Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
-
Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
-
Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
-
Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Общие сведения об уравнениях
Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.
С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.
В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Что такое уравнение?
Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .
А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.
Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.
Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет
Говорят, что число 2 является корнем или решением уравнения 3 + x = 5
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.
Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.
Выразить одно через другое
Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.
Рассмотрим следующее выражение:
Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10
Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.
Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.
Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:
Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.
При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.
Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:
2 есть 10 − 8
То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:
Число 2 есть разность числа 10 и числа 8
Число 2 есть разница между числом 10 и числом 8.
Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.
Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:
Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2
Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:
В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:
Пример 2. Рассмотрим равенство 8 − 2 = 6
Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:
Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6
Пример 3. Рассмотрим равенство 3 × 2 = 6
Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2
Вернем получившееся равенство в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3
Пример 4. Рассмотрим равенство
Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5
Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:
Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3
Правила нахождения неизвестных
Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.
Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.
В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.
Чтобы выразить число 2, мы поступили следующим образом:
То есть из суммы 10 вычли слагаемое 8.
Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x
В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого
Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8
А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:
Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x
Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:
В результате получается верное числовое равенство. Значит уравнение решено правильно.
Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.
В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2
Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.
В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность
Чтобы выразить число 8, мы поступили следующим образом:
То есть сложили разность 6 и вычитаемое 2.
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x
В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого
Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.
А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2
Если вычислить правую часть, то можно узнать чему равна переменная x
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного вычитаемого
Для нахождения неизвестного вычитаемого предусмотрено следующее правило:
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.
А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6
Вычисляем правую часть и находим значение x
Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.
В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение
Чтобы выразить число 3 мы поступили следующим образом:
То есть разделили произведение 6 на множитель 2.
Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного множимого.
Для нахождения неизвестного множимого предусмотрено следующее правило:
Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.
Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.
А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.
Вычисление правой части позволяет нам найти значение переменной x
Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:
Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.
Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.
А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.
Вычисление правой части равенства позволяет узнать чему равно x
Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:
Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.
Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9
Отсюда .
Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3
Отсюда .
Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.
Чтобы выразить число 15 мы поступили следующим образом:
То есть умножили частное 3 на делитель 5.
Теперь представим, что в равенстве вместо числа 15 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного делимого.
Для нахождения неизвестного делимого предусмотрено следующее правило:
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.
А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Теперь представим, что в равенстве вместо числа 5 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного делителя.
Для нахождения неизвестного делителя предусмотрено следующее правило:
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.
А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
- Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
- Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
- Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Компоненты
Компонентами мы будем называть числа и переменные, входящие в равенство
Так, компонентами сложения являются слагаемые и сумма
Компонентами вычитания являются уменьшаемое, вычитаемое и разность
Компонентами умножения являются множимое, множитель и произведение
Компонентами деления являются делимое, делитель и частное
В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.
Пример 1. Найти корень уравнения 45 + x = 60
45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:
Вычислим правую часть, получим значение x равное 15
Значит корень уравнения 45 + x = 60 равен 15.
Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.
Пример 2. Решить уравнение
Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x
В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.
При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:
Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:
Вычислим правую часть получившегося уравнения:
Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение
При этом переменная x является не просто множителем, а неизвестным множителем
Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:
Вычислим правую часть, получим значение переменной x
Для проверки найденный корень отправим в исходное уравнение и подставим вместо x
Получили верное числовое равенство. Значит уравнение решено правильно.
Пример 3. Решить уравнение 3x + 9x + 16x = 56
Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.
Приведем подобные слагаемые в левой части данного уравнения:
Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:
Отсюда x равен 2
Равносильные уравнения
В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.
Уравнения называют равносильными, если их корни совпадают.
Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства
Согласно порядку действий, в первую очередь выполняется умножение:
Подставим корень 2 во второе уравнение 28x = 56
Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.
Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.
Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.
Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение
Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.
Пример 1. Решить уравнение
Вычтем из обеих частей уравнения число 10
Приведем подобные слагаемые в обеих частях:
Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.
Отсюда .
Вернемся к исходному уравнению и подставим вместо x найденное значение 2
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2
Пример 2. Решить уравнение 4(x + 3) = 16
Раскроем скобки в левой части равенства:
Вычтем из обеих частей уравнения число 12
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 4x , а в правой части число 4
Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4
Отсюда
Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1
Пример 3. Решить уравнение
Раскроем скобки в левой части равенства:
Прибавим к обеим частям уравнения число 8
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 2x , а в правой части число 9
В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Рассмотрим следующее уравнение:
Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство
Получается верное равенство. Значит число 2 действительно является корнем уравнения .
Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.
Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:
Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.
На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.
Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x
Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.
Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.
Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.
Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.
Пример 1. Решить уравнение
При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:
Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8
Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:
В результате останется простейшее уравнение
Ну и нетрудно догадаться, что корень этого уравнения равен 4
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получается верное числовое равенство. Значит уравнение решено правильно.
При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.
Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:
От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:
Пример 2. Решить уравнение
Умнóжим обе части уравнения на 15
В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5
Перепишем то, что у нас осталось:
Раскроем скобки в правой части уравнения:
Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях, получим
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 5
Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на 3
В левой части можно сократить две тройки, а правая часть будет равна 18
Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 9
Получается верное числовое равенство. Значит уравнение решено правильно.
Пример 4. Решить уравнение
Умнóжим обе части уравнения на 6
В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:
Сократим в обеих частях уравнениях то, что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки в обеих частях уравнения:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:
Приведем подобные слагаемые в обеих частях:
Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получилось верное числовое равенство. Значит уравнение решено правильно.
Пример 5. Решить уравнение
Раскроем скобки в обеих частях уравнения там, где это можно:
Умнóжим обе части уравнения на 15
Раскроем скобки в обеих частях уравнения:
Сократим в обеих частях уравнения, то что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки там, где это можно:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:
Приведем подобные слагаемые в обеих частях уравнения:
Найдём значение x
В получившемся ответе можно выделить целую часть:
Вернемся к исходному уравнению и подставим вместо x найденное значение
Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B
Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B
Найдем значение выражения, находящегося в переменной А.
Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно
Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.
Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.
Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x
Подставим найденное значение 2 вместо x в исходное уравнение:
Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:
Выполним сокращение в каждом слагаемом:
Перепишем то, что у нас осталось:
Решим это уравнение, пользуясь известными тождественными преобразованиями:
Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.
Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7
Этим методом мы тоже будем пользоваться часто.
Умножение на минус единицу
Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.
Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .
Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.
Рассмотрим уравнение . Чему равен корень этого уравнения?
Прибавим к обеим частям уравнения число 5
Приведем подобные слагаемые:
А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x
То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:
Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .
или разделить обе части уравнения на −1 , что еще проще
Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице
Получилось верное числовое равенство. Значит уравнение решено верно.
Теперь попробуем умножить обе части уравнения на минус единицу:
После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10
Корень этого уравнения, как и уравнения равен 5
Значит уравнения и равносильны.
Пример 2. Решить уравнение
В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
Так, умножение уравнения на −1 можно записать подробно следующим образом:
либо можно просто поменять знаки всех компонентов:
Получится то же самое, но разница будет в том, что мы сэкономим себе время.
Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3
Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:
Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:
Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:
Приравнивание к нулю
Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.
В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x
Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:
Приведем подобные слагаемые в левой части:
Прибавим к обеим частям 77 , и разделим обе части на 7
Альтернатива правилам нахождения неизвестных
Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.
К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2
Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5
Уравнения вида мы решали выражая неизвестное слагаемое:
Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:
Далее разделить обе части на 2
В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .
Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:
В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:
Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.
Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.
Когда корней несколько
Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .
В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).
То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.
Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:
Пример 2. Решить уравнение
Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).
Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:
Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:
Когда корней бесконечно много
Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.
Пример 1. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x
Пример 2. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x
Когда корней нет
Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид
Пусть
Пример 2. Решить уравнение
Раскроем скобки в левой части равенства:
Приведем подобные слагаемые:
Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .
Буквенные уравнения
Уравнение может содержать не только числа с переменными, но и буквы.
Например, формула нахождения скорости является буквенным уравнением:
Данное уравнение описывает скорость движения тела при равноускоренном движении.
Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении левую и правую часть поменяем местами:
У нас получилась формула нахождения расстояния, которую мы изучали ранее.
Попробуем из уравнения определить время. Для этого нужно выразить переменную t .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении v × t = s обе части разделим на v
В левой части переменные v сократим на v и перепишем то, что у нас осталось:
У нас получилась формула определения времени, которую мы изучали ранее.
Предположим, что скорость поезда равна 50 км/ч
А расстояние равно 100 км
Тогда буквенное уравнение примет следующий вид
Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t
либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t
Затем разделить обе части на 50
Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x
Вычтем из обеих частей уравнения a
Разделим обе части уравнения на b
Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.
Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:
Видим, что второе решение намного проще и короче.
Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.
Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x
Раскроем скобки в обеих частях уравнения
Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.
В левой части вынесем за скобки множитель x
Разделим обе части на выражение a − b
В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x
Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.
Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:
Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:
Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.
Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:
Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x
Приведем левую часть уравнения к общему знаменателю:
Умнóжим обе части на a
В левой части x вынесем за скобки
Разделим обе части на выражение (1 − a)
Линейные уравнения с одним неизвестным
Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.
Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».
Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.
Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.
Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».
Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.
Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.
Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.
Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.
Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a
Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .
Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.
В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.
Как объяснить уравнения с х (икс) школьнику в 4 классе?
Автор: Творческая Анна
Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.
У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.
Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.
Объяснение примеров с левой стороны, на правую сторону.
Пример № 1
Пример уравнения для 4 класса со знаком плюс.
Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.
Х + 320 = 560 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.
Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.
Всё верно! Значит мы решили уравнение правильно!
Пример № 2
Пример уравнения для 4 класса со знаком минус.
Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.
Х – 180 = 80 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.
Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
Пример № 3
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
400 – х = 275 + 25 Складываем числа.
400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.
400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.
Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.
Проверка:
400 – 100 = 275 + 25 Считаем.
Пример № 4
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
72 – х = 18 * 3 Выполняем умножение. Переписываем пример.
72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.
72 – 54 = х Считаем.
18 = х Меняем местами, для удобства.
Проверка:
Пример № 5
Пример уравнения с х с вычитанием и сложением для 4 класса.
Х – 290 = 470 + 230 Складываем.
Х – 290 = 700 Выставляем числа с одной стороны.
Х = 700 + 290 Считаем.
Проверка:
990 – 290 = 470 + 230 Выполняем сложение.
Пример № 6
Пример уравнения с х на умножение и деление для 4 класса.
15 * х = 630/70 Выполняем деление. Переписываем уравнение.
15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.
Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.
Проверка:
15*6 = 630 / 7 Выполняем умножение и вычитание.
Теперь озвучиваем основные правила:
- Умножаем, складываем, делим или вычитаем;
Выполняем то, что можно сделать, уравнение станет немного короче.
Х в одну сторону, цифры в другую.
Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.
При переносе х или цифры через знак равенства, их знак меняется на противоположный.
Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.
При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.
Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.
Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.
Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.
Данное подробное описание, как объяснить уравнения с х школьнику для:
- родителей;
- школьников;
- репетиторов;
- бабушек и дедушек;
- учителей;
Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.
Из своей практики
Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.
При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.
В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.
Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.
Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.
http://jliza.ru/uravneniya-x.html
Решение простых уравнений — одна из базовых тем для усвоения, при этом они являются достаточно мощным инструментом для решения большинства задач. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Уравнение — это равенство, содержащее в себе переменную. Значение данной переменной требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Переменную, входящую в уравнение, еще называют неизвестным.
Примеры:
- выражение 3+2=5 является равенством, так как при вычислении получаем 5=5
- выражение 3+х=5 является уравнением, так как содержит переменную х, значение которой можно найти.
Решить уравнение — значит найти такое значение х, чтобы равенство было верным.
То есть, в уравнении 3+х=5 значение будет равно 2 (х=2), чтобы получилось верное равенство.
При этом говорят, что 2 — это корень уравнения или решение уравнения 3+х=5.
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Компоненты
Компонентами называются числа и переменные, которые входят в равенство:
- компоненты сложения — слагаемые и сумма;
- компоненты вычитания — уменьшаемое, вычитаемое и разность;
- компоненты умножения — множители и произведение;
- компоненты деления — делимое, делитель и частное.
Правила нахождения неизвестных
Чтобы выразить переменную через другие числа, нужно переменную оставить (или перенести) в левой части выражения, а все числа перенести в правую часть.
