

Итого окончательное разложение многочлена $Pleft( x right)$:

[left( x+3 right)left( x-2 right){{left( x-1 right)}^{2}}]

Однако это было довольно простое задание: теорема Безу использовалась лишь в качестве обоснования, почему вместо $Pleft( x right)$ мы пишем $Qleft( x right)left( x-color{red}{a} right)$.

Следующее задание будет намного интереснее.:)

Пример 11. Многочлен с двумя переменными

Разложите на множители многочлен

[Pleft( x,y right)=y{{x}^{2}}+3yx+x-4y-1]

Решение. Это многочлен от двух переменных. Он квадратный относительно переменной $x$ и линейный относительно $y$. Чтобы разложить такой многочлен на множители, сгруппируем его слагаемые относительно переменной $x$:

[Pleft( x,y right)= color{blue}{y}cdot {{x}^{2}}+left( color{blue}{3y+1} right)cdot x+left( color{blue}{-4y-1} right)]

Составляем таблицу:

[begin{array}{c|c|c|c}{} & color{blue}{y} & color{blue}{3y+1} & color{blue}{-4y-1}\ hline {} & {} & {} & {}\ end{array}]

Чтобы воспользоваться теоремой Безу, нужно найти такое $x=color{red}{a}$, чтобы $r=Pleft( color{red}{a} right)= color{green}{0}$. Поскольку в роли коэффициентов выступают выражения, содержащие переменную $y$, вновь рассмотрим самые простые варианты, которые приходят в голову:

[x=pm 1; pm y]

Проверим, например, $x=color{red}{1}$:

[begin{array}{c|c|c|c}{} & color{blue}{y} & color{blue}{3y+1} & color{blue}{-4y-1}\ hline color{red}{1} & y & 4y+1 & color{green}{0}\ end{array}]

Первая же попытка привела к успеху: $r=color{green}{0}$, поэтому $x=color{red}{1}$ — крень многочлена $Pleft( x,y right)$. Разложим этот многочлен на множители согласно Следствию 2 теоремы Безу:

[Pleft( x,y right)=left( ycdot x+4y+1 right)cdot left( x-color{red}{1} right)]

В первой скобке стоит новый многочлен, линейный по $x$ и по $y$. Его уже нельзя разложить на множители, поэтому ответ окончательный:

[Pleft( x,y right)=left( xy+4y+1 right)left( x-1 right)]

Важное замечание. Строго говоря, линейность многочлена по каждой переменной ещё не означает, что его нельзя разложить на множители. Простой контрпример:

[xy-x+y-1=left( x+1 right)left( y-1 right)]

Однако в нашем случае дальнейшее применение теоремы Безу и проверки по схеме Горнера не даст никаких новых множителей.

3. Целые корни многочленов

До сих пор мы подставляли числа наугад. И если удавалось найти число $x=color{red}{a}$ такое, что $Pleft( color{red}{a} right)=0$, мы объявляли его корнем, а многочлен $Pleft( x right)$ переписывали в виде

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

Однако с помощью теоремы Безу можно значительно ускорить отыскание корней, отбросив заведомо неподходящие варианты. В этом нам поможет следующее утверждение.

Следствие 3. Целочисленные корни

Пусть $Pleft( x right)$ — приведённый многочлен с целыми коэффициентами:

[Pleft( x right)={{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

Тогда свободный член ${{a}_{0}}$ делится на любой целый корень многочлена $Pleft( x right)$.

Обратите внимание: старший коэффициент при ${{x}^{n}}$ равен единице. Именно поэтому многочлен $Pleft( x right)$ называется приведённым. Кроме того, все коэффициенты ${{a}_{n-1}},ldots ,{{a}_{0}}$ должны быть целыми числами.

И вот тогда целые корни следует искать среди делителей свободного члена ${{a}_{0}}$.

