Как найти неопределенный интеграл синус

Подставим все в формулу интегрирования по частям и приведем интеграл к табличному, тогда будем иметь:

Методы не применяются для интегрирования функций вида

; ; ; ;

; , т.е. от тригонометрических функций,

умноженных на многочлен. Такие интегралы интегрируются по частям.

При нахождении интегралов от тригонометрических функций используется ряд методов:

Использование тригонометрических формул Понижение степени подынтегральной функции Метод замены переменной Универсальная тригонометрическая подстановка

При работе с тригонометрическими функциями следует помнить, что:

Косинус – это четная функция, то есть , минус исчезает без всяких последствий.

Синус – функция нечетная: – здесь минус, наоборот – не пропадает, а выносится.

Использование тригонометрических формул

Пример34

Найти интеграл.

Используем формулу: и метод подведения под знак дифференциала

Пример 35

Найти интеграл

Для упрощения подынтегральной функции воспользуемся тригонометрическими функциями. Затем с помощью свойств интеграла приведем данный интеграл к табличному виду.

Пример 36

Найти интеграл.

Используем формулу: и метод подведения под знак дифференциала.

Пример 37

Найти интеграл.

Используем формулу:

Пример 38

Найти неопределенный интеграл

Используем формулы преобразования произведения функций сначала для произведения , а затем для произведения синусов в каждом из интегралов :

В результате искомый интеграл будет равен

Понижение степени подынтегральной функции

Данный приём используют, когда в подынтегральных функциях присутствуют синусы и косинусы в чётных степенях. Для понижения степени используют

тригонометрические формулы , и , причем последняя формула чаще используется в обратном

направлении:

Интеграл вида ʃ sinn (x) cosm (x), где n и m чётные числа, решается методом

понижения степени подынтегральной функции.

Пример 39

Найти интеграл

cos2xdx = 1+cos2x2

dx =

21

(1 + cos2x)dx = 21 x + 21 sin2x + C

Используем формулу:

Пример 40

Найти интеграл

dx =

21 (1 cos3x)dx = 21 x 31 sin3x + C

sin2 23 xdx = 1−cos3x2

Используем формулу:

Пример 41

Найти интеграл

Выражаем sin4 x как (sin2 x)2 и применяем формулу

Используем формулу

В третьем слагаемом снова понижаем степень с помощью формулы .

Пример 42

Найти интеграл

Метод замены переменной

Данный приём используют, когда в подынтегральных функциях присутствуют синусы и косинусы в нечётных степенях.

Общие рекомендации :

1.за t нужно обозначить функцию, которая находится в знаменателе.

2.за t нужно обозначить ту функцию, которая, является более сложной.

3.Если в подынтегральной функции одна из тригонометрических функций (синус или косинус) находится в нечетной степени, то нужно от нечетной степени «откусить» одну функцию, а за t – обозначить другую функцию

Интеграл вида ʃ sinn (x) cosm (x), где n или m нечётные числа, решается методом замены переменной

Пример 43

Найти интеграл

Проведем замену:

Примечание: здесь можно было сделать замену , но гораздо выгоднее обозначить за весь знаменатель.

Пример 44

Найти интеграл Проводим замену

Пример 45

Найти интеграл Проведем замену:

Пример 46

Найти интеграл

Представляем cos3 x dx как cos2 x cos x dx, а cos2x выражаем через синус с помощью основного тригонометрического тождества:

Делаем замену:

Пример 47

Найти интеграл Преобразуем подынтегральное выражение:

Проведем замену:

Пример 48

Найти интеграл Проведем замену:

Пример 49

Найти неопределенный интеграл Для вычисления исходного интеграла введем замену , тогда

Подставляя это в искомый интеграл, получим

Сделаем обратную замену

Пример 50

Найти неопределенный интеграл Преобразуем подынтегральную функцию, используя основное тригонометрическое тождество

Введем замену , тогда исходный интеграл примет вид

Сделаем обратную замену и окончательно получим

Пример 51

Найти неопределенный интеграл Преобразуем подынтегральную функцию, используя вначале формулу для синуса двойного угла:

а затем, формулу для понижения степени

Универсальная тригонометрическая подстановка

Универсальная тригонометрическая подстановка – это частый случай метода замены переменной. Её можно попробовать применить, когда «не знаешь, что делать». Интегралами, где нужно применить универсальную тригонометрическую подстановку, являются интегралы вида:

, , , и т.д.

Указанная замена позволяет свести интеграл от тригонометрической функции к интегралу от рациональной функции.

При этом следует учесть, что из равенства получаем:

;

Обратите внимание, что аргумент под тангенсом должен быть в два раза меньше, чем под синусом и косинусом, т.е., в общем виде, если присутствуют функции вида:

sin(kx), cos(kx), делается подстановка tg(kx/2) = t. Еще раз, при sin2x tg(2x/2), при sin3x tg(3x/2) и т.д.

Пример 52

Найти неопределенный интеграл Воспользуемся универсальной тригонометрической подстановкой:

Пример 53

Найти неопределенный интеграл Для решения данного интеграла сделаем упрощенную тригонометрическую замену, положив что

выразим из равенства

то есть Подставим все в искомый интеграл

Сделаем обратную замену

Пример 54

Найти неопределенный интеграл Преобразуем подынтегральную функцию следующим образом:

Для нахождения первого интеграла будем использовать универсальную тригонометрическую замену

Тогда первый интеграл преобразуется следующим образом

Разложим подынтегральную функцию полученного интеграла на элементарные дроби:

Приведем к общему знаменателю дроби в правой части равенства и приравниваем числители:

Приравнивая коэффициенты при соответствующих степенях, получим такую систему для нахождения и

Тогда подынтегральная функция имеет следующее разложение на простые дроби

а соответствующий интеграл равен

Делаем обратную замену

Окончательно искомый интеграл равен:

Пример 55

Найти неопределенный интеграл. Перед применением универсальной тригонометрической подстановки необходимо понизить степени в знаменателе при помощи формул

,

Универсальная тригонометрическая подстановка:

Применение универсальной тригонометрической подстановки часто приводит к длинным и трудоемким вычислениям. Поэтому на практике универсальной тригонометрической подстановки стараются избегать (если возможно).