Решение простых уравнений подразумевает применение следующих правил:
- чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
- чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
- чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Примеры:
- 3+х=5.
Нужно задать вопрос: что сделать с числами 5 и 3, чтобы получить переменную х.
Чтобы найти слагаемое, нужно из суммы вычесть известное слагаемое: х=5-3. - х-3=7
Нужно задать вопрос: что сделать с числами 3 и 7, чтобы получить переменную х.
Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое: х=7+3. - 8-х=6
Нужно задать вопрос: что сделать с числами 8 и 6, чтобы получить переменную х.
Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность: х=8-6. - 3×а=6 (а-переменная)
Нужно задать вопрос: что сделать с числами 3 и 6, чтобы получить переменную а.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель - а:4=3(а-переменная)
Нужно задать вопрос: что сделать с числами 4 и 3, чтобы получить переменную а.
Чтобы найти неизвестное делимое, нужно частное умножить на делитель: а=3*4 - 12:а=3(а-переменная)
Нужно задать вопрос: что сделать с числами 12 и 3, чтобы получить переменную а.
Чтобы найти неизвестный делитель, нужно делимое разделить на частное: а=12:3.
Если неизвестное имеет коэффициент
Решение простых уравнений сводится к тому, что неизвестное нужно выразить через другие числа. Но чаще всего задаются уравнения, в которых неизвестное имеет коэффициент, например: 2х, 5х и т.д. В таких случаях неизвестное нельзя выразить сразу, поскольку оно содержит коэффициент. Поэтому нужно привести это уравнение к виду, в котором переменная будет выражена.
Рассмотрим пример: 2х+4=8.
В данном примере: 2x — первое слагаемое, 4 — второе слагаемое, 8 — сумма.
- Принимает слагаемое 2х за неизвестное слагаемое. Применяем правило нахождения неизвестного слагаемого: вычитаем из суммы известное слагаемое. Получаем: 2х=8-4 или 2*х=4.
- Мы получили новое уравнение . Теперь мы имеем дело с умножением. Применяем правило нахождения неизвестного множителя: произведение делим на известный множитель. Получаем: х=4:2; х=2
- Вычислим правую часть, получим значение переменной х.
- Проверяем: 2*2+4=8. Равенство верное.
Если уравнение имеет неизвестные с разными коэффициентами
Рассмотрим пример: a+2a+3a=30.
Cразу выразить неизвестное нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить. Для этого нужно сложить все неизвестные величины с коэффициентами: 1а+2а+3а=6а (а — это переменная с коэффициентом 1. который не пишется).
Получаем уравнение вида: 6*а=30. Его можно решить как простое уравнение. Получаем корень: а=5.
Равносильные уравнения
Уравнения называют равносильными, если их корни совпадают.
Из предыдущего примера: уравнение a+2a+3a=30 и уравнение 6а=30 являются равносильными.
Проверим это. Подставим корень сначала в уравнение a+2a+3a=30, а затем в уравнение 6а=30, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства.
Для удобства решения можно любое уравнение преобразовать в равносильное. Для этого можно применить законы математики и свойства уравнений.
Свойства уравнений
- Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
- Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Пример. Решить уравнение 5х-10=20.
Вычтем из обеих частей уравнения число 10, получим: 5х=20-10 или 5х=10.
В результате получилось равносильное уравнение , корень которого равен 2.
Пример. Решить уравнение 4(х+3)=20.
Раскроем скобки: 4х+12=20.
Вычтем из обеих частей уравнения число 12, получим: 4х=20-12 или 4х=8.
В результате получилось равносильное уравнение , корень которого равен 2.
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные числа.
Пример. Решить уравнение (1/4)х+5=6,5
- При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
- Для упрощения обе части уравнения можно умножить на 4: 4*(1/4)х+4*5=4*6,5 или х+20=26.
- В результате останется простейшее уравнение. Получаем, что корень равен 6.
- Вернемся к исходному уравнению и подставим вместо x найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.
Пример. Решить уравнение 8х+16=56
- Для упрощения обе части уравнения можно разделить на 8: 8х:8+16:8=56:8 или х+2=7.
- В результате останется простейшее уравнение. Получаем, что корень равен 5.
- Вернемся к исходному уравнению и подставим вместо x найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.
Если обе части уравнения умножить на минус единицу (поменять знаки), то получится уравнение равносильное данному.
Это правило следует из того, что если обе части уравнения умножить или разделить на одно и тоже число, не равное нулю, то получится равносильное уравнение. Иногда это нужно для того, чтобы получить равносильное уравнение, которое проще решать.
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
При этом минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать.
Пример. Решить уравнение: 2х-5х+10=4.
- Приведем подобные слагаемые: -3х+10=4
- Перенесем второе слагаемое в правую часть: -3х=-6
- Для удобства умножим обе части на (-1). получим: 3х=6.
- Корень: х=2.
Уравнение имеет несколько корней
Уравнение может иметь несколько корней.
Рассмотрим уравнение: x(x + 9) = 0.
Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из множителей равен нулю.
То есть в уравнении x(x + 9) = 0 равенство будет выполняться, если x будет равен нулю или (x + 9) будет равно нулю. Таким образом, уравнение имеет два корня: 0 и −9.
Уравнение имеет бесконечно много корней
Уравнение может иметь бесконечно много корней, когда при подстановке подставив в такое уравнение любого числа, мы получим верное равенство.
Например: рассмотрим простое уравнение 6*(х+2)=6х+12. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 6х+12= 6х+12. Это равенство будет выполняться при любом х.
Уравнение не имеет корней
Бывает и так, что уравнение совсем не имеет корней.
Например: уравнение х+2=х.
Данное уравнение не имеет корней, так как при любом значении х, левая часть уравнения всегда будет больше правой на 2.
Таким образом, мы рассмотрели в статье решение разных видов простых уравнений. Решение более сложных уравнений без знания данного материала практически невозможно.
Далее вы можете переходить к решению квадратных уравнений и решению систем линейных уравнений.
Для решения уравнений вам также могут понадобится темы: раскрытие скобок и порядок действий в примерах.
Запомните!
