Процент — это одна сотая доля числа, принимаемого за целое. Проценты используются для обозначения отношения части к целому, а также для сравнения величин.
1% = 1100 = 0,01
Онлайн калькулятор позволяет выполнить следующие операции:
Найти процент от числа
Чтобы найти процент p от числа, нужно умножить это число на дробь p100
Найдем 12% от числа 300:
300 · 12100 = 300 · 0,12 = 36
12% от числа 300 равняется 36.
Например, товар стоит 500 рублей и на него действует скидка 7%. Найдем абсолютное значение скидки:
500 · 7100 = 500 · 0,07 = 35
Таким образом, скидка равна 35 рублей.
Сколько процентов составляет одно число от другого числа
Чтобы вычислить процентное отношение чисел, нужно одно число разделить на другое и умножить на 100%.
Вычислим, сколько процентов составляет число 12 от числа 30:
1230 · 100 = 0,4 · 100 = 40%
Число 12 составляет 40% от числа 30.
Например, книга содержит 340 страниц. Вася прочитал 200 страниц. Вычислим, сколько процентов от всей книги прочитал Вася.
200340 · 100% = 0,59 · 100 = 59%
Таким образом, Вася прочитал 59% от всей книги.
Прибавить процент к числу
Чтобы прибавить к числу p процентов, нужно умножить это число на (1 + p100)
Прибавим 30% к числу 200:
200 · (1 + 30100) = 200 · 1,3 = 260
200 + 30% равняется 260.
Например, абонемент в бассейн стоит 1000 рублей. Со следующего месяца обещали поднять цену на 20%. Вычислим, сколько будет стоить абонемент.
1000 · (1 + 20100) = 1000 · 1,2 = 1200
Таким образом, абонемент будет стоить 1200 рублей.
Вычесть процент из числа
Чтобы отнять от числа p процентов, нужно умножить это число на (1 — p100)
Отнимем 30% от числа 200:
200 · (1 — 30100) = 200 · 0,7 = 140
200 — 30% равняется 140.
Например, велосипед стоит 30000 рублей. Магазин сделал на него скидку 5%. Вычислим, сколько будет стоить велосипед с учетом скидки.
30000 · (1 — 5100) = 30000 · 0,95 = 28500
Таким образом, велосипед будет стоить 28500 рублей.
На сколько процентов одно число больше другого
Чтобы вычислить, на сколько процентов одно число больше другого, нужно первое число разделить на второе, умножить результат на 100 и вычесть 100.
Вычислим, на сколько процентов число 20 больше числа 5:
205 · 100 — 100 = 4 · 100 — 100 = 400 — 100 = 300%
Число 20 больше числа 5 на 300%.
Например, зарплата начальника равна 50000 рублей, а сотрудника — 35000 рублей. Найдем, на сколько процентов зарплата начальника больше:
5000035000 · 100 — 100 = 1,43 * 100 — 100 = 143 — 100 = 43%
Таким образом, зарплата начальника на 43% выше зарплаты сотрудника.
На сколько процентов одно число меньше другого
Чтобы вычислить, на сколько процентов одно число меньше другого, нужно из 100 вычесть отношение первого числа ко второму, умноженное на 100.
Вычислим, на сколько процентов число 5 меньше числа 20:
100 — 520 · 100 = 100 — 0,25 · 100 = 100 — 25 = 75%
Число 5 меньше числа 20 на 75%.
Например, фрилансер Олег в январе выполнил заказы на 40000 рублей, а в феврале на 30000 рублей. Найдем, на сколько процентов Олег в феврале заработал меньше, чем в январе:
100 — 3000040000 · 100 = 100 — 0,75 * 100 = 100 — 75 = 25%
Таким образом, в феврале Олег заработал на 25% меньше, чем в январе.
Найти 100 процентов
Если число x это p процентов, то найти 100 процентов можно умножив число x на 100p
Найдем 100%, если 25% это 7:
7 · 10025 = 7 · 4 = 28
Если 25% равняется 7, то 100% равняется 28.
Например, Катя копирует фотографии с фотоаппарата на компьютер. За 5 минут скопировалось 20% фотографий. Найдем, сколько всего времени занимает процесс копирования:
5 · 10020 = 5 · 5 = 25
Получаем, что процесс копирования всех фотографий занимает 25 минут.
Сколько процентов составляет одно число от другого
Онлайн калькулятор вычисляет сколько процентов составляет число от другого числа. Расчёт производится через пропорции.
Значащих цифр:
Сколько % составляет число
от числа
Как найти сколько процентов составляет одно число от другого
Чтобы вычислить сколько процентов составляет число от другого числа, нужно первое число умножить на 100% и разделить на второе число.
Разберём пример:
Вычислить сколько процентов составляет число 30 от числа 60.
30 * 100% / 60 = 50%
Эту задачу можно также решить через пропорцию
60 — 100%
30 — x
Из пропорции следует что x = 30 * 100% / 60 = 50%
Формула вычисления процента числа от числа
Разберём пример:
Найдём сколько процентов составляет число 40 от числа 200
40 * 100% / 200 = 20%
Похожие калькуляторы
Как посчитать процент от числа
- Главная
- /
- Математика
- /
- Арифметика
- /
- Как посчитать процент от числа
Чтобы найти процент от числа или определить сколько процентов число составляет от другого числа, надо воспользоваться пропорцией или нашим онлайн калькулятором:
Онлайн калькулятор
Сколько будет % от числа ?
