Как найти неизвестный множитель с дробями

Урок по теме «Решение дробных рациональных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Теперь попытайтесь решить уравнение №7 одним из способов.

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Дробно-рациональные уравнения

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    источники:

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya

    Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей.
    Как, например, в уравнении ниже.

    уравнение с неизвестным в дроби

    В таких случаях подобные уравнения можно решить двумя способами.

    I способ решения
    Сведение уравнения к пропорции

    Запомните!
    !

    При решении уравнений способом пропорции необходимо выполнить следующие действия:

    • привести все дроби к общему знаменателю и сложить их как алгебраические дроби
      (в левой и правой части должно остаться только по одной дроби);
    • полученное уравнение решить по правилу пропорции.

    Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны
    никакие преобразования.

    уравнение с неизвестным в дроби

    Будем работать с правой частью уравнения.
    Упростим правую часть уравнения так, чтобы там осталась только одна дробь.
    Для этого вспомним правила сложения числа с алгебраической дробью.

    решаем уравнение с неизвестным в дроби

    Теперь используем правило пропорции и решим уравнение до конца.

    решаем уравнение с неизвестным в дроби как пропорцию


    II способ решения
    Сведение к линейному уравнению без дробей

    Рассмотрим уравнение выше еще раз и решим его другим способом.

    уравнение с неизвестным в дроби

    Мы видим, что в уравнении присутствуют две дроби
    «» и
    «».

    Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.

    Другими словами, необходимо свести уравнение к обычному
    линейному уравнению без неизвестного в дроби.

    Запомните!
    !

    Чтобы избавиться от дробей в уравнении нужно:

    • найти число, которое без остатка будет делиться на каждый из знаменателей;
    • умножить каждый член уравнения на это число.

    Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на
    «5», и на «9» ?».
    Таким ближайшим наименьшим числом будет число «45».

    Умножим каждый член уравнения на «45».

    уравнение с неизвестным в дроби

    Важно!
    Галка

    При умножении уравнения на число нужно каждый член уравнения
    умножить на это число.

    уравнение с неизвестным в дроби

    Другие примеры решения уравнений с неизвестным в дроби

    Решение уравнения I способом (через пропорцию)


    • +

      =

      +

      =

      +

      =

      =

      =

      (49 − 23y) · 2 = 15 · (y + 6)

      98 − 46y = 15y + 90

      −46y − 15y = 90 − 98

      −61y = −8     | :(−61)

      y =

      Ответ: y =

    Решение уравнения II способом
    (сведение к уравнению без дробей)


    • 2 − +
      = 0             | ·20

      2 · 20 − +
      = 0 · 20

      40 − 5 ·(3x − 7) + 4 · (x + 17) = 0

      40 − 15x + 35 + 4x + 68 = 0

      −15x + 4x + 40 + 35 + 68 = 0

      −11x + 75 + 68 = 0

      −11x + 143 = 0

      −11x = −143     | :(−11)

      x = 13

      Ответ: x = 13


    Ваши комментарии

    Важно!
    Галка

    Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

    «ВКонтакте».

    Пришелец пожимает плечами

    Оставить комментарий:

    25 августа 2016 в 13:08

    Виктория Лебеденко
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Виктория Лебеденко
    Профиль
    Благодарили: 0

    Сообщений: 1

    0
    Спасибоthanks
    Ответить

    3 сентября 2016 в 19:36
    Ответ для Виктория Лебеденко

    Юлия Анарметова
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 11

    (^-^)
    Юлия Анарметова
    Профиль
    Благодарили: 0

    Сообщений: 11


    раскроем скобки x2+3x-x-3-x2-5=0(уничтожим xи-x2) получим  2x-8=0
                           2x=8
                             x=8 :2
                             x=4

    0
    Спасибоthanks
    Ответить


    Линейные уравнения с дробями в 6 классе можно решать по обычной схеме: неизвестные — в одну сторону, известные — в другую, изменив при этом их знак. Другой путь — предварительно упростить уравнение, превратив его из линейного уравнения с дробями в линейное уравнение с целыми числами. 

    Сначала на примере одного линейного уравнения с дробями рассмотрим оба способа решения.

