Как найти неотрицательные значения функции

Содержание

  1. Урок 2. Алгебра 9 класс
  2. Конспект урока «Свойства функций»
  3. Тестирование онлайн
  4. Определение. График
  5. Свойства линейной функции
  6. Особые случаи

При каких значениях x функция убывает,возрастает?
Это можно посмотреть по графику,заранее спасибо,но мне не нужно решение,чтобы просто отмазаться:)

Положительные значения (-1,3)

Отрицательные значения (-бесконечность,-1) , (3,+бесконечность)

Функция возрастает при х = (- бесконечность, 1)

Функция убывает при х = (3,- бесконечность )

Там, где график расположен выше оси абсцисс (горизонтальной оси), функция будет иметь положительные значения. Соответственно в тех местах, где он ниже этой оси, функция принимает отрицательные значения. Если точки находятся на оси абсцисс, то там функция будет равна нулю.

Так как у нас дана квадратичная функция, причем с ветвями, направленными вниз, то ее промежутки возрастания-убывания можно определить так: левее вершины функция возрастает, а правее ее — убывает.

Определени функции, убывающей (возрастающей) на промежутке:
Пусть x_<1>» alt=»x_<2>>x_<1>» align=’absm >. Тогда функция убывает (возрастает), если f(x_<1>) (f(x_<2>) f(x_<1>) (f(x_<2>) .

Урок 2. Алгебра 9 класс

Конспект урока «Свойства функций»

На прошлом уроке мы с вами изучили понятие функция. Изучили её график и научились находить область определения и область значений функции.

· промежутки знакопостоянства функции;

· промежутки монотонности функции.

Нулями функции называют такие значения аргумента, при которых функция равна нулю.

В данном случае функция задана графически и мы определили нули функции по графику. Так же нули функции можно находить по формуле, с помощью которой задана функция.

Решив уравнение, мы найдём те значения х, при которых функция равна нулю.

Стоит обратить внимание на то, что не каждая функция имеет нули.

График не пересекает ось икс ни в одной точке.

Промежутки знакопостоянства функции

Промежутки знакопостоянства функции — это такие промежутки из области определения, на которых данная функция принимает значения только одного знака, либо положительные, либо отрицательные.

Функция принимает положительные значения:

И отрицательные значения:

Запишите промежутки знакопостоянства функции:

Положительные и отрицательные значения функции:

Промежутки монотонности функции

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Промежутками монотонности называют такие промежутки из области определения, на которых функция либо возрастает, либо убывает.

Опишем свойства функции:

Графиком является прямая, поэтому для построения достаточно двух точек:

Найдём значения функции:

Областью определения и областью значений будет множество всех действительных чисел. Ведь х и у могут быть любыми числами.

Тестирование онлайн

Определение. График

Линейной функцией называется функция вида

где k, b — некоторые числа.

Функция вида называется прямой пропорциональностью, является частным случаем линейной зависимости.

Графиком линейной функции является прямая линия.

Для построения графика достаточно знать координаты двух точек.

Свойства линейной функции

1) Область определения функции — множество всех действительных чисел

2) Множеством значений функции является множество всех действительных чисел

3) Функция не имеет ни наибольшего, ни наименьшего значений.

4) Функция не является ни четной, ни нечетной (кроме особых случаев).

5) Функция непериодическая.

6) График функции пересекает ось Ох в точке , а ось Оу — в точке (0; b).

7) — является нулем функции.

8) Функция монотонно возрастает на области определения при k>0, монотонно убывает при k 0: функция принимает отрицательные значения на промежутке и положительные значения на промежутке

При k 0, то этот угол острый, если k <0— тупой, если k=0, то прямая совпадает с осью Ох.

Для построения графика функции — прямой линии, очевидно, достаточно двух точек.

Особые случаи

1) Если b=0, получим уравнение y=kx. Функция такого вида называется прямой пропорциональностью. Графиком является прямая, проходящая через начало координат.