Пример 5. Простое уравнение

Решите уравнение

[{{x}^{3}}-2{{x}^{2}}-x+2=0]

Решение. Это приведённое кубическое уравнение с целыми коэффициентами. Рассмотрим многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{3}}+left( color{blue}{-2} right)cdot {{x}^{2}}+left( color{blue}{-1} right)cdot x+color{blue}{2}]

Если у него есть целые корни, то по Следствию 3 теоремы Безу все они находятся среди делителей свободного члена ${{a}_{0}}=2$. Таких делителей всего четыре:

[x=pm 1; pm 2]

Подставим эти числа в схему Горнера:

[begin{array}{r|r|r|r|r}{} & color{blue}{1} & color{blue}{-2} & color{blue}{-1} & color{blue}{2}\ hline color{red}{1} & 1 & -1 & -2 & color{green}{0}\ hline color{red}{-1} & 1 & -2 & color{green}{0} & {}\ end{array}]

Уже на первом шаге мы получили $r=color{green}{0}$. Следовательно, $x=color{red}{1}$ — корень многочлена $Pleft( x right)$, и сам многочлен можно переписать так:

[Pleft( x right)=left( {{x}^{2}}-x-2 right)left( x-color{red}{1} right)]

Впрочем, если учесть третью строку таблицы, то можно вообще записать

[Pleft( x right)=left( x-2 right)left( x-left( color{red}{-1} right) right)left( x-color{red}{1} right)]

В любом случае, корни многочлена, как и корни уравнения — это числа 2, 1 и −1.

Ответ: $x=1$, $x=-1$, $x=2$.

Формула понижения степени

Итак, с помощью теоремы Безу мы можем:

  1. Найти целый корень многочлена;
  2. Разложить исходный многочлен на множители;
  3. Далее искать корни многочлена степени на единицу меньше.

В самом деле, если $Pleft( color{red}{a} right)=0$, тогда по Следствию 2 теоремы Безу мы переписываем многочлен $Pleft( x right)$ в виде

[Pleft( x right)=Qleft( x right)left( x-color{red}{a} right)]

Далее мы ищем корни многочлена $Qleft( x right)$, степень которого на единицу меньше $Pleft( x right)$.

Этот приём называется понижением степени. Он помогает свести исходный многочлен к квадратному, корни которого легко считаются, например, через дискриминант.

Пример 6. Среднее уравнение

Решите уравнение

[{{x}^{3}}-3{{x}^{2}}-4x+12=0]

Решение. Это уравнение третьей степени. Достаточно найти один корень — далее останется решить квадратное уравнение. Заметим, что многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{3}}+left( color{blue}{-3} right)cdot {{x}^{2}}+left( color{blue}{-4} right)cdot x+color{blue}{12}]

является приведённым с целочисленными коэффициентами. По Следствию 3 теоремы Безу все целые корни этого многочлена содержатся среди делителей свободного члена ${{a}_{0}}=12$. Таких делителей довольно много:

[x=pm 1; pm 2; pm 3; pm 4; pm 6; pm 12]

Впрочем, нам достаточно найти всего один корень. Воспользуемся схемой Горнера:

[begin{array}{r|r|r|r|r}{} & color{blue}{1} & color{blue}{-3} & color{blue}{-4} & color{blue}{12}\ hlinecolor{red}{1} & 1 & -2 & -7 & color{red}{5}\ hlinecolor{red}{-1} & 1 & -4 & 0 & color{red}{12}\ hlinecolor{red}{2} & 1 & -1 & -6 & color{green}{0}\ end{array}]

Проверка закончилась неудачей для $x=color{red}{1}$ и $x=color{red}{-1}$. Но для $x=color{red}{2}$ мы нашли то, что искали: остаток $r=color{green}{0}$. Следовательно, $x=color{red}{2}$ — корень многочлена $Pleft( x right)$.

Разложим многочлен на множители согласно теореме Безу:

[Pleft( x right)=left( {{x}^{2}}-x-6 right)left( x-color{red}{2} right)]

В первой скобке стоит квадратный трёхчлен. Его корни легко найти по теореме Виета:

[Pleft( x right)=left( x-3 right)left( x+2 right)left( x-2 right)]

Приравниваем полученное произведение к нулю и решаем уравнение: $x=3$, $x=-2$, $x=2$.

Ответ: $x=2$, $x=-2$, $x=3$.