        [1)frac{3}{8}x - frac{5}{6} = frac{7}{{12}}x - frac{2}{3}]

    1 способ: Это — линейное уравнение. Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:

        [frac{3}{8}x - frac{7}{{12}}x =  - frac{2}{3} + frac{5}{6}]

    Приводим к общему знаменателю дроби в каждой части уравнения:

        [frac{{{3^{backslash 3}}}}{8}x - frac{{{7^{backslash 2}}}}{{12}}x =  - frac{{{2^{backslash 2}}}}{3} + frac{{{5^{backslash 1}}}}{6}]

        [frac{{9 - 14}}{{24}}x = frac{{ - 4 + 5}}{6}]

        [ - frac{5}{{24}}x = frac{1}{6}]

    Это — простейшее линейное уравнение. Обе части уравнения делим на число, стоящее перед иксом:

        [x = frac{1}{6}:( - frac{5}{{24}})]

    При делении чисел с разными знаками получаем отрицательное число. По правилу деления дробей:

        [x =  - frac{{1 cdot mathop {24}limits^4 }}{{mathop 6limits_1  cdot 5}}]

    После сокращения имеем:

        [x =  - frac{4}{5}]

    (В данном случае ответ можно записать и в виде десятичной дроби: х=-0,8).

    2 способ:

        [frac{3}{8}x - frac{5}{6} = frac{7}{{12}}x - frac{2}{3}]

    Обе части уравнения умножим почленно на наименьший общий знаменатель всех входящих в него дробей, в данном случае он равен 24:

        [frac{{{3^{backslash 3}}}}{8}x - frac{{{5^{backslash 4}}}}{6} = frac{{{7^{backslash 2}}}}{{12}}x - frac{{{2^{backslash 8}}}}{3}___left| { cdot 24} right.]

    При умножении на знаменатель дроби сокращаются, в знаменателе остается единица, которую не пишем. От  линейного уравнения с дробями перешли к линейному уравнению с целыми числами:

        [9x - 20 = 14x - 16]

    Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

        [9x - 14x =  - 16 + 20]

        [ - 5x = 4]

    Обе части уравнения делим на число, стоящее перед иксом:

        [x =  - frac{4}{5}]

    Ответ: -4/5.

    Как видите, второй способ существенно упрощает решение линейного уравнения с дробями.

        [2)frac{7}{{20}}x + frac{5}{{12}} = frac{2}{3} - frac{1}{5}x]

    Обе части уравнения умножаем почленно на наименьший общий знаменатель всех входящих в него дробей. Здесь он равен 60:

        [2)frac{{{7^{backslash 3}}}}{{20}}x + frac{{{5^{backslash 5}}}}{{12}} = frac{{{2^{backslash 20}}}}{3} - frac{{{1^{backslash 12}}}}{5}x___left| { cdot 60} right.]

        [21x + 25 = 40 - 12x]

    Вместо линейного уравнения с дробями получили линейное уравнение с целыми числами. Неизвестные переносим в одну сторону, известные — в другую, изменив при этом их знаки:

        [21x + 12x = 40 - 25]

        [33x = 15]

    Обе части уравнения делим на число, стоящее перед иксом:

        [x = frac{{15}}{{33}}]

    Сокращаем дробь на 3:

        [x = frac{5}{{11}}]

    Ответ: 5/11.

        [3)frac{4}{{15}} + frac{2}{3}x = x - frac{7}{{10}}]

    Обе части уравнения умножаем почленно на наименьший общий знаменатель всех входящих в него дробей:

        [frac{{{4^{backslash 2}}}}{{15}} + frac{{{2^{backslash 10}}}}{3}x = {x^{backslash 30}} - frac{{{7^{backslash 3}}}}{{10}}___left| { cdot 30} right.]

    В результате линейное уравнение с дробями заменили на линейное уравнение с целыми числами:

        [8 + 20x = 30x - 21]

    Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:

        [20x - 30x =  - 21 - 8]

        [ - 10x =  - 29]

    Обе части уравнения делим на число, стоящее перед иксом:

        [x =  - 29:( - 10)]

        [x = 2,9]

    Ответ: 2,9.

    В следующий раз рассмотрим линейные уравнения с смешанными дробями.

            Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.

            Иногда их называют более научно и солидно — дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)

            Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:

            1. Дроби и действия с дробями и дробными выражениями.

            2. Тождественные преобразования уравнений.

