Как найти необходимое количество теплоты для плавления

Для характеристики процесса плавления вводится физическая величина «удельная теплота плавления», показывающая, как изменяется внутренняя энергия тела массой (1) кг при теплообмене.

Удельная теплота плавления обозначается 

λ

 (греч. буква лямбда).

Обрати внимание!

Единица измерения —

1Джкг

.

Определяют удельную теплоту плавления опытным путём.

Обрати внимание!

Чтобы рассчитать количество теплоты, необходимое для плавления кристаллического тела, нужно удельную теплоту плавления умножить на его массу.

Получим формулы для нахождения удельной теплоты плавления тела и массы тела:

Удельная теплота плавления при нормальном атмосферном давлении некоторых веществ представлена в таблице.

Вещество

Удельная теплота плавления,

Джкг

Алюминий

(3,9)

⋅105

Лёд

(3,4)

⋅105

Железо

(2,7)

⋅105

Медь

(2,1)

⋅105

Серебро

(0,87)

⋅105

Сталь

(0,84)

⋅105

Золото

(0,67)

⋅105

Олово

(0,59)

⋅105

Свинец

(0,25)

⋅105

Ртуть

(0,12)

⋅105

В процессе плавления температура вещества не изменяется Вся получаемая им энергия при этом тратится на разрушение кристаллической решетки и увеличение потенциальной энергии молекул тела.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить 1 кг льда, нужно затратить 332 кДж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо для превращения 1 кг кристаллического вещества, взятого при температуре плавления, в жидкость той же температуры, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (ламбда):

λ — удельная теплота плавления.

При кристаллизации вещества потенциальная энергия молекул уменьшается и в окружающую среду выделяется точно такое же (по модулю) количество теплоты, что и поглощается при его плавлении. Поэтому, например, при замерзании воды массой 1 кг выделяются те же 332 кДж энергии, которые нужны для превращения такой же массы льда в воду.

Удельную теплоту плавления различных веществ можно найти в таблице 10.

Теплота плавления некоторых веществ

Из этой таблицы, например, видно, что удельная теплота плавления меди λ = 2,1 * 105 Дж/кг. Это число показывает, что для плавления 1 кг меди требуется затратить 2,1 * 105 Дж энергии; точно такое же (по модулю) количество теплоты будет выделено 1 кг жидкой меди при ее кристаллизации.

Для плавления 2 кг меди потребуется в 2 раза больше энергии, для плавления 3 кг меди — в 3 раза больше и т. д.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, надо удельную теплоту плавления этого тела умножить на его массу:

Q = λm.          (39.1)

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:

Q = –λm.          (39.2)

Следует помнить, что формулы (39.1) и (39.2) можно применять только к таким телам, которые уже имеют температуру, равную температуре плавления. Если же она отличается от нее, то предварительно следует рассчитать то количество теплоты, которое необходимо для нагревания тела или которое выделяется телом при его охлаждении.

1. Что называется удельной теплотой плавления тела? 2. Удельная теплота плавления золота равна 67 кДж/кг. Что показывает это число? 3. По какой формуле вычисляют количество теплоты, необходимое для плавления тела? 4. По какой формуле вычисляют количество теплоты, выделяющееся при кристаллизации вещества?

Количество теплоты. Удельная теплоемкость вещества

Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене.

Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).

Удельная теплоемкость вещества

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на $1$ градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, например, $1$ килограмма воды потребуется больше тепла, чем для нагрева $200$ граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой $400$ г, а в другой — растительное масло массой $400$ г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой температуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на $1°$С температуру воды массой $1$ кг, требуется количество теплоты, равное $4200$ Дж, а для нагревания на $1°$С такой же массы подсолнечного масла необходимо количество теплоты, равное $1700$ Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания $1$ кг вещества на $1°$С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой $с$ и измеряется в джоулях на килограмм-градус (Дж/(кг$·°$С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна $4200$ Дж/(кг$·°$С), а удельная теплоемкость льда $2100$ Дж/(кг$·°$С); алюминий в твердом состоянии имеет удельную теплоемкость, равную $920$ Дж/(кг$·°$С), а в жидком — $1080$ Дж/(кг$·°$С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

$Q=cm(t_2-t_1)$

где $Q$ — количество теплоты, $c$ — удельная теплоемкость, $m$ — масса тела, $t_1$ — начальная температура, $t_2$ — конечная температура.