Уравнение — это равенство, содержащее букву, значение которой надо найти.
В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы
«x» [икс] и «y» [игрек].
- Корень уравнения — это значение буквы, при котором из уравнения получается верное числовое равенство.
- Решить уравнение — значит найти все его корни или убедиться, что корней нет.
Запомните!
Решив уравнение, всегда после ответа записываем проверку.
Информация для родителей
Уважаемые родители, обращаем ваше внимание на то, что в начальной школе и в 5 классе дети НЕ знают тему
«Отрицательные числа».
Поэтому они должны решать уравнения, используя только
свойства сложения, вычитания, умножения и деления. Методы решения уравнений для 5 класса приведены ниже.
Не пытайтесь объяснить решение уравнений через перенос чисел и букв
из одной части уравнения в другую с изменением знака.
Освежить знания по понятиям, связанным со сложением, вычитанием, умножением и делением вы можете в уроке
«Законы арифметики».
Решение уравнений на сложение и вычитание
Как найти неизвестное слагаемое x + 9 = 15 |
Как найти неизвестное уменьшаемое x − 14 = 2 |
Как найти неизвестное вычитаемое 5 − x = 3 |
Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое. |
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое. |
Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность. |
x + 9 = 15 x = 15 − 9 x = 6 Проверка 6 + 9 = 15 |
x − 14 = 2 x = 14 + 2 x = 16 Проверка 16 − 2 = 14 |
5 − x = 3 x = 5 − 3 x = 2 Проверка 5 − 2 = 3 |
Решение уравнений на умножение и деление
Как найти неизвестный множитель y · 4 = 12 |
Как найти неизвестное делимое y : 7 = 2 |
Как найти неизвестный делитель 8 : y = 4 |
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель. |
Чтобы найти неизвестное делимое, надо частное умножить на делитель. |
Чтобы найти неизвестный делитель, надо делимое разделить на частное. |
y · 4 = 12 y = 12 : 4 y = 3 Проверка
3 · 4 = 12 |
y : 7 = 2 y = 2 · 7 y = 14 Проверка
14 : 7 = 2 |
8 : y = 4 y = 8 : 4 y = 2 Проверка
8 : 2 = 4 |
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
13 марта 2019 в 20:30
Mint Addict
Профиль
Благодарили: 0
Сообщений: 1
Mint Addict
Профиль
Благодарили: 0
Сообщений: 1
Составьте уравнение корни которого на 3 больше корней уравнения х² — 5х + 3 = 0
0
Спасибо
Ответить
14 марта 2019 в 0:25
Ответ для Mint Addict
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Эх, митрофанушка!
(x − 3)2 − 5(x − 3) + 3 = 0.
0
Спасибо
Ответить
25 марта 2017 в 19:12
Варя Соломахина
Профиль
Благодарили: 0
Сообщений: 2
Варя Соломахина
Профиль
Благодарили: 0
Сообщений: 2
Тема называется «Уравнения». Мне не понятно решение этих примеров, тесть уравнений. Помогите мне пожалуйста. Как их решать???
Например такой пример:
x+(x+5)=37
Решение
0
Спасибо
Ответить
26 марта 2017 в 8:22
Ответ для Варя Соломахина
Руслан Лопатин
Профиль
Благодарили: 0
Сообщений: 1
Руслан Лопатин
Профиль
Благодарили: 0
Сообщений: 1
х + х + 5=37
2х +5=37
2х=32
х=16
0
Спасибо
Ответить
7 сентября 2016 в 21:53
Иван Баранов
Профиль
Благодарили: 0
Сообщений: 3
Иван Баранов
Профиль
Благодарили: 0
Сообщений: 3
решите уравнение ((х+2) · 81-3174): 21=34 используя теоремы о равносильности уравнений и правила тождественных преобразований
0
Спасибо
Ответить
19 сентября 2016 в 15:11
Ответ для Иван Баранов
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
(x+2) · 81 ? 3174=714
(x+2) · 81 = 3000
x+2=
x=
x=
x=35
1
Спасибо
Ответить
17 августа 2016 в 16:46
Александр Шаболтас
Профиль
Благодарили: 0
Сообщений: 1
Александр Шаболтас
Профиль
Благодарили: 0
Сообщений: 1
Здравствуйте, у меня возникают проблемы с решением подобных уравнений : (-3
) · (-2) =4 х ?
или
х=3. помогите пожалуйста
0
Спасибо
Ответить
3 сентября 2016 в 19:46
Ответ для Александр Шаболтас
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
1 уравнение; умножим 1 часть чисел получим ( · =7) 7=4х-
7+ =4х
7 =4х
х= :4
х= =1.875
2 уравнение; х=3:
х= =10,5
0
Спасибо
Ответить
15 августа 2016 в 22:24
Рустам Иманалиев
Профиль
Благодарили: 0
Сообщений: 1
Рустам Иманалиев
Профиль
Благодарили: 0
Сообщений: 1
Здравствуйте.Помогите пожалуйста решить такой пример.212*х=672.Учебник под общей редакцией Л. Катанина. Рабочая книга по математике для 4-го года обучения в начальной школе.Задание № 6. Счастливо!
0
Спасибо
Ответить
19 сентября 2016 в 14:23
Ответ для Рустам Иманалиев
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
x=672: 212 = 3=3
0
Спасибо
Ответить
3 августа 2016 в 23:32
Анастасия Ищенко
Профиль
Благодарили: 0
Сообщений: 1
Анастасия Ищенко
Профиль
Благодарили: 0
Сообщений: 1
290093519 равно произвединию на 13
0
Спасибо
Ответить
19 сентября 2016 в 14:20
Ответ для Анастасия Ищенко
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
290093519 = x · 13
x=290093519: 13
x=22314886
Уж не знаю, так ли понял задачу =)
0
Спасибо
Ответить
28 марта 2016 в 21:37
Маша Берник
Профиль
Благодарили: 0
Сообщений: 1
Маша Берник
Профиль
Благодарили: 0
Сообщений: 1
4x-x=8.7
0
Спасибо
Ответить
29 марта 2016 в 8:44
Ответ для Маша Берник
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
4x-x=8.7
3x=8,7
3x=87/10 |:3
x=87/30=29/10=2,9
проверка:
4*2,9-2,9=11,6-2,9=8,7
8,7=8,7
0
Спасибо
Ответить
25 февраля 2016 в 19:40
Екатерина Богданова
Профиль
Благодарили: 0
Сообщений: 1
Екатерина Богданова
Профиль
Благодарили: 0
Сообщений: 1
решить уравнения
1)??4х+2=-4
2)?4х+1=-4
решить неравенство
3)?х-1>2
0
Спасибо
Ответить
26 февраля 2016 в 8:51
Ответ для Екатерина Богданова
Юрий Резник
Профиль
Благодарили: 0
Сообщений: 6
Юрий Резник
Профиль
Благодарили: 0
Сообщений: 6
Корень в 1) и 2) относится только к «4х», а в 3) к «х»? Или корень извлекается из всего выражения?