Пример 7. Сложное уравнение

Решите уравнение

[{{x}^{4}}-{{x}^{3}}-5{{x}^{2}}+3x+2=0]

Решение. Слева приведённый многочлен с целочисленными коэффициентами, поэтому все целые корни находятся среди делителей свободного члена ${{a}_{0}}=2$:

[x=pm 1; pm 2]

Достаточно подобрать два корня — далее уравнение сведётся к квадратному. Воспользуемся схемой Горнера:

[begin{array}{r|r|r|r|r|r}{} & color{blue}{1} & color{blue}{-1} & color{blue}{-5} & color{blue}{3} & color{blue}{2}\ hlinecolor{red}{-1} & 1 & -2 & -3 & 6 & color{red}{-4}\ hlinecolor{red}{1} & 1 & 0 & -5 & -2 & color{green}{0}\ hlinecolor{red}{-2} & 1 & -2 & -1 & color{green}{0} & {}\ end{array}]

Получили корни $x=color{red}{1}$ и $x=color{red}{-2}$. Разложим многочлен на множители:

[left( {{x}^{2}}-2x-1 right)left( x-color{red}{1} right)left( x-left( color{red}{-2} right) right)=0]

Решим квадратного уравнение из первой скобки:

[{{x}^{2}}-2x-1=0]

Дискриминант положителен:

[begin{align} D &={{left( -2 right)}^{2}}-4cdot 1cdot left( -1 right)= \ &=4+4=8 end{align}]

Следовательно, уравнение имеет два корня:

[x=frac{2pm 2sqrt{2}}{2}=1pm sqrt{2}]

Ответ: $x=1$, $x=-2$, $x=1pm sqrt{2}$.

4. Рациональные корни

До сих пор мы работали лишь с приведёнными многочленами, где старший коэффициент равен единице. Однако теорема Безу прекрасно работает и для неприведённых многочленов — при условии что все коэффициенты остаются целыми.

Рассмотрим уравнение

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

где ${{a}_{n}},ldots ,{{a}_{0}}$ — целые числа, причём ${{a}_{n}}ne 0$.

Следствие 4. Если рациональное число $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}in mathbb{Z}$, $color{blue}{q}in mathbb{N}$ и дробь $color{red}{p}/color{blue}{q};$ несократима, является корнем уравнения

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

то свободный член ${{a}_{0}}$ делится на $color{red}{p}$, а старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$.

Это утверждение будет доказано в конце урока. Сейчас важен практический смысл, который состоит в том, что все рациональные корни уравнения

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

имеют вид $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}$ следует искать среди делителей ${{a}_{0}}$, а $color{blue}{q}$ — среди положительных делителей ${{a}_{n}}$.

Пример 8. Простой многочлен

Найдите рациональные корни многочлена

[Pleft( x right)=2{{x}^{5}}-{{x}^{4}}+4x-2]

Решение. Делители свободного члена ${{a}_{0}}=-2$:

[p=pm 1; pm 2]

Положительные делители старшего коэффициента ${{a}_{4}}=2$:

[q=1; 2]

Возможные рациональные корни многочлена $Pleft( x right)$ по Следствию 4 теоремы Безу:

[x=pm 1; pm 2; pm {1}/{2};]

Проверять числа $x=color{red}{pm 1}$ нет смысла, поскольку все коэффициенты многочлена $Pleft( x right)$, за исключением одного, чётные. Следовательно, при подстановке нечётных чисел многочлен принимает нечётные значения, которые точно не равны нулю.

Остальные числа проверим по схеме Горнера:

[begin{array}{r|r|r|r|r|r|r}{} & color{blue}{2} & color{blue}{-1} & color{blue}{0} & color{blue}{0} & color{blue}{4} & color{blue}{-2}\ hlinecolor{red}{2} & 2 & 3 & 6 & 12 & 28 & color{red}{54}\ hlinecolor{red}{-2} & 2 & -5 & 10 & -20 & 44 & color{red}{-90}\ hline color{red}{{1}/{2};} & 2 & 0 & 0 & 0 & 4 & color{green}{0}\ hline color{red}{-{1}/{2};} & 2 & -2 & 1 & -{1}/{2}; & {17}/{4}; & color{red}{-{33}/{8};}\ end{array}]

Подошло лишь одно число: $x=color{red}{{1}/{2};}$. Следовательно, многочлен имеет лишь один рациональный корень.

Ответ: $x={1}/{2};$.