При нагревании тела $t_2 > t_1$ и, следовательно, $Q > 0$. При охлаждении тела $t_2 < t_1$ и, следовательно, $Q < 0$.

В случае, если известна теплоемкость всего тела $С, Q$ определяется по формуле

$Q=C(t_2-t_1)$

Удельная теплота парообразования, плавления, сгорания

Теплота парообразования (теплота испарения) — количество теплоты, которое необходимо сообщить веществу (при постоянном давлении и постоянной температуре) для полного превращения жидкого вещества в пар.

Теплота парообразования равна количеству теплоты, выделяющемуся при конденсации пара в жидкость.

Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии, т. к. расстояние между молекулами существенно увеличивается.

Удельная теплота парообразования и конденсации. Опытами установлено, что для полного обращения в пар $1$ кг воды (при температуре кипения) необходимо затратить $2.3$ МДж энергии. Для обращения в пар других жидкостей требуется иное количество теплоты. Например, для спирта оно составляет $0.9$ МДж.

Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой $1$ кг в пар без изменения температуры, называется удельной теплотой парообразования.

Удельную теплоту парообразования обозначают буквой $r$ и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты, необходимое для парообразования (или выделяющееся при конденсации). Чтобы вычислить количество теплоты $Q$, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования $r$ умножить на массу $m$:

$Q=rm$

При конденсации пара происходит выделение такого же количества теплоты:

$Q=-rm$

Удельная теплота плавления

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое.

Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния.

При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить $332$ Дж энергии, а для того чтобы расплавить $1$ кг свинца — $25$ кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1$ кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой $λ$ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой $1$ кг выделяются те же $332$ Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

$Q=λm$

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой $m$, следует пользоваться той же формулой, но со знаком «минус»:

$-Q=λm$

Удельная теплота сгорания

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой $1$ кг, называется удельной теплотой сгорания топлива.

Удельную теплоту сгорания обозначают буквой $q$ и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты $Q$, выделяющееся при сгорании $m$ кг топлива, определяют по формуле:

$Q=qm$

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Уравнение теплового баланса

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутренней энергии какого-либо тела системы $∆U_i$ не может приводить к изменению внутренней энергии всей системы. Следовательно,

$∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: $∆U_i=Q_i$. Учитывая ($∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$), получим:

$Q_1+Q_2+Q_3+…+Q_n=∑↙{i}↖{n}Q_i=0$

Это уравнение называется уравнением теплового баланса. Здесь $Q_i$ — количество теплоты, полученное или отданное $i$-м телом. Любое из количеств теплоты $Q_i$ может означать теплоту, выделяемую или поглощаемую при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энергии при теплообмене.

«Плавление и кристаллизация.
Удельная теплота плавления»



Плавление

Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру –10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.

В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

Кристаллизация

Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

Плавление и кристаллизация. Удельная теплота плавления

На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.

Удельная теплота плавления

Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.

Удельная теплота плавления обозначается буквой λ. Единица удельной теплоты плавления — [λ] = 1 Дж/кг.

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*10Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*10Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Чтобы вычислить количество теплоты Q, необходимое для плавления вещества массой m, взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm.

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

плавление


Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».

Следующая тема: «Тепловые машины. ДВС. Удельная теплота сгорания топлива».

Удельная теплота плавления.

Мы
рассматривали график плавления и
отвердевания льда. Из графика видно,
что, пока лед плавится, температура его
не меняется. И лишь после того как весь
лед расплавится, температура образовавшейся
жидкости начинает повышаться. Но ведь
и во время процесса плавления лед
получает энергию от сгорающего в
нагревателе топлива. А из закона
сохранения энергии следует, что она не
может исчезнуть. На что же расходуется
энергия топлива во время плавления?