            3. Решение линейных и квадратных уравнений.

            Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)

            Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.

            Итак, вперёд!

    Что такое дробное уравнение? Примеры.

            Дробное уравнение, как следует непосредственно из названия, — это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.

            Например, вот такое уравнение:

            

            Или такое:

            

            Или вот такое:

            

            И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.

            Например:

            

            Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.

            Или такое уравнение:

            

            Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.

            В общем, вы поняли.

    Как решать дробные уравнения? Убираем дроби!

            Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?

            Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)

            Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?

            Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)

            Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:

            Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.

            А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?

            Давайте его конструировать.) Смотрим ещё раз на уравнение:

            

            Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)

            Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.

            Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).

            Умножаем:

            

            Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:

            

            Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!

            А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:

            

            Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:

            2∙3 = х+3

            А его (надеюсь) уже решит каждый:

            х = 3

            Решаем следующий примерчик:

            

            И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.

            Вот и домножаем! Всю левую часть и всю правую часть:

            

            Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на «х».    

            Вперёд!

            

            А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!

            Дело всё в том, что частенько после умножения народ записывает левую часть вот так:

            

            Это категорически неверно. Дальше можно уже не решать, да…)

            Но у нас всё хорошо, будем дорешивать.

            С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.

            (9 — х)∙х = 20

            Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:

            9х — х2 = 20

            Переносим всё влево и приводим к стандартному виду:

            

            Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:

            

            Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:

            х1 = 4

            х2 = 5

            И все дела.)

            Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.

            А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3.  Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.

            Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…

            Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)

            Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.

    Раскладываем на множители!

            Решаем третье уравнение по списку:

            

            А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить

            x(x2+2x)(x+2)

            и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?

            Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)

            А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х2+2х вполне себе раскладывается! Выносим один икс за скобку и получаем:

            х2+2х = х(х+2)

            Отлично. Вставим наше разложение в исходное уравнение:

            

            Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).

            Вот на х(х+2) и умножаем:

            

            И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:

            

            А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:

            

            Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)

            С удовольствием сокращаем все дроби:

            

            (x-3)(x+2) + 3 = x

            Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:

            x2 + 2x — 3x — 6 + 3 — х = 0

            x2 — 2x — 3 = 0

            И снова получили квадратное уравнение.) Решаем и получаем два корня:

            x1 = -1

            x2 = 3

            Вот и всё. Это и есть ответ.)

            Из этого примера можно сделать важный вывод:

            Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!

            Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)

            Ну что, порешаем?)

            Решить уравнения:

            

            Ответы (как обычно, вразброс):

            x = 3

            x1 = 0,5;    x2 = 3

            x = 2

            х = 6

            x = 2,6

            x1 = 2;    x2 = 5

            Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)

            Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!

            Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…

            Но об этом — дальше.)

    Форма урока: объяснение нового
    материала.

    Цели урока:

    • Обучающая: выработать навыки учащихся
      умножать и делить обыкновенные дроби, решать и
      оформлять задачи на уравнения.
    • Воспитательная: воспитывать
      самостоятельность, аккуратность
    • Развивающая: развивать внимание,
      математическую речь, вычислительные навыки
      учащихся,  интерес к математике.

    Ожидаемые результаты: дети научаться
    решать задачи и уравнения на дроби.

    Этапы урока

    Время (мин)

    Слайды

    Организационный момент. 2 Слайд 1
    Устная работа и повторение ранее изученного 8 Слайды 2, 3, 4, 5,6
    Формирование новых знаний и умений 10 Слайды 7, 8
    Физкультминутка 2 Слайды 9, 10
    Закрепление нового материала 5 Слайд 11
    Проверка знаний (с/р) 10 Слайд 12
    Постановка домашнего задания 1 Слайд 13
    Подведение итогов урока 2  

    ХОД УРОКА

    I. Организационный этап

    – Здравствуйте, мы проведем сегодня урок по
    теме «Деление дробей в уравнених». Откройте
    тетради, запишите число, классная работа и тему
    урока.
    Целью нашего урока является закрепление и
    проверка умений умножать и делить обыкновенные
    дроби, а также повторить навыки решения задач и
    уравнений.