Обратите внимание: проверку дробных чисел можно прекращать, как только в строке таблицы появилась дробь. Потому что дальше это число будет лишь умножаться на новые дроби и складываться с другими целыми числами. При таких обстоятельствах получить $r=color{green}{0}$ уже невозможно.

Пример 9. Сложный многочлен

Найдите рациональные корни многочлена

[Pleft( x right)=3{{x}^{7}}+2{{x}^{6}}-5{{x}^{5}}+3{{x}^{3}}-{{x}^{2}}-7x+5]

Решение. Это многочлен с целыми коэффициентами. Делители свободного члена ${{a}_{0}}=5$:

[p=pm 1; pm 5]

Положительные делители старшего коэффициента ${{a}_{7}}=3$:

[q=1; 3]

Кандидаты в корни согласно Следствию 4 теоремы Безу:

[x=pm 1; pm 5; pm {1}/{3};; pm {1}/{5};]

Всего восемь кандидатов. Проверим их все по схеме Горнера:

[begin{array}{r|r|r|r|r|c|c|c|c}{} & color{blue}{3} & color{blue}{2} & color{blue}{-5} & color{blue}{0} & color{blue}{3} & color{blue}{-1} & color{blue}{-7} & color{blue}{5}\ hlinecolor{red}{1} & 3 & 5 & 0 & 0 & 3 & 2 & -5 & color{green}{0}\ hlinecolor{red}{-1} & 3 & 2 & -2 & 2 & 1 & 1 & color{red}{-6} & {}\ hlinecolor{red}{5} & 3 & 20 & 100 & color{red}{500} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-5} & 3 & -10 & 50 & color{red}{-250} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{{1}/{3};} & 3 & 6 & 2 & color{red}{{2}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-{1}/{3};} & 3 & 4 & color{red}{-{4}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{{5}/{3};} & 3 & 10 & color{red}{{50}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-{5}/{3};} & 3 & 0 & 0 & 0 & 3 & -3 & color{green}{0} & {}\ end{array}]

Обратите внимание: для чисел $x=color{red}{5}$ и $x=color{red}{-5}$ мы прекратили вычисления досрочно, поскольку получили явно неадекватные числа, которые дальше будут только расти.

При проверке $x=color{red}{{1}/{3};}$, $x=color{red}{-{1}/{3};}$ и $x=color{red}{{5}/{3};}$ мы в какой-то момент возникли дроби, после чего дальнейшие вычисления теряют смысл.

Итого найдены два рациональных корня: $x=color{red}{1}$ и $x=color{red}{-{5}/{3};}$. Пожалуй, это одно из самых утомительных заданий на применение теоремы Безу, которые я когда-либо решал.:)

5. Доказательства

Рассмотрим доказательства всех ключевых утверждений сегодняшнего урока.

5.1. Теорема Безу

Мы сформулировали эту теорему в самом начале урока:

Терема Безу. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $x-color{red}{a}$ равен значению этого многочлена в точке $x=color{red}{a}$:

[r=Pleft( color{red}{a} right)]

Доказательство. Разделим многочлен $Pleft( x right)$ на двучлен $x-color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

Такое представление всегда однозначно (см. урок «Деление многочленов с остатком»). Здесь многочлен $Qleft( x right)$ — неполное частное, $r$ — остаток, причём

[begin{align}deg r lt deg left( x-color{red}{a} right) &=1 \ deg r &=0 \ end{align}]

Другими словами, остаток $r$ — это просто число.

Теперь найдём значение $Pleft( x right)$ в точке $x=color{red}{a}$:

[Pleft( color{red}{a} right)=Qleft( color{red}{a} right)cdot left( color{red}{a}-color{red}{a} right)+r=r]

Теорема Безу доказана. Однако её доказательство опирается на единственность деления с остатком.

5.2. Целочисленные корни

Целочисленные корни приведённого многочлена с целыми коэффициентами следует искать среди делителей свободного члена.

Следствие 3. Пусть $Pleft( x right)$ — приведённый многочлен с целыми коэффициентами:

[Pleft( x right)={{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

Тогда свободный член ${{a}_{0}}$ делится на любой целый корень многочлена $Pleft( x right)$.