Мы знаем,
что в кристаллах молекулы (или атомы)
расположены в строгом порядке. Однако
и в кристаллах они находятся в тепловом
движении (колеблются). При нагревании
тела средняя скорость движения молекул
возрастает. Следовательно, возрастает
и их средняя кинетическая энергия и
температура. На графике это участок АВ
(см. рис. 16). Вследствие этого размах
колебаний молекул (или атомов)
увеличивается. Когда тело нагреется до
температуры плавления, то нарушится
порядок в расположении частиц в
кристаллах. Кристаллы теряют свою форму.
Вещество плавится, переходя из твердого
состояния в жидкое.

Следовательно,
вся энергия, которую получает
кристаллическое тело после того как
оно уже нагрето до температуры плавления,
расходуется на разрушение кристалла.
В связи с этим температура тела перестает
повышаться. На графике это участок BC.

Опыты
показывают, что для превращения различных
кристаллических веществ одной и той же
массы в жидкость при температуре
плавления требуется разное количество
теплоты.

Физическая
величина, показывающая, какое количество
теплоты необходимо сообщить кристаллическому
телу массой 1 кг, чтобы при температуре
плавления полностью перевести его в
жидкое состояние, называется удельной
теплотой плавления.

Удельную
теплоту плавления обозначают А (греч.
буква «лямбда» ). Ее единица — 1
.
Определяют удельную теплоту плавления
на опыте. Так, было установлено, что
удельная теплота плавления льда равна
3,4 • 10⁵
.

Это
означает, что для превращения куска
льда массой 1 кг, взятого при 0 ˚C, в воду
такой же температуры требуется затратить
3,4 • 10⁵ Дж энергии. А чтобы расплавить
брусок из свинца массой 1 кг, взятого
при его температуре плавления, потребуется
затратить 2,5 • 10⁴ Дж энергии.

Следовательно,
при температуре плавления внутренняя
энергия вещества в жидком состоянии
больше внутренней энергии такой же
массы вещества в твердом состоянии.

Чтобы
вычислить количество теплоты Q, необходимое
для плавления кристаллического тела
массой m, взятого при его
температуре плавления и нормальном
атмосферном давлении, нужно удельную
теплоту плавления λ умножить на массу
тела m: Q =λm.

Опыты
показывают, что при отвердевании
кристаллического вещества выделяется
точно такое же количество теплоты,
которое поглощается при его плавлении.
Так, при отвердевании воды массой 1 кг
при температуре 0 ˚C выделяется количество
теплоты, равное 3,4 • 10⁵ Дж. Точно такое
же количество теплоты требуется и для
плавления льда массой 1 кг при температуре
0 ˚C.

При
отвердевании вещества все происходит
в обратном порядке.

Средняя
кинетическая энергия и скорость молекул
в охлажденном расплавленном веществе
уменьшаются. Силы притяжения теперь
могут удерживать медленно движущиеся
молекулы друг около друга. Вследствие
этого расположение частиц становится
упорядоченным — образуется кристалл.
Выделяющаяся при кристаллизации энергия
расходуется на поддержание постоянной
температуры. На графике это участок EF.

Кристаллизация
облегчается, если в жидкости с самого
начала присутствуют какие-либо посторонние
частицы, например пылинки. Они становятся
центрами кристаллизации. В обычных
условиях в жидкости имеется множество
центров кристаллизации, около которых
и происходит образование кристалликов.
При кристаллизации происходит выделение
энергии и передача ее окружающим телам.
Количество теплоты, выделяющееся при
кристаллизации тела массой m,
определяется также по формуле :Q =λm.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти отца через госуслуги
  • Как найти резервную копию iphone на компьютере
  • Как найти гадалку в деревне
  • Как найти свой почтовый индекс бесплатно
  • Wikihow как найти парня