0
Спасибо
Ответить
15 февраля 2016 в 16:41
Малика Ас?арова
Профиль
Благодарили: 0
Сообщений: 1
Малика Ас?арова
Профиль
Благодарили: 0
Сообщений: 1
2(?-1)-3(?+2)<6(1+?)
0
Спасибо
Ответить
20 февраля 2016 в 16:45
Ответ для Малика Ас?арова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
2x-2-3x-6<6+6x
-x-8<6+6x
7x>14
x>2
0
Спасибо
Ответить
14 февраля 2016 в 14:28
Герман Волк
Профиль
Благодарили: 0
Сообщений: 2
Герман Волк
Профиль
Благодарили: 0
Сообщений: 2
(x:11) · 5 =110
0
Спасибо
Ответить
20 февраля 2016 в 16:35
Ответ для Герман Волк
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
5x:55=110 | *55
275x=6050
x= 22
0
Спасибо
Ответить
20 февраля 2016 в 20:24
Ответ для Герман Волк
Герман Волк
Профиль
Благодарили: 0
Сообщений: 2
Герман Волк
Профиль
Благодарили: 0
Сообщений: 2
Большое спасибо!
0
Спасибо
Ответить
22 февраля 2016 в 2:06
Ответ для Герман Волк
Юрий Резник
Профиль
Благодарили: 0
Сообщений: 6
Юрий Резник
Профиль
Благодарили: 0
Сообщений: 6
А вот и нет!
Имеем:
· 5 = 110
Выражаем x:
x ·
= 110
x = 110 ·
x = 242
Проверим равенство исходного выражения:
(242: 11) · 5 = 110
(22) · 5 = 110
110 = 110
0
Спасибо
Ответить
22 февраля 2016 в 8:49
Ответ для Герман Волк
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
И ведь не поспоришь, буду внимательнее!
0
Спасибо
Ответить
18 января 2016 в 18:51
Эмиль Абасов
Профиль
Благодарили: 0
Сообщений: 1
Эмиль Абасов
Профиль
Благодарили: 0
Сообщений: 1
Пожалуйста, помогите с решением уравнений: Замените * одночленом так, чтобы получившееся равенство, было тождеством
(2,5a+3b)2 =6,25a2+*+9b2
Упростите выражение:
а)(2x+6y)2 — 24xy
б)b2+49-(b+7)2
Представьте в виде многочлена выражение:
а)(x-6)2-x(x+8)
б)y(y-1)-(y-5)2Буду очень признателен за помощь в решении!!! Спасибо!
0
Спасибо
Ответить
19 сентября 2016 в 11:23
Ответ для Эмиль Абасов
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
1) воспользуемся формулой квадрат суммы и раскроем скобки:
6,25a2+15ab+9b2 — видим, что вместо * должно быть 15ab.
2) Раскрываем скобки при помощи тех же правил и приводим подобные:
а) 4x2+24xy+36y2 ?24xy=4x2 +36y2
б)b2+49 ? b2 ? 14b ? 49= ? 14b
3)Раскрываем скобки при помощи формулы квадрат разности и приводим подобные:
а)x2 ? 12x + 36 ? x2 ? 8x = 36 ? 20x
б)y2 ? y ? y2 +10y ?25=9y ?25
0
Спасибо
Ответить
6 октября 2015 в 18:41
Юля Тулба
Профиль
Благодарили: 0
Сообщений: 1
Юля Тулба
Профиль
Благодарили: 0
Сообщений: 1
9x+28=2755
0
Спасибо
Ответить
4 октября 2015 в 21:29
Анна Иложева
Профиль
Благодарили: 0
Сообщений: 1
Анна Иложева
Профиль
Благодарили: 0
Сообщений: 1
«сколько литров 23 градусной воды нужно смешать с 40 градусной водой чтобы получить 50 литров 37 градусной воды»
0
Спасибо
Ответить
9 июня 2016 в 14:24
Ответ для Анна Иложева
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
23x + 40(50 ? x) = 50·37
0
Спасибо
Ответить
21 сентября 2015 в 16:46
Камилла Назмутдинова
Профиль
Благодарили: 0
Сообщений: 1
Камилла Назмутдинова
Профиль
Благодарили: 0
Сообщений: 1
собрали три карзины клубники в каждой по 10 кг и четыре карзины вишни по? кг сколько мджет быть кг в четырёх разных карзинах помагите пожалуйста у меня контрольная через четыри дня!
0
Спасибо
Ответить
12 сентября 2016 в 11:23
Ответ для Камилла Назмутдинова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Предполагаю, что под знаком «?» кроется цифра «7».
Что сказано по условию? 3 корзины по 10 и 4 по 7. Какие варианты могут быть?
1) все корзины по 7 кг.
2) 1 корзина на 10 кг, 3 оставшиеся по 7 кг.
3) 2 корзины по 10кг, 2 корзины по 7 кг.
4) 3 корзины по 10кг, 1 корзина на 7кг.
Для получения количества кг в разных корзинах посчитаем:
1) 4 · 7 =28
2) 1 · 10 + 3 · 7 = 31
3) 2 · 10 + 2 · 7 = 34
4) 3 · 10 + 1 · 7 = 37
Убедительная просьба внимательно и полностью переписывать задачу. Невозможно ответить правильно на неправильную задачу.