В ряде случаев целесообразно свести подынтегральное выражение, содержащее sinn(α) и cosm(α), к tg(α) и ее производной 1/cos2(α) т.е. произвести замену:

. Для этого можно воспользоваться формулами

; .

Метод работает, если сумма показателей степеней n+m целое четное отрицательное число .

Пример56

Найти неопределенный интеграл

Пример57

Найти неопределенный интеграл

Замена tgх =t (чтобы не запутаться)

Пример58

Найти неопределенный интеграл

Пример59

Найти неопределенный интеграл

Пример60

Найти неопределенный интеграл

Пример61

Интеграл из примера55

=

=

=

4 2 5 2

(4 2 5 2 ) 2

(4 2 5) 2

( )

=

2

1

2

1

1

2 − √5

=

4 2 5

=

= 4 2 5 =

2

(2 )2 (5)2

= 2

25

2 + 5 + =

= 4√1

5 22 +55 +

Решение значительно быстрее и проще.

6.Интегралы от дробей

Суть методов решения интегралов от дроби сводится к преобразованию дроби в сумму элементарных дробей табличного вида:

1.

2.

3.

4.

5.

6.

Для преобразования дроби используется комплекс приемов, основными из которых будут выделение полного квадрата, подстановка, разложение на множители, с дальнейшим преобразованием в сумму элементарных дробей.

Для решения интегралов от дроби можно придерживаться следующего алгоритма:

Определяем тип подынтегрального выражения.

1.

Для простейших дробей вида

применяется способ подведения функции

под знак дифференциала с дальнейшим интегрированием с помощью таблицы.

( + )

( + )

( + )−+

,

( + ) = ( + )

=

−+

+

Примеры:

2. Для дробей вида

,

,

,

(коэффициенты

a и c не равны нулю) также применяется способ подведения функции под знак дифференциала с дальнейшим интегрированием с помощью таблицы. (Формулы 2 — 6, см. выше).

Примеры:

3. Для дробей вида

сначала представляем

интеграл в виде суммы:

Первый интеграл берем методом подведения под знак дифференциала:

В интегралах вида

выделяем в знаменателе полный квадрат и приводим

выражение к табличному виду.

В ряде случаев, неразложимый многочлен

целесообразно представить в

необходимо вынести коэффициент за знак интеграла,

виде полного квадрата (перед этим

(

+ + )

поделив все выражение на ) по формуле:

и свести интеграл к виду:

,

или

Пример62

Найти неопределенный интеграл Квадратный трехчлен, который стоит в знаменателе подынтегральной функции, не

раскладывается на множители . Поэтому для нахождения данного интеграла выделим в знаменателе полный квадрат.

Пример63

Найти неопределенный интеграл . Для начала вынесем двойкуиз под знака радикала:

т.е. вида

В подкоренном выражении выделяем полный квадрат:

Поэтому

Пример64

4. Для дробей вида

используют метод интегрирования по частям n раз, каждый раз понижая степень знаменателя и применяя предыдущие способы. Вычисления получаются очень длинные и долгие. Или пользуемся рекуррентными формулами.

5. Дроби( ) , у которых многочлены и в числителе и в знаменателе,

( ) , где Pn(x) и Pm(x) многочлены степени n и m соответственно, перед

собственно взятием интеграла необходимо разложить на множители, а затем, преобразовать в сумму элементарных дробей.

Определяем что дробь правильная. Правильной называется дробь, у которой степень числителя меньше степени знаменателя. Если дробь неправильная, то выделяем целую часть, с оставшейся частью работаем как с правильной дробью.

Раскладываем знаменатель правильной дроби на множители и преобразуем дробь в сумму элементарных дробей.

Для преобразования дроби в сумму элементарных дробей в большинстве случаев используют метод неопределенных коэффициентов.

Метод неопределенных коэффициентов.

т.е.

Любую дробь вида

( + )( + )( + )

можно представить в виде

2+ +

2 + +

( + )( + )( + ) =

+ + + + + ,

+ ++ + +

где A, B, C неизвестные коэффициенты.

Приводим правую часть уравнения к общему знаменателю:

+

=

( + )( + ) + ( + )( + ) ( + )( + )

,

+

+Тогда

+

( + )( + )( + )

+

2

+ +

( + )( + ) + ( + )( + ) + ( + )( + )

( + )( + )( + )

( + )( + )( + )

2

+ + = ( + )( + ) + ( + )( + ) ( + )( + )

Если дроби равны= и равны их знаменатели, то должны быть равны и их числители,

:

+ + =

= 2

Раскрываем скобки

( + ) + + 2 +

( + ) + =

+

( + ) + + 2 +

= ( + + )

+

( + + + + + ) + ( + + )

= + +

Приравниваем коэффициенты в выражениях:

= ( + )

+ ( + ) + ( + )

= + +

Решая систему уравнений, находим неизвестные коэффициенты A, B, C и раскладываем

2

+ +

дробь на сумму элементарных дробей:

+

( + )( + )( + )

+

+

он приравнивается к

(

+ + )

квадратный.