Ответ:
0
Для того чтобы найти процент от числа, нужно просто это число умножить на число процентов и разделить на 100%.
Сколько процентов число составляет от числа ?
Ответ:
0
%
Чтобы определить сколько процентов число составляет от другого числа, необходимо первое число умножить на 100% и разделить на второе.
Число это % от какого числа?
Ответ:
0
Для того чтобы выяснить от какого числа другое число (X) составляет определённое количество процентов, надо число X умножить на 100% и разделить на количество интересующих вас процентов.
Теория
Сколько будет P% от числа Y?
Формула
X = (Y*P)/100
Пример
К примеру, определим сколько будет 12% от 600?
X = (600*12)/100
Ответ: X = 72
Сколько процентов число X составляет от числа Y?
Формула
P = (X*100)/Y
Пример
К примеру, определим сколько процентов число 72 составляет от 600?
P = (72*100)/600
Ответ: P = 12%
Число X это P% от какого числа?
Формула
Y = (100*X)/P
Пример
К примеру, определим: число 72 это 12% от какого числа?
Y = (100*72)/12
Ответ: Y = 600
Онлайн калькулятор для вы нахождения числа по его процентам, может решать примеры, сохранять историю вычисления и копировать ссылку на расчет.
Правило: Чтобы найти число по его проценту, нужно заданное число разделить на заданную величину процента, а результат умножить на 100.
Примеры вычисления исходного числа по известному проценту от числа:
Например: число 4 это 5% от неизвестного нам числа, чтобы найти это число нужно 4/5×100=80
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
Задачи на проценты: считаем проценты с помощью пропорции
11 ноября 2013
В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.
В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.
Задача. Кроссовки стоили 3200 рублей. После повышения цены они стали стоить 4000 рублей. На сколько процентов была повышена цена на кроссовки?
Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.
Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x. Получим следующую конструкцию:
3200 — 100%
4000 — x%
Что ж, условие задачи записано. Составляем пропорцию:
Дробь слева прекрасно сокращается на 100: 3200 : 100 = 32; 4000 : 100 = 40. Кроме того, можно сократить на 4: 32 : 4 = 8; 40 : 4 = 10. Получим следующую пропорцию:
Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:
8 · x = 100 · 10;
8x = 1000.
Это обычное линейное уравнение. Отсюда находим x:
x = 1000 : 8 = 125
Итак, мы получили итоговый процент x = 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.
На сколько процентов — это значит, что нам нужно найти изменение:
∆ = 125 − 100 = 25
Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.
Задача B2 на проценты №2
Переходим ко второй задаче.
Задача. Рубашка стоила 1800 рублей. После снижения цены она стала стоить 1530 рублей. На сколько процентов была снижена цена на рубашку?
Переводим условие на математический язык. Исходная цена 1800 рублей — это 100%. А итоговая цена 1530 рублей — она нам известна, но неизвестно, сколько процентов она составляет от исходной величины. Поэтому обозначим ее за x. Получим следующую конструкцию:
1800 — 100%
1530 — x%
На основе полученной записи составляем пропорцию:
Давайте для упрощения дальнейших вычислений разделим обе части данного уравнения на 100. Другими словами, у числителя левой и правой дроби мы зачеркнем два нуля. Получим:
Теперь снова воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних.
18 · x = 1530 · 1;
18x = 1530.
Осталось найти x:
x = 1530 : 18 = (765 · 2) : (9 · 2) = 765 : 9 = (720 + 45) : 9 = 720 : 9 + 45 : 9 = 80 + 5 = 85
Как видите, мы не стали считать полученное частное уголком, а просто несколько раз сократили нашу дробь. При этом нам потребовалось разложить на множители числитель и
Мы получили, что x = 85. Но, как и в прошлой задаче, это число само по себе не является ответом. Давайте вернемся к нашему условию. Теперь мы знаем, что новая цена, полученная после снижения, составляет 85% от старой. И для того, чтобы найти изменения, нужно из старой цены, т.е. 100%, вычесть новую цену, т.е. 85%. Получим:
∆ = 100 − 85 = 15
Это число и будет ответом: Обратите внимание: именно 15, а ни в коем случае не 85. Вот и все! Задача решена.
Внимательные ученики наверняка спросят: почему в первой задаче мы при нахождении разности вычитали из конечного числа начальное, а во второй задаче поступили в точности до наоборот: из исходных 100% вычли конечные 85%?
Давайте проясним этот момент. Формально, в математике изменением величины всегда называется разность между конечным значением и начальным. Другими словами, во второй задаче у нас должно было получиться не 15, а −15.
Однако этот минус ни в коем случае не должен попасть в ответ, потому что он уже учтен в условии исходной задачи. Там прямо сказано о снижении цены. А снижение цены на 15% — это то же самое, что повышение цены на −15%. Именно поэтому в решении и ответе задачи достаточно написать просто 15 — без всяких минусов.
Все, надеюсь, с этим моментом мы разобрались. На этом наш сегодняшний урок закончен. До новых встреч!
Смотрите также:
- Задачи на проценты: стандартный расчет с помощью пропорций
- Процент: неизвестно начальное значение (метод пропорции)
- Тест к уроку «Что такое числовая дробь» (легкий)
- Сводный тест по задачам B15 (1 вариант)
- Деление многочленов уголком
- Задача B4: строительные бригады