0
Спасибо
Ответить
6 сентября 2015 в 7:54
Андрей Шеин
Профиль
Благодарили: 0
Сообщений: 1
Андрей Шеин
Профиль
Благодарили: 0
Сообщений: 1
Математика 4кл 1ч система школа <2100>автор Демидова, Козлова, Тонких. Стр 8 упр 5 как составить схему в виде отрезка и решение на эту задачу Если для разгадывания 3ребусов требуется 5минут, то сколько минут потребуется для разгадывания 9таких ребусов?(Будем считать, что каждый ребус разгадывается за одно и тоже время.) Составь и реши 3задачи, обратные даной.
0
Спасибо
Ответить
2 сентября 2016 в 16:02
Ответ для Андрей Шеин
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Вычислим, сколько времени требуется на решение одного ребуса, для этого 5: 3=1 = . Для нахождения времени, затраченного на решение 9 таких ребусов, умножим количество ребусов на время для решения одного ребуса:
9 · = 15.
Примером задачи обратной данной может послужить например: Чтобы решить один ребус требуются 1 минута. Сколько потребуется, чтобы решить 5 ребусов?
0
Спасибо
Ответить
5 сентября 2015 в 19:47
Диана Александрова
Профиль
Благодарили: 0
Сообщений: 1
Диана Александрова
Профиль
Благодарили: 0
Сообщений: 1
Теплоход шёл 3,2ч по течению реки и 2,5ч против течения. Какой путь прошёл теплоход за всё это время, если его собственная скорость 28,8 км/ч, а скорость течения 2,2км/ч.
книга «Дидактические материалы по математике для 5 класса» А С.Чесноков, К.И.Нешков
0
Спасибо
Ответить
2 сентября 2016 в 14:56
Ответ для Диана Александрова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Для определения пути, необходимо скорость умножить на время движения. Если теплоход идёт по течению, то к его скорости прибавляется скорость течения (течение несёт теплоход ускоряя его движение), а если против, то из его собственной скорости вычитается скорость реки. Для простоты и понимания обозначим
t1-время движения по течению, t2-время движения против течения, V1-скорость теплохода, V2-скорость реки, S1-путь по течению, S2-путь против течения, S — полный путь.
S = S1+S2=t1· (V1 + V2) + t2 · (V1 ? V2)
S = 3,2 · (28,8 +2,2) + 2,5 · (28,8 ? 2,2) = 3,2 · 31 + 2,5 · 26,6 =99,2 + 66,5 = 165,7
Ответ: 165,7 км — общий путь катера.
Стоит отметить, что если речь идёт о пройденном расстоянии, то расчет производится по этой формуле. Если же мы говорим о расстоянии относительно начально точки, то следует вычислить разность между путём пройденым по течению и против. Т.к. путь против реки проходил назад, т.е. к первоначальной точки отплытия.
0
Спасибо
Ответить
5 сентября 2015 в 12:52
Даниил Довгань
Профиль
Благодарили: 0
Сообщений: 1
Даниил Довгань
Профиль
Благодарили: 0
Сообщений: 1
5x?=25x
0
Спасибо
Ответить
16 сентября 2015 в 19:51
Ответ для Даниил Довгань
Никита Семеренко
Профиль
Благодарили: 0
Сообщений: 2
Никита Семеренко
Профиль
Благодарили: 0
Сообщений: 2
X=5
0
Спасибо
Ответить
16 августа 2015 в 11:36
Ольга Мартынова
Профиль
Благодарили: 0
Сообщений: 1
Ольга Мартынова
Профиль
Благодарили: 0
Сообщений: 1
Помогите решить задачу. «Летние упражнения на каждый день. Я иду во 2 класс» автор — Ефимова И.В. Изд-во «Ранок». Задача на стр. 77. Реши задачу, воспользовавшись схемой. Игорь и Оля собирали грибы. Вместе они нашли на 4 гриба больше, чем нашел Игорь, и на 6 грибов больше, чем нашла Оля. Сколько грибов нашел каждый?
0
Спасибо
Ответить
2 августа 2016 в 16:21
Ответ для Ольга Мартынова
Alex Feel
Профиль
Благодарили: 0
Сообщений: 1
Alex Feel
Профиль
Благодарили: 0
Сообщений: 1
И+О=И+4
О=4
И+О=6+О
И=6
О-Оля
И- Игорь
0
Спасибо
Ответить
9 июля 2015 в 21:01
Дмитрий Рыжков
Профиль
Благодарили: 0
Сообщений: 2
Дмитрий Рыжков
Профиль
Благодарили: 0
Сообщений: 2
как обычно такой бред у вас что нето что школьник а взрослый непоймет-вот в теме(как найти уменьшаемое) смотрите у вас написано x ? 14 = 2 ; x = 14 + 2 ; x = 16 ; проверка:16 ? 2 = 14 ;14 = 14 и почему же в нахождении слагаемого и вычитаемого мы из слагаемого отнимаем второе слагаемое а тут почему-то отнимаем ответ сам, что это???
0
Спасибо
Ответить
12 июля 2015 в 12:05
Ответ для Дмитрий Рыжков
Александр Середа-Четверг
Профиль
Благодарили: 0
Сообщений: 1
Александр Середа-Четверг
Профиль
Благодарили: 0
Сообщений: 1
Все правильно!
0
Спасибо
Ответить
12 июля 2015 в 13:43
Ответ для Дмитрий Рыжков
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Здравствуйте, Дмитрий.
Пожалуйста, разъясните еще раз, в чем Вы видите ошибку в уроке?
0
Спасибо
Ответить
12 июля 2015 в 13:49
Ответ для Дмитрий Рыжков
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Александр, спасибо, что принимаете участие в поиске ошибок и неточностей на нашем сайте.
На нашем сайте стоит задача: сделать максимально понятный и полезный ресурс для молодежи. Поэтому все диалоги по замечаниям к нашему интернет ресурсу внимательно изучаются.
Единственная просьба — это соблюдать нормы общения, а также уважать собеседника.
Сообщения на форуме читают также дети, поэтому вдвойне важно послужить примером уважительного и грамотного общения.