многочлен вида:

Если в знаменателе встречается=

+неразложимый+

( + )(

+

1 + )

2

+

12

, где

— неразложимый квадратный многочлен (D<0), то

( + )(

сумме дробей по формуле:

+ + )

+

(

+ + )

Если в знаменателе2

встречаются=

+кратные2

множители.

вида:

1

,

1

2

1

2

( 1+ )

то они раскладываются по формуле:

( + ) =

+

2 + +

+ ( + ) +

( + )2

+ +

( + )

Пример65

Найти неопределенный интеграл Преобразуем подынтегральную функцию, расписав знаменатель согласно формуле сокращенного умножения для суммы кубов:

Тогда интеграл примет вид:

Далее разложим подынтегральную функцию на простые дроби с неопределенными коэффициентами. В нашем случае имеет место следующее разложение:

Найдем неопределенные коэффициенты, для этого приведем к общему знаменателю дроби в правой части равенства, а затем приравняем соответствующие числители

Далее приравняем коэффициенты при соответствующих степенях

Подставим, выраженные через , коэффициенты и во второе уравнение системы:

, тогда , а Таким образом, искомый интеграл будет равен:

1

1

(2 1) 3

= 3

| + 1| 6

2 + 1

=

1

1

2 1

3

=

= 3

| + 1| 6

2

+ 1

6

2 + 1

1

1

|

2

1

= 3

| + 1| 6

+ 1| + 2

2 + 1

Квадратный трехчлен, стоящий в знаменателе последнего интеграла, не раскладывается на

множители

1

1

2

. Поэтому для его нахождения выделим в

1

знаменателе полный квадрат:

3 + 1

= = 3

| + 1| 6

|

+ 1| +

2 2 + 1 =

1

| + 1|

1

|

2

1

+ 3 =

= 3

6

2

+ 1| + 2

( 1)2

1

| + 1|

1

|

1

1

2

4

= 3

6

+ 1| + 2

3

3

+ =

1

| + 1|

1

|

2

1

4

2

4

= 3

6

+ 1| + 3

3 +

Пример66

Найти неопределенный интеграл Дробь является правильной

Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Приводим дробь к общему знаменателю:

Составим и решим систему:

Пример67

Найти неопределенный интеграл Данная дробь является неправильной.

Основной метод решения интеграла с неправильной дробно-рациональной функцией – это

деление числителя на знаменатель.

Сначала рисуем «заготовку» для деления:

ВСЕ недостающие степени (и (или) свободные члены) без пропусков записываем в ОБОИХ многочленах с нулевыми коэффициентами

Теперь маленькая задачка, на какой множитель нужно умножить , чтобы получить ? Очевидно, что на :

Далее умножаем сначала на , потом – на , потом – на , потом – на 0 и записываем результаты слева:

Проводим черточку и производим вычитание (из верха вычитаем низ):

Старшая степень остатка равна двум, старшая степень делителя

– больше, она равна трём, значит, больше разделить не удастся. Если бы

изначально унас был в числителе многочлен пятой степени, то алгоритм деления увеличился бы на один шаг.

Итак, у нас получилась целая часть плюс остаток:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

6. Неопределенные интегралы иррациональных функций вида находятся методом подстановки.

В зависимости от рациональных чисел m, n и p вводят следующие новые переменные:

1.

Если p — целое число, то принимают

, где N — общий знаменатель чисел m и n.

2.

— целое число, то

, где N — знаменатель числа p.

Если +

знаменатель

+ p

— целое число, то вводят новую переменную

, где N —

3.

Если

+

числа .

привести к виду:

±

,

которые можно

Очень часто в вычислениях встречаются дроби вида

+

+

+ =

+

= +

+ = +

+

=

=

+ =

+ = 1 + =

+

=

=

+ = +

Пример68

Найти неопределенный интеграл

То есть, m = -1, n = 1, p = 1/2. Так как — целое число, то вводим новую

переменную (N = 2 – знаменатель числа p). Выражаем х через z:

Выполняем подстановку в исходный интеграл:

Пример 69

Найти неопределенный интеграл Проведем замену: . Навешиваем дифференциалы на обе части:

Вот почему дифференциалы нужно именно НАВЕШИВАТЬ на обе части и добросовестно

раскрывать эти дифференциалы. Немало чайников здесь формально напишет и допустит ошибку.

Пример70

Найти неопределенный интеграл

Проведем замену: Навешиваем дифференциалы на обе части:

С числителем разобрались. Что делать с в знаменателе? Берем нашу замену и выражаем из неё: Если , то

Пример71

Найти неопределенный интеграл Задача состоит в следующем: провести удачную замену, чтобы сразу избавиться от ВСЕХ корней.

Когда даны разные корни удобно придерживаться следующей схемы решения. Сначала выписываем на черновике подынтегральную функцию, при этом все корни представляем в

виде : . Нас будут интересовать знаменатели степеней. Записываем эти знаменатели: 2, 3, 3.

Теперь нужно найти наименьшее общее кратное чисел 2, 3, 3 – такое число, чтобы оно делилось и на 2 и на 3 (в данном случае), кроме того, это число должно быть как можно меньше.

Очевидно, что наименьшим общим кратным является число 6. Оно делится и на 2 и на 3, кроме того, меньше шестерки ничего не придумать.

Замена в рассматриваемом интеграле будет следующей: Оформляем решение:

Проведем замену:

Заказать задачи по любым предметам можно здесь от 10 минут

Интеграл от синуса

Интеграл от синуса по таблице интегрирования равен: $$ int sin x dx = — cos x + C $$

Словами это читается так: интеграл от синуса равен сумме отрицательного косинуса и произвольной постоянной.