Доказательство. Пусть $color{red}{b}in mathbb{Z}$ — корень многочлена $Pleft( x right)$, т.е. $Pleft( color{red}{b} right)=0$. Подставим число $x=color{red}{b}$ в формулу многочлена и получим уравнение:

[{color{red}{b}^{n}}+{{a}_{n-1}}{color{red}{b}^{n-1}}+ldots +{{a}_{1}}color{red}{b}+{{a}_{0}}=0]

Перенесём последнее слагаемое вправо, а слева из оставшихся слагаемых вынесем множитель $color{red}{b}$ за скобку:

[color{red}{b}cdot left( {color{red}{b}^{n-1}}+{{a}_{n-1}}{color{red}{b}^{n-2}}+ldots +{{a}_{1}} right)=-{{a}_{0}}]

Поскольку $-{{a}_{0}}in mathbb{Z}$, а слева стоят два целочисленных множителя, получаем, что число $-{{a}_{0}}$ делится на $color{red}{b}$. Следовательно, свободный член ${{a}_{0}}$ тоже делится на $color{red}{b}$, что и требовалось доказать.

5.3. Рациональные корни

Рассмотрим уравнение

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

где ${{a}_{n}},ldots ,{{a}_{0}}$ — целые числа, причём ${{a}_{n}}ne 0$.

Утверждение. Если рациональное число $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}in mathbb{Z}$, $color{blue}{q}in mathbb{N}$ и дробь $color{red}{p}/color{blue}{q};$ несократима, является корнем уравнения $Pleft( x right)=0$, то свободный член ${{a}_{0}}$ делится на $color{red}{p}$, а старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$.

Доказательство. Подставим число $x=color{red}{p}/color{blue}{q};$ в исходное уравнение. Поскольку $x=color{red}{p}/color{blue}{q};$ — корень, уравнение обратится в верное числовое равенство:

[{{a}_{n}}cdot {{left( frac{color{red}{p}}{color{blue}{q}} right)}^{n}}+{{a}_{n-1}}cdot {{left( frac{color{red}{p}}{color{blue}{q}} right)}^{n-1}}+ldots +{{a}_{1}}cdot frac{color{red}{p}}{color{blue}{q}}+{{a}_{0}}=0]

Домножим обе части на ${color{blue}{q}^{n}}$. Получим

[{{a}_{n}}{color{red}{p}^{n}}+{{a}_{n-1}}{color{red}{p}^{n-1}}color{blue}{q}+ldots +{{a}_{1}}color{red}{p}{color{blue}{q}^{n-1}}+{{a}_{0}}{color{blue}{q}^{n}}=0]

Перенесём последнее слагаемое ${{a}_{0}}{color{blue}{q}^{n}}$ вправо, а в левой части из оставшихся слагаемых вынесем множитель $color{red}{p}$ за скобку:

[color{red}{p}left( {{a}_{n}}{color{red}{p}^{n-1}}+{{a}_{n-1}}{color{red}{p}^{n-2}}color{blue}{q}+ldots +{{a}_{1}}{color{blue}{q}^{n-1}} right)=-{{a}_{0}}{color{blue}{q}^{n}}]

Слева и справа от знака равенства стоят целые числа, поскольку все слагаемые и множители являются целыми. Мы видим, что левая часть делится на $color{red}{p}$. Следовательно, правая часть тоже делится на $color{red}{p}$:

[-{{a}_{0}}{color{blue}{q}^{n}} vdots color{red}{p}]

По условию теоремы дробь $color{red}{p}/color{blue}{q};$ несократима. Следовательно, числа $color{blue}{q}$ и $color{red}{p}$ не имеют общих делителей, и единственный возможный вариант — это когда ${{a}_{0}}$ делится на $color{red}{p}$.

Аналогично доказывается, что старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$. Теорема доказана.

Вот и всё.:)

Смотрите также:

  1. Схема Горнера
  2. Деление многочленов уголком
  3. Теорема Виета
  4. Задача B3 — работа с графиками
  5. Метод коэффициентов, часть 2
  6. Нестандартная задача B2: студенты, гонорары и налоги

Понравилась статья? Поделить с друзьями:
  • Как в watch dogs найти девушку
  • Как найти равнобедренный треугольник в квадрате
  • Колода скеллиге ведьмак 3 как найти
  • Как найти площадь трапеции abcd егэ
  • Как составить презентацию по исследовательской работе