0
Спасибо
Ответить
14 мая 2015 в 16:13
Дарья Белова
Профиль
Благодарили: 0
Сообщений: 1
Дарья Белова
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
14 мая 2015 в 21:54
Ответ для Дарья Белова
Ярик Кравченко
Профиль
Благодарили: 0
Сообщений: 3
Ярик Кравченко
Профиль
Благодарили: 0
Сообщений: 3
3.472
0
Спасибо
Ответить
11 мая 2015 в 19:04
Алла Лучанинова
Профиль
Благодарили: 0
Сообщений: 2
Алла Лучанинова
Профиль
Благодарили: 0
Сообщений: 2
Помогите решить уравнение
=
0
Спасибо
Ответить
17 апреля 2016 в 16:02
Ответ для Алла Лучанинова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
(7-y) · 9=6 · 5
63-9y=30
-9y=-33
y=3=3
Проверка:
(7-3
) · 9 = 6 · 5
3 · 9 = 30
· 9 = 30
=30
30=30
Ответ: y=3
0
Спасибо
Ответить
7 мая 2015 в 17:49
Мелани Ларикова
Профиль
Благодарили: 0
Сообщений: 2
Мелани Ларикова
Профиль
Благодарили: 0
Сообщений: 2
помогите решить уравнение (пож) очень срочно! :
3,7y-2,5y+1,4y=3.38
0
Спасибо
Ответить
11 мая 2015 в 16:43
Ответ для Мелани Ларикова
Алина Музычук
Профиль
Благодарили: 0
Сообщений: 1
Алина Музычук
Профиль
Благодарили: 0
Сообщений: 1
2.6 · 3y=3.38
3y=3.38 :2.6
3y=1.3
y=1.3 :3
y=
0
Спасибо
Ответить
7 мая 2015 в 16:31
Мелани Ларикова
Профиль
Благодарили: 0
Сообщений: 2
Мелани Ларикова
Профиль
Благодарили: 0
Сообщений: 2
3,7y-2,5y+1,4y=3,38
0
Спасибо
Ответить
9 мая 2015 в 8:31
Ответ для Мелани Ларикова
Аруна Аубакирова
Профиль
Благодарили: 0
Сообщений: 1
Аруна Аубакирова
Профиль
Благодарили: 0
Сообщений: 1
3,7y-2,5y+1,4y=3,38
1,2y+1,4y=3,38
2,6y = 3,38
y = 3,38: 2,6
y = 1,3
Ответ:1,3
0
Спасибо
Ответить
12 мая 2015 в 20:11
Ответ для Мелани Ларикова
Lena Derevianko
Профиль
Благодарили: 0
Сообщений: 1
Lena Derevianko
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
6 мая 2015 в 16:56
Егор Бебенин
Профиль
Благодарили: 0
Сообщений: 1
Егор Бебенин
Профиль
Благодарили: 0
Сообщений: 1
2x2+ 3x-3=x2-3x + ( ? 2 + x2)
0
Спасибо
Ответить
16 апреля 2016 в 8:55
Ответ для Егор Бебенин
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Не ясно, для чего скобки в уравнении, но если нет ошибки, то решение такое:
2x2+3x-3=x2-3x-2+x2
2x2+3x-3-2x2+3x+2=0
6x=1
x=
0
Спасибо
Ответить
5 мая 2015 в 19:45
Дарья Каспарьян
Профиль
Благодарили: 0
Сообщений: 1
Дарья Каспарьян
Профиль
Благодарили: 0
Сообщений: 1
ПОЖАЛУЙСТО РЕШИТИ УРАВНЕНИЕ
51,912:x+0,320=1,351
ЧЕМУ РАВЕН x РЕШИТЕ УМАЛЯЮ МНЕ НА ЗАВТРО ННУЖНО ПРИШЛА СО ШКОЛЫ УСТАЛА КТО РЕШИТ БЛАГОДАРНА ОЧЕНЬ ПЛИЗ РЕШИТЕ!!!!!!
0
Спасибо
Ответить
15 апреля 2016 в 15:57
Ответ для Дарья Каспарьян
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Понимаю, что поздно уже, но всё же:
51,912: Х + 0,32 = 1,351
51,912: Х=1,351-0,32
51,912: Х=1,031
Х?0
51,912=1,031Х
Х=51,912:1,031
Х=50.3511154219
Проверка:51.912/50.3511154219 + 0.32 = 1,351
1,351=1,351
Ответ: Х=50.3511154219
0
Спасибо
Ответить
22 апреля 2015 в 15:00
Элана Золотова
Профиль
Благодарили: 0
Сообщений: 1
Элана Золотова
Профиль
Благодарили: 0
Сообщений: 1
x · 8 ? 4: 6 · 7 + 16=60 помогите решить уравнение
0
Спасибо
Ответить
14 апреля 2016 в 13:51
Ответ для Элана Золотова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
8 · x ? 4: 6 · 7 + 16=60
8 · x=60 ?16 +4 :6 · 7
8 · x=44+
8 · x=44 +
8 · x=44 8 · x=
x=
x=
x=
x=6
Проверка:
8 · ? +16= ? + 16= +16=44+16=60
60=60
Ответ: х=6
0
Спасибо
Ответить
21 апреля 2015 в 15:00
Анюта Корниенко
Профиль
Благодарили: 0
Сообщений: 3
Анюта Корниенко
Профиль
Благодарили: 0
Сообщений: 3
х+256=958 и х+427=15698 помогите ( решение уровнений расписать надо )
0
Спасибо
Ответить
21 апреля 2015 в 15:08
Ответ для Анюта Корниенко
Анюта Корниенко
Профиль
Благодарили: 0
Сообщений: 3
Анюта Корниенко
Профиль
Благодарили: 0
Сообщений: 3
срочно
0
Спасибо
Ответить
21 апреля 2015 в 15:24
Ответ для Анюта Корниенко
Алина Гимадеева
Профиль
Благодарили: 0
Сообщений: 2
Алина Гимадеева
Профиль
Благодарили: 0
Сообщений: 2
х + 256 =958
х= 958 -256
х= 702
702 + 256=958
х+427 = 15698
х= 15698-427
х= 15271
15271+427=15698
вот
0
Спасибо
Ответить
Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
aх + b = 0, где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.
Например, все уравнения:
2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) — линейные.
Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения.
Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.
А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.