Пример 1
Найти интеграл от синус 2x: $$ int sin 2x dx $$
Решение

Напрямую интеграл взять не получится, так как аргумент синуса и знака дифференциала отличаются. Выполняем подведение под дифференциал $ 2x $ и добавляем перед интегралом дробь $ frac{1}{2} $:

$$ int sin 2x dx = frac{1}{2} int sin 2x d(2x) = -frac{1}{2} cos 2x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ int sin 2x dx = -frac{1}{2} cos 2x + C $$
Пример 2
Найти интеграл от синуса в квадрате: $$ int sin^2 x dx $$
Решение

В данном случае необходимо воспользоваться одной из тригонометрических формул. Конкретно формулой понижения степени синуса: $$ sin^2 x = frac{1-cos 2x}{2} $$

Заменяем выражение под интегралом:

$$ int sin^2 x dx = int frac{1-cos 2x}{2} dx = frac{1}{2} int (1-cos 2x) dx = $$

$$ = frac{1}{2} int 1dx — frac{1}{2} int cos 2x dx = frac{1}{2}x — frac{1}{2}cdotfrac{1}{2}int cos 2x d(2x) = $$

$$ = frac{1}{2}x — frac{1}{4}sin 2x + C $$

Ответ
$$ int sin^2 x dx = frac{1}{2}x — frac{1}{4}sin 2x + C $$
Пример 3
Найти интеграл от синуса в кубе: $$ int sin^3 x dx $$
Решение

Здесь нужно вспомнить свойство степеней и учесть: $$ sin^3 x = sin x cdot sin^2 x $$

Подставляем, полученное выражение в интеграл и заносим $ sin x $ под знак дифференциала:

$$ int sin^3 x dx = int sin x sin^2 x dx = — int sin^2 x d(cos x) = $$

Далее используем свойство $ sin^2 x = 1 — cos^2 x $:

$$ = -int (1-cos^2 x) d(cos x) = -int d(cos x) + int cos^2 x d(cos x) = $$

$$ = — cos x + frac{cos^3 x}{3} + C = frac{1}{3} cos^3 x — cos x + C $$

Ответ

$$ int sin^3 x dx = frac{1}{3} cos^3 x — cos x + C $$

Пример 4
Вычислить определенный интеграл от синуса: $$ int_0^pi sin x dx $$
Решение

Вычисление начнем как в случае с неопределенным интегралом и в конце используем формулу Ньютона-Лейбница $ int_a^b f(x) dx = F(x) bigg |_a^b = F(b)-F(a) $:

$$ int_0^pi sin x dx = -cos x bigg |_0^pi = -cos pi + cos 0 = -(-1) + 1 = 1+1=2 $$

Ответ
$$ int_0^pi sin x dx = 2 $$

        И снова здравствуйте, друзья!

        Как я и обещал, с этого урока мы начнём бороздить бескрайние просторы поэтического мира интегралов и приступим к решению самых разнообразных (порой, очень красивых) примеров. :)

        Чтобы грамотно ориентироваться во всём интегральном многообразии и не заблудиться, нам потребуется всего четыре вещи:

        1) Таблица интегралов. Все подробности о ней — в предыдущем материале. Как именно с ней работать — в этом.

        2) Свойства линейности неопределённого интеграла (интеграл суммы/разности и произведения на константу).

        3) Таблица производных и правила дифференцирования.

        Да-да, не удивляйтесь! Без умения считать производные, в интегрировании ловить совершенно нечего. Согласитесь, бессмысленно, например, учиться делению, не умея умножать. :) И очень скоро вы увидите, что без отточенных навыков дифференцирования не посчитать ни один сколь-нибудь серьёзный интеграл, выходящий за рамки элементарных табличных.

        4) Методы интегрирования.

        Их очень и очень много. Для конкретного класса функций — свой. Но среди всего их богатого разнообразия выделяется три базовых:

         метод подведения функции под знак дифференциала,

          метод замены переменной,

         метод интегрирования по частям.

        О каждом из них — в отдельных уроках.

        А теперь, наконец, приступим к решению долгожданных примеров. Чтобы не скакать из раздела в раздел, я продублирую ещё разок весь джентльменский набор, который пригодится для нашей дальнейшей работы. Пусть весь инструментарий будет под рукой.)

        Прежде всего, это таблица интегралов:

        Кроме того, нам понадобятся базовые свойства неопределённого интеграла (свойства линейности):

       Что ж, необходимая снаряга подготовлена. Пора в путь! :)

Прямое применение таблицы

        В данном параграфе будут рассматриваться самые простые и безобидные примеры. Алгоритм здесь прост до ужаса:

        1) Смотрим в таблицу и ищем нужную формулу (формулы);

        2) Применяем свойства линейности (где требуется);

        3) Осуществляем превращение по табличным формулам и прибавляем в конце константу С (не забываем!);

        4) Записываем ответ.

Итак, поехали.)

Пример 1

        Такой функции в нашей таблице нет. Зато есть интеграл от степенной функции в общем виде (вторая группа). В нашем случае n = 5. Вот и подставляем пятёрку вместо n и аккуратно считаем результат:

        Готово. :)

        Разумеется, этот пример совсем примитивный. Чисто для знакомства.) Зато умение интегрировать степени позволяет легко считать интегралы от любых многочленов и прочих степенных конструкций.

        Пример 2

        Под интегралом сумма. Ну и ладно. У нас на этот случай есть свойства линейности. :) Разбиваем наш интеграл на три отдельных, выносим все константы за знаки интегралов и считаем каждый по таблице (группа 1-2):

           

           

        Прошу обратить внимание: константа С появляется именно в тот момент, когда исчезают ВСЕ знаки интеграла! Конечно, после этого приходится её постоянно таскать за собой. А что делать…

        Разумеется, так подробно расписывать обычно не требуется. Это чисто для понимания сделано. Чтобы суть уловить.)  