    II. Устный опрос учащихся

    Чтобы умным в жизни стать
    Надо дроби изучать

    1) Переведите смешанную дробь в неправильную (Приложение 1, слайд 3)

    2) Выделите целую часть (Приложение
    1
    , слайд 4)

    3) Умножьте дроби (Приложение 1,
    слайд 5)

    – Повторим правило умножения двух дробей:
    Чтобы умножить дробь на дробь нужно перемножить
    их числители и знаменатели и первое произведение
    записать числителем, а второе знаменателем.

    4) Выполните деление (в тетрадях с последующей
    взаимопроверкой, сосед у соседа) (Приложение
    1
    , слайд 6)

    – Повторим правило деления двух дробей: Чтобы
    разделить одну дробь на другую, нужно первую
    дробь умножить на дробь, обратную второй.

    III. Формирование новых знаний и  умений

    – При изучении темы деление большое значение
    имеет умение решать уравнения. Рассмотрим пример
    и запишем его в тетрадь. (Приложение
    1
    , слайд 7)

    – Чтобы решить уравнение необходимо
    определить какой компонент в уравнении является
    неизвестным.
    – Какой?
    – 1 множитель
    – Правильно! Чтобы найти неизвестный множитель,
    что нужно сделать?
    – Чтобы найти неизвестный множитель необходимо
    произведение разделить на известный множитель.
    – Находим корень уравнения, выполняя деление.
    Выполним проверку и запишем ответ.

    – А теперь давайте проверим ваше умение решать
    задачи.

    № 597 (Приложение 1,
    слайд 7)

    – Сколько всего прошел лыжник ? (26 км)
    – Сколько километров прошел в первый день? 
    (неизвестно)
    – Сколько километров прошел во второй день? 
    (неизвестно)
    – Какую величину, с какой сравнивают?
    – Что возьмем за х?
    – Как найти дробь от числа?
    – Сколько километров прошел за два дня?
    – Как найти?
    – Составим уравнение.

    – 14 км лыжник прошел во второй день

    26 – 14 = 12 км лыжник прошел в первый день.

    №  598 (Приложение 1,
    слайд 8)

    – Вспомним что такое 1% (одна сотая)
    – Какой дробью запишем 75% (75/100 = 3/4)
    – Сколько грибов собрала белка? (неизвестно)
    – Сколько грибов собрал бельчонок? (неизвестно)
    – Какую величину, с какой сравнивают?
    – Что обозначим за икс?
    – Как найти дробь от числа?
    – Сколько собрали вместе белка и бельчонок?
    – Составим уравнение.

    200 грибов собрала белка
    350 – 200 = 150 грибов собрал бельчонок

    IV. Физкультминутка

    – Встаем и выполняем несколько упражнений.

    А теперь, ребята, встали,
    Быстро руки вверх подняли,
    В стороны, вперёд, назад
    Повернулись вправо, влево,
    Тихо сели, вновь за дело.

    V. Закрепление нового материала

    № 594

    – Сколько собрал Митя?
    – Сколько собрал Коля?
    – Какую величину, с какой сравнивают?
    – Что обозначим за икс?
    – Как найти дробь от числа?
    – Сколько собрали вместе мальчики?

    28 грибов собрал Митя

    64 – 28 = 36 грибов собрал Коля

    VI. «Математический выбор»

    Уравнения, оцениваемые в 3
    балла:                          
    Уравнения, оцениваемые в 5 баллов:

    1)                                                                      1)

    2)                                                                       2)

    3)                                      
                                 3)  

    4)                                                                  4)

    Уравнения, оцениваемые в 6 баллов:

    1)

    2)

    3)

    4)

    Оценки: 5 – 12 баллов; 4 – 9 баллов; 3 – 6 баллов.

    Каждый выбирает себе уравнения по «плечу».
    Учитель во время работы оценивает учеников.

    VII. Итог урока

    – С каким настроением вы сегодня работали на
    уроке?
    – Какая задача для вас была самой интересной?
    – Ребята чему мы научились на сегодняшнем уроке?
    – Как найти часть от числа?
    – Как найти неизвестный множитель?

    Оценки за урок.

    VIII. Домашнее задание

    – С листов решить любые три уравнения, из тех
    которые не решали в классе.

    Понравилась статья? Поделить с друзьями:
  • Как найти экстремумы методом лагранжа
  • Как найти сколько секунд в году
  • Как найти день недели по дате формула
  • Как составить приказ на излишки
  • Как найти театр диониса в афинах