Решение любых линейных уравнений сводится к решению уравнений вида
aх + b = 0.
Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим
aх = ‒ b.
Если a ≠ 0, то х = ‒ b/a .
Пример 1. Решите уравнение 3х + 2 =11.
Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.
Выполним вычитание, тогда
3х = 9.
Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9 : 3.
Значит, значение х = 3 является решением или корнем уравнения.
Ответ: х = 3.
Если а = 0 и b = 0, то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.
Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.
Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.
Приведем подобные члены:
0х = 0.
Ответ: х — любое число.
Если а = 0 и b ≠ 0, то получим уравнение 0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .
Пример 3. Решите уравнение х + 8 = х + 5.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.
Приведем подобные члены:
0х = ‒ 3.
Ответ: нет решений.
На рисунке 1 изображена схема решения линейного уравнения
Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.
Пример 4. Пусть надо решить уравнение
1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.
2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)
3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .
4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.
5) Приведем подобные члены:
‒ 22х = ‒ 154.
6) Разделим на – 22 , Получим
х = 7.
Как видим, корень уравнения равен семи.
Вообще такие уравнения можно решать по следующей схеме:
а) привести уравнение к целому виду;
б) раскрыть скобки;
в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;
г) привести подобные члены;
д) решить уравнение вида aх = b,которое получили после приведения подобных членов.
Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2), третьего (Пример. 1, 3) и даже с пятого этапа, как в примере 5.
СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).
Пример 5. Решите уравнение 2х = 1/4.
Находим неизвестное х = 1/4 : 2,
х = 1/8 .
Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.
Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.
Решение
2х + 6 = 5 – 6х
2х + 6х = 5 – 6
8х = ‒1
х = ‒1 : 8
х = ‒ 0, 125
Ответ: ‒ 0, 125
Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.
Решение
– 30 + 18х = 8х – 7
18х – 8х = – 7 +30
10х = 23
х = 23 : 10
х = 2,3
Ответ: 2,3
Пример 8. Решите уравнение
Решение:
3(3х – 4) = 4 · 7х + 24
9х – 12 = 28х + 24
9х – 28х = 24 + 12
-19х = 36
х = 36 : (-19)
х = — 36/19
Ответ: — .
Пример 9. Найдите f(6), если f (x + 2) = 37-х
Решение
Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.
Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.
Если х = 4, тогда
f(6) = 37-4 = 33 = 27
Ответ: 27.
Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).
Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ. Буду рада Вам помочь!
Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Загрузить PDF
Загрузить PDF
В простых алгебраических уравнениях переменная находится только на одной стороне уравнения, а вот в более сложных уравнениях переменные могут находиться на обеих сторонах уравнения. Решая такие уравнения, всегда помните, что любая операция, которая выполняется на одной стороне уравнения, должна быть выполнена и на другой стороне. С помощью этого правила переменные можно переносить с одной стороны уравнения на другую, чтобы изолировать их и вычислить их значения.
-
1
Примените распределительный закон (если нужно). Этот закон гласит, что .[1]
Распределительный закон позволяет раскрыть скобки с помощью умножения члена, стоящего за скобками, на каждый член, заключенный в скобки.[2]
-
2
Избавьтесь от переменной на одной стороне уравнения. Для этого вычтите или прибавьте такой же член с переменной. Например, если член с переменной вычитается, прибавьте такой же член, чтобы избавится от него; если же член с переменной прибавляется, вычтите такой же член, чтобы избавится от него. Как правило, проще избавиться от переменной с меньшим коэффициентом.[3]
-
3
Следите, чтобы равенство не нарушалось. Любая математическая операция, выполняемая на одной стороне уравнения, должна быть выполнена и на другой стороне. Поэтому если вы прибавляете или вычитаете какой-либо член, чтобы избавиться от переменной на одной стороне уравнения, прибавьте или вычтите тот же член на другой стороне уравнения.[4]
-
4
Упростите уравнение за счет сложения или вычитания подобных членов. На данном этапе переменная должна находиться на одной стороне уравнения.
-
5
Перенесите свободные члены на одну сторону уравнения (если нужно). Необходимо сделать так, чтобы член с переменной находился на одной стороне, а свободный член – на другой. Чтобы перенести свободный член (и избавиться от него на одной стороне уравнения), прибавьте или вычтите его из обеих сторон уравнения.[5]
-
6
Избавьтесь от коэффициента при переменной. Для этого выполните операцию, противоположную операции между коэффициентом и переменной. В большинстве случаев просто разделите обе стороны уравнения на коэффициент при переменной.[6]
Помните, что любая математическая операция, выполняемая на одной стороне уравнения, должна быть выполнена и на другой стороне. -
7
Проверьте ответ. Для этого подставьте найденное значение в исходное уравнение. Если равенство соблюдается, ответ правильный.
Реклама
-
1
Изолируйте переменную в одном уравнении. Возможно, в одном из уравнений переменная уже будет изолирована; в противном случае воспользуйтесь математическими операциями, чтобы изолировать переменную на одной стороне уравнения. Помните, что любая математическая операция, выполняемая на одной стороне уравнения, должна быть выполнена и на другой стороне.
-
2
Подставьте значение (в виде выражения) изолированной переменной в другое уравнение. Убедитесь, что подставляете выражение целиком. Получится уравнение с одной переменной, которое легко решить.[7]
-
3
Найдите значение переменной. Для этого перенесите переменную на одну сторону уравнения. Затем перенесите свободные члены на другую сторону уравнения. Потом изолируйте переменную с помощью операции умножения или деления.
-
4
Найдите значение другой переменной. Для этого найденное значение переменной подставьте в одно из уравнений. Получится уравнение с одной переменной, которое легко решить. Имейте в виду, что найденное значение переменной можно подставить в любое уравнение.
-
5
Проверьте ответ. Для этого подставьте значения обеих переменных в одно из уравнений. Если равенство соблюдается, ответ правильный.
Реклама
-
1
Решите следующее уравнение с одной переменной, используя распределительный закон: .
-
2
Решите следующее уравнение с дробью: .
-
3
Решите следующую систему уравнений:
Реклама
Что вам понадобится
- Карандаш
- Бумага
- Калькулятор
Об этой статье
Эту страницу просматривали 179 783 раза.