        Например, очень скоро, особо не раздумывая, вы в уме будете давать ответ к монстрам типа:

        Многочлены — самые халявные функции в интегралах.) А уж в диффурах, в физике, в сопромате и прочих серьёзных дисциплинах интегрировать многочлены придётся постоянно. Привыкайте.)

        Следующий примерчик будет чуть покруче.

        Пример 3

        Надеюсь, всем понятно, что наше подынтегральное выражение можно расписать вот так:

           

        Подынтегральная функция отдельно, а множитель dx (значок дифференциала) — отдельно.

        Замечание: в этом уроке множитель dx в процессе интегрирования пока никак не участвует, и мы на него пока что мысленно «забиваем». :) Работаем только с подынтегральной функцией. Но забывать про него не будем. Совсем скоро, буквально на следующем уроке, посвящённом подведению функции под знак дифференциала, мы про него вспомним. И ощутим всю важность и мощь этого значка в полную силу!)

        А пока наш взор обращён на подынтегральную функцию 

           

        Не очень похоже на степенную функцию, но это она. :) Если вспомнить школьные свойства корней и степеней, то вполне можно преобразовать нашу функцию:

           

        А икс в степени минус две трети — это уже табличная функция! Вторая группа, n=-2/3. А константа 1/2 нам не помеха. Выносим её наружу, за знак интеграла, и прямо по формуле считаем:

           

        В этом примере нам помогли элементарные свойства степеней. И так надо делать в большинстве случаев, когда под интегралом стоят одинокие корни или дроби. Посему пара практических советов при интегрировании степенных конструкций:

        Заменяем дроби степенями с отрицательными показателями;

        Заменяем корни степенями с дробными показателями.

        А вот в окончательном ответе переход от степеней обратно к дробям и корням — дело вкуса. Лично я перехожу обратно — так эстетичнее, что ли.

        И, пожалуйста, аккуратно считаем все дроби! Внимательно следим за знаками и за тем, что куда идёт — что в числитель, а что знаменатель.

        Что? Надоели уже скучные степенные функции? Ну ладно! Берём быка за рога!

        Пример 4

        Если сейчас привести всё под интегралом к общему знаменателю, то можно застрять на этом примере всерьёз и надолго.) Но, присмотревшись повнимательнее к подынтегральной функции, можно заметить, что наша разность состоит из двух табличных функций. Так что не будем извращаться, а вместо этого разложим наш интеграл на два:

           

        Первый интеграл — обычная степенная функция, (2-я группа, n = -1): 1/x = x-1.

        Традиционная наша формула для первообразной степенной функции

           

        здесь не работает, но зато у нас для n = -1 есть достойная альтернатива — формула с натуральным логарифмом. Вот эта:

           

        Тогда, согласно этой формуле, первая дробь проинтегрируется так:

        

        А вторая дробь — тоже табличная функция! Узнали? Да! Это седьмая формула с «высоким» логарифмом:

       

        Константа «а» в этой формуле равна двойке: a=2.

           

        Важное замечание: Обратите внимание, константу С при промежуточном интегрировании я нигде не приписываю! Почему? Потому что она пойдёт в окончательный ответ всего примера. Этого вполне достаточно.) Строго говоря, константу надо писать после каждого отдельного интегрирования — хоть промежуточного, хоть окончательного: так уж неопределённый интеграл требует…) 

        Например, после первого интегрирования я должен был бы написать:

        

        После второго интегрирования:

        

        Но вся фишка в том, что сумма/разность произвольных констант — это тоже некоторая константа! В нашем случае для окончательного ответа нам надо из первого интеграла вычесть второй. Тогда у нас получится разность двух промежуточных констант:

        С12 

        И мы имеем полное право эту самую разность констант заменить одной константой! И просто переобозначить её привычной нам буквой «С». Вот так:

        С12 = С

        Вот и приписываем эту самую константу С к окончательному результату и получаем ответ:

        Да-да, дроби они такие! Многоэтажные логарифмы при их интегрировании — самое обычное дело. Тоже привыкаем.)

        Запоминаем:

        При промежуточном интегрировании нескольких слагаемых константу С после каждого из них можно не писать. Достаточно включить её в окончательный ответ всего примера. В самом конце.

        Следующий пример тоже с дробью. Для разминки.)

        Пример 5

        В таблице, понятное дело, такой функции нет. Но зато есть похожая функция: 

           

        Это самая последняя, восьмая формула. С арктангенсом. :)

        Вот эта:

        И нам сам бог велел подстроить наш интеграл под эту формулу! Но есть одна проблемка: в табличной формуле перед х2 никакого коэффициента нету, а у нас — девятка. Не можем пока что напрямую воспользоваться формулой. Но в нашем случае проблема вполне решаема. Вынесем эту девятку сначала за скобки, а потом вообще уведём за пределы нашей дроби.)

           

        А новая дробь — уже нужная нам табличная функция под номером 8! Здесь а2=4/9. Или а=2/3.

        Всё. Выносим 1/9 за знак интеграла и пользуемся восьмой формулой:

           

        Вот такой ответ. Этот пример, с коэффициентом перед х2, я специально так подобрал. Чтобы ясно было, что делать в таких случаях. :) Если перед х2 никакого коэффициента нет, то такие дроби тоже будут в уме интегрироваться.

        Например:

        Здесь а2 = 5, поэтому само «а» будет «корень из пяти». В общем, вы поняли.)

        А теперь немного видоизменим нашу функцию: напишем знаменатель под корнем.) Вот такой интеграл теперь будем брать:

        Пример 6

        В знаменателе появился корень. Естественно, изменилась и соответствующая формула для интегрирования, да.) Опять лезем в таблицу и ищем подходящую. Корни у нас есть в формулах 5-й и 6-й групп. Но в шестой группе под корнями только разность. А у нас — сумма. Значит, работаем по пятой формуле, с «длинным» логарифмом:

        Число А у нас — пятёрка. Подставляем в формулу и получаем:

        И все дела. Это ответ. Да-да, так просто!)

        Если закрадываются сомнения, то всегда можно (и нужно) проверить результат обратным дифференцированием. Проверим? А то вдруг, лажа какая-нибудь?

        Дифференцируем (на модуль внимания не обращаем и воспринимаем его как обычные скобки):

        Всё честно. :)

        Кстати, если в подынтегральной функции под корнем поменять знак с плюса на минус, то формула для интегрирования останется той же самой. Не случайно в таблице под корнем стоит плюс/минус. :)

        Например:

        Важно! В случае минуса, на первом месте под корнем должно стоять именно х2, а на втором — число. Если же под корнем всё наоборот, то и соответствующая табличная формула будет уже другая!

        Пример 7

        Под корнем снова минус, но х2 с пятёркой поменялись местами. Похоже, но не одно и то же… На этот случай в нашей таблице тоже есть формулка.) Формула номер шесть, с ней мы ещё не работали:

        А вот теперь — аккуратно. В предыдущем примере у нас пятёрка выступала в роли числа A. Здесь же пятёрка будет выступать уже в роли числа а2!

        Поэтому для правильного применения формулы не забываем извлечь корень из пятёрки:  

           

        И теперь пример решается в одно действие. :)

        Вот так вот! Всего лишь поменялись местами слагаемые под корнем, а результат интегрирования изменился существенно! Логарифм и арксинус… Так что, пожалуйста, не путайте эти две формулы! Хотя подынтегральные функции и очень похожи…

        Бонус:

        В табличных формулах 7-8 перед логарифмом и арктангенсом присутствуют коэффициенты 1/(2а) и 1/а соответственно. И в тревожной боевой обстановке при записи этих формул даже закалённые учёбой ботаны частенько путаются, где просто 1/а, а где 1/(2а). Вот вам простой приёмчик для запоминания.

        В формуле №7       

           

        в знаменателе подынтегральной функции стоит разность квадратов х2 — а2. Которая, согласно боянной школьной формуле, раскладывается как (х-а)(х+а). На два множителя. Ключевое слово — два. И эти две скобки при интегрировании идут в логарифм: с минусом вверх, с плюсом — вниз.) И коэффициент перед логарифмом тоже 1/(2а).

        А вот в формуле №8   

           

        в знаменателе дроби стоит сумма квадратов. Но сумма квадратов x2+a2 неразложима на более простые множители. Поэтому, как ни крути, в знаменателе так и останется один множитель. И коэффициент перед арктангенсом тоже будет 1/а.

        А теперь для разнообразия проинтегрируем что-нибудь из тригонометрии.)

        Пример 8

         Пример простой. Настолько простой, что народ, даже не глядя в таблицу, тут же радостно ответ пишет и… приехали. :)

        Следим за знаками! Это самая распространённая ошибка при интегрировании синусов/косинусов. Не путаем с производными!

        Да, (sin x)’ = cos x и (cos x)’ = —sin x.

        Но!

        

        Поскольку производные народ обычно худо-бедно помнит, то, чтобы не путаться в знаках, приём для запоминания интегралов тут очень простой:

        Интеграл от синуса/косинуса = минус производная от тех же синуса/косинуса.

        Например, мы ещё со школы знаем, что производная синуса равна косинусу:

        (sin x)’ = cos x.

        Тогда для интеграла от того же синуса будет справедливо:

           

        И всё.) С косинусом то же самое.

        Исправляем теперь наш пример:

Предварительные элементарные преобразования подынтегральной функции

        До этого момента были самые простенькие примеры. Чтобы прочувствовать, как работает таблица и не ошибаться в выборе формулы.)

        Конечно, мы делали кое-какие простенькие преобразования — множители выносили, на слагаемые разбивали. Но ответ всё равно так или иначе лежал на поверхности.) Однако… Если бы вычисление интегралов ограничивалось только прямым применением таблицы, то вокруг была бы сплошная халява и жить стало бы скучно.)

        А теперь разберём примеры посолиднее. Такие, где впрямую, вроде бы, ничего и не решается. Но стоит вспомнить буквально пару-тройку элементарных школьных формул или преобразований, как дорога к ответу становится простой и понятной. :)

        Применение формул тригонометрии

        Продолжим развлекаться с тригонометрией.

        Пример 9

        Такой функции в таблице и близко нет. Зато в школьной тригонометрии есть такое малоизвестное тождество:

           

        Выражаем теперь из него нужный нам квадрат тангенса и вставляем под интеграл:

           

        Зачем это сделано? А затем, что после такого преобразования наш интеграл сведётся к двум табличным и будет браться в уме!

        Смотрите:

        А теперь проанализируем наши действия. На первый взгляд, вроде бы, всё проще простого. Но давайте задумаемся вот над чем. Если бы перед нами стояла задача продифференцировать ту же самую функцию, то мы бы точно знали, что именно надо делать — применять формулу производной сложной функции:

        И всё. Простая и безотказная технология. Работает всегда и гарантированно приводит к успеху.

        А что же с интегралом? А вот тут нам пришлось порыться в тригонометрии, откопать какую-то малопонятную формулу в надежде, что она нам как-то поможет выкрутиться и свести интеграл к табличному. И не факт, что помогла бы она нам, совсем не факт… Именно поэтому интегрирование — более творческий процесс, нежели дифференцирование. Искусство, я бы даже сказал. :) И это ещё не самый сложный пример. То ли ещё будет!

        Пример 10

        Что, внушает? Таблица интегралов пока бессильна, да. Но, если снова заглянуть в нашу сокровищницу тригонометрических формул, то можно откопать весьма и весьма полезную формулу косинуса двойного угла:

        Вот и применяем эту формулу к нашей подынтегральной функции. В роли «альфа» у нас х/2.

        Получаем:

        Эффект потрясающий, правда?

        Эти два примера наглядно показывают, что предварительное преобразование функции перед интегрированием вполне допускается и порой колоссально облегчает жизнь! И в интегрировании эта процедура (преобразование подынтегральной функции) на порядок более оправдана, чем при дифференцировании. В дальнейшем всё увидите.)

        Разберём ещё парочку типовых преобразований.

        Формулы сокращённого умножения, раскрытие скобок, приведение подобных и метод почленного деления.

        Обычные банальные школьные преобразования. Но порой только они и спасают, да.)

        Пример 11

        Если бы мы считали производную, то никаких проблем: формула производной произведения и — вперёд. Но стандартной формулы для интеграла от произведения не существует. И единственный выход здесь — раскрыть все скобки, чтобы под интегралом получился многочлен. А уж многочлен мы как-нибудь проинтегрируем.) Но скобки раскрывать тоже будем с умом: формулы сокращённого умножения — штука мощная!

        (x2 — 1)2(x2 + 1)2 = ((x2 — 1)(x2 + 1))2 = ((x2)2 — 12)2 = (x4 — 1)2 = x8 — 2x4 + 1

           А теперь считаем:

И все дела.)

        Пример 12

        Опять же, стандартной формулы для интеграла от дроби не существует. Однако в знаменателе подынтегральной дроби стоит одинокий икс. Это в корне меняет ситуацию.) Поделим почленно числитель на знаменатель, сведя нашу жуткую дробь к безобидной сумме табличных степенных функций:

        Особо комментировать процедуру интегрирования степеней не буду: не маленькие уже.)

        Интегрируем сумму степенных функций. По табличке.)

        Вот и все дела.) Кстати, если бы в знаменателе сидел не икс, а, скажем, х+1, вот так:

        то этот фокус с почленным делением уже так просто не прошёл бы. Именно из-за наличия корня в числителе и единицы в знаменателе. Пришлось бы замену вводить и избавляться от корня. Но такие интегралы гораздо сложнее. О них — в других уроках.

        Видите! Стоит только чуть-чуть видоизменить функцию — тут же меняется и подход к её интегрированию. Порой кардинально!) Нету чёткой стандартной схемы. К каждой функции — свой подход. Иногда даже уникальный.)

        В некоторых случаях преобразования в дробях ещё более хитрые.

        Пример 13

        А здесь как можно свести интеграл к набору табличных? Здесь можно ловко извернуться добавлением и вычитанием выражения x2 в числителе дроби с последующим почленным делением. Очень искусный приём в интегралах! Смотрите мастер-класс! :)

        И теперь, если заменить исходную дробь на разность двух дробей, то наш интеграл распадается на два табличных — уже знакомую нам степенную функцию и арктангенс (формула 8):

        Ну, что тут можно сказать? Вау!

        Этот трюк с добавлением/вычитанием слагаемых в числителе — очень популярен в интегрировании рациональных дробей. Очень! Рекомендую взять на заметку.

        Пример 14

        Здесь тоже рулит эта же технология. Только добавлять/вычитать надо единичку, чтобы из числителя выделить выражение, стоящее в знаменателе:

        Вообще говоря, рациональные дроби (с многочленами в числителе и знаменателе) — отдельная очень обширная тема. Дело всё в том, что рациональные дроби — один из очень немногих классов функций, для которых универсальный способ интегрирования существует. Метод разложения на простейшие дроби вкупе с методом неопределённых коэффициентов. Но способ этот очень трудоёмкий и обычно применяется как тяжёлая артиллерия. Ему будет посвящён не один урок. А пока что тренируемся и набиваем руку на простых функциях.

        Подытожим сегодняшний урок.

        Сегодня мы подробно рассмотрели, как именно пользоваться таблицей, со всеми нюансами, разобрали множество примеров (и не самых тривиальных) и познакомились с простейшими приёмами сведения интегралов к табличным. И так мы теперь будем поступать всегда. Какая бы страшная функция ни стояла под интегралом, с помощью самых разнообразных преобразований мы будем добиваться того, чтобы, рано или поздно, наш интеграл, так или иначе, свёлся к набору табличных.

        Несколько практических советов.

        1) Если под интегралом дробь, в числителе которой сумма степеней (корней), а в знаменателе — одинокая степень икса, то используем почленное деление числителя на знаменатель. Заменяем корни степенями с дробными показателями и работаем по формулам 1-2.         

        2) В тригонометрических конструкциях в первую очередь пробуем базовые формулы тригонометрии — двойного/тройного угла, основные тригонометрические тождества: 

        

        Может очень крупно повезти. А может и нет…

        3) Где нужно (особенно в многочленах и дробях), применяем формулы сокращённого умножения:

(a+b)2 = a2+2ab+b2

(a-b)2 = a2-2ab+b2

(a-b)(a+b) = a2-b2 

        и так далее…

        4) При интегрировании дробей с многочленами пробуем искусственно выделить в числителе выражение(я), стоящее(щие) в знаменателе. Очень часто дробь упрощается и интеграл сводится к комбинации табличных.

        Ну что, друзья? Я вижу, интегралы вам начинают нравиться. :) Тогда набиваем руку и решаем примеры самостоятельно.) Сегодняшнего материала вполне достаточно, чтобы успешно с ними справиться.

           

        Что? Не знаете, как интегрировать арксинус/арккосинус? Да! Мы этого ещё не проходили.) Но здесь их напрямую интегрировать и не нужно. И да поможет вам школьный курс!)

        Ответы (в беспорядке):

        

        Для лучших результатов настоятельно рекомендую приобрести сборник задач по матану Г.Н. Бермана. Классная штука!

        А у меня на сегодня всё. Успехов!

Содержание:

  • Формула
  • Примеры вычисления интеграла синуса

Формула

$$int sin x d x=-cos x+C$$

Интеграл от синуса равен минус косинусу плюс константа интегрирования.

Примеры вычисления интеграла синуса

Пример

Задание. Найти неопределенный интеграл $int 2 sin x d x$

Решение. Константу выносим за знак интеграла, тогда будем иметь:

$$int 2 sin x d x=2 int sin x d x=2 cdot(-cos x)+C=-2 cos x+C$$

Ответ. $int 2 sin x d x=-2 cos x+C$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти интеграл $int(1-sin x) d x$

Решение. Интеграл от разности равен разности интегралов, а тогда получаем:

$$int(1-sin x) d x=int 1 d x-int sin x d x$$

Первый интеграл — интеграл от константы, второй — интеграл от синуса:

$$int(1-sin x) d x=1 cdot x-(-cos x)+C=x+cos x+C$$

Ответ. $int(1-sin x) d x=x+cos x+C$

Читать дальше: интеграл косинуса.

Согласно формулам интегрирования интеграл от синуса sin (x) равен косинусу, причем со знаком минус. Многие часто допускает ошибки потому что не может запомнить, что производная от синуса равна минус косинусу, а от косинуса — синусу со знаком плюс.
Те кто изучает первоначальную должны помнить что к правой стороне следует добавить постоянную
первоначальная синусаЕту постоянную определяют с дополнительной условия.
График синуса имеет вид


Синус нечетная, а косинус — четная функция, поэтому при интегрировании появляется знак минус. В начале всем кажется все простым и понятным. Но рано или поздно наступает время усложнять интеграл, то есть интегрировать синус двойного угла, тройного аргумента и т.д. И во многих возникают трудности с интегрированием. Для вывода формулы интеграла для sin (k*x) проведем все выкладки сначала. Для того чтобы свести интеграл к табличной формулы надо внести коэффициент под дифференциал, но это изменит сам интеграл. Поэтому одновременно делим на коэффициент

Зная эту формулу, интеграл от синуса двойного угла записываем одной строкой
интегруавання синуса двойного угла Далее можем проинтегрировать синус тройного угла
интегруавання синуса тройного углаи т.д.
int(sin(k*x)=-1/k*cos(k*x).
По такой же формуле выводят интеграл от синуса половины угла, который равен минус 2 косинус половины угла.
интеграл синуса половины углаИнтеграл от синуса одной третьей х равен

Распространенные примеры интегрирования синуса

Пример 1. Найти интеграл от sin(4*x).
Решение: По формуле интегрирования находим

Пример 2. Вычислить интеграл от sin(5*x).
Решение: Выполняем интегрирования

Пример 3. Проинтегрировать выражение sin(7*x).
Решение: Находим неопределенный интеграл

Пример 4. Найти интеграл функции y=sin(x/5).
Решение: Находим неопределенный интеграл

Как только Вы научитесь вычислять простые интегралы от синуса можете переходить к определенному интегралу

Пример 5. Найти первоначальную от sin(x) которая в нуле равна 2.
Решение: Вычисляем первоначальную

Из условия на первоначальную находим постоянную
-cos(0)+C=2;
C=2+cos(0)=3.

Возвращаемся к первоначальной и подставляем найденную постоянную

Это и есть ответ к задаче.

Пример 7. Проинтегрировать синус двойного угла y=sin(2*x) от 0 до 45 градусов.
Решение: Записываем интеграл от синуса и подставляем пределы интегрирования

По физическому содержанию определенный интеграл равен площади фигуры ограниченной функцией sin (x) и осью абсцисс.

Но определенный интеграл и площадь, это не одно и то же. Интеграл может быть отрицательным, а площадь нет. Если функция большую площадь имеет под осью абсцисс, то ее определенный интеграл отрицательный.

Площадь криволинейной трапеции равна интегралу от разницы уравнения верхней кривой и нижней.

В данном случае верхняя кривая это ось абсцисс или y = 0. Нижняя — это график синуса. Поэтому формула площади синус функции равна 1, или определенному интегралу по модулю.

Если функция антисимметрична относительно оси абсцисс то ее интеграл равен нулю, а площадь равна двойному интегралу графика над осью абсцисс. Например, интеграл синуса двойного угла от -45 до 45 градусов равен нулю


В то же время площадь заштрихованной фигуры равна единице.

На графике это будет выглядеть.

Из следующих материалов Вы узнаете, как найти интеграл от функции вида
какие формулы свертки и замены переменных при этом следует использовать. Также Вы овладеете методикой вычисления интегралов вида полином умноженый на синус функцию
где — полином от переменной. В таких случаях применяют интегрирования по частям, но об этом пойдет речь позже.
На этом знакомство с интегрированием синуса завершается. Интегралы от других тригонометрических и обратных к ним функций Вы найдете на страницах категории «Интегрирование функций«.

Понравилась статья? Поделить с друзьями:
  • Как найти иголку дома заговоренную
  • Как найти свою аккредитацию медсестре
  • Как найти своего любимого друга
  • Как найти мирового судью по адресу проживания
  • Как найти все свои почты на gmail