2) Если k=0, получим уравнение y=b. Графиком является прямая, параллельная оси Ох, проходящая через точку (0; b).


Загрузить PDF


Загрузить PDF

Множество значений (область значений) функции — все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые вы получаете при подстановке всех возможных значений х. Все возможные значения х и называются областью определения функции. Выполните следующие действия для нахождения множества значений функции.

  1. Изображение с названием Find the Range of a Function in Math Step 1

    1

    Запишите функцию. Например: f(x) = 3x2 + 6x -2. Подставив x в уравнение, мы сможем найти значение y. Эта квадратичная функция, и ее график — парабола.

  2. Изображение с названием Find the Range of a Function in Math Step 2

    2

    Найдите вершину параболы. Если вам дана линейная функция или любая другая с переменной в нечетной степени, например, f(x) = 6x3+2x + 7, пропустите этот шаг. Но если вам дана квадратичная функция или любая другая с переменной х в четной степени, нужно найти вершину графика этой функции. Для этого используйте формулу х=-b/2a. В функции 3x2 + 6x -2 a = 3, b = 6, c = -2. Вычисляем: х = -6/(2*3)= -1.

    • Теперь подставьте х= -1 в функцию, чтобы найти у. f(-1) = 3*(-1)2 + 6*(-1) -2 = 3 — 6 -2 = -5.
    • Координаты вершины параболы (-1,-5). Нанесите ее на координатную плоскость. Точка лежит в третьем квадранте координатной плоскости.
  3. Изображение с названием Find the Range of a Function in Math Step 3

    3

    Найдите еще несколько точек на графике. Для этого подставьте в функцию несколько других значений х. Так как член x2 положительный, то парабола будет направлена вверх. Для подстраховки подставим в функцию несколько значений x, чтобы узнать, какие значения y они дают.

    • f(-2) = 3(-2)2 + 6(-2) -2 = -2. первая точка на параболе (-2, -2)
    • f(0) = 3(0)2 + 6(0) -2 = -2. Вторая точка на параболе (0,-2)
    • f(1) = 3(1)2 + 6(1) -2 = 7. Третья точка на параболе (1, 7).
  4. Изображение с названием Find the Range of a Function in Math Step 4

    4

    Найдите множество значений функции на графике. Найдите наименьшее значение у на графике. Эта вершина параболы, где у=-5. Так как парабола лежит выше вершины, то множество значений функции y ≥ -5.

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 5

    1

    Найдите минимум функции. Вычислите наименьшее значение у. Допустим, минимум функции у=-3. Это значение может становиться все меньше и меньше, вплоть до бесконечности, так что минимум функции не имеет заданной минимальной точки.

  2. Изображение с названием Find the Range of a Function in Math Step 6

    2

    Найдите максимум функции. Допустим, максимум функции у= 10. Как и в случае с минимумом, максимум функции не имеет заданной максимальной точки.

  3. Изображение с названием Find the Range of a Function in Math Step 7

    3

    Запишите множество значений. Таким образом, множество значений функции лежит в диапазоне от -3 до +10. Запишите множество значений функции как: -3 ≤ f(x) ≤ 10

    • Но, допустим, минимум функции у=-3, а ее максимум — бесконечность (график функции уходит бесконечно вверх). Тогда множество значений функции: f(x) ≥ -3.
    • С другой стороны, если максимум функции у=10, а минимум — бесконечность (график функции уходит бесконечно вниз), то множество значений функции: f(x) ≤ 10.

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 8

    1

    Запишите множество координат. Из множества координат можно определить его область значения и область определения. Допустим, дано множество координат: {(2, -3), (4, 6), (3, -1), (6, 6), (2, 3)}.[1]

  2. Изображение с названием Find the Range of a Function in Math Step 9

    2

    Перечислите значения у. Чтобы найти область значений множества, просто запишите все значения у: {-3, 6, -1, 6, 3}.[2]

  3. Изображение с названием Find the Range of a Function in Math Step 10

    3

    Удалите все повторяющиеся значения у. В нашем примере удалите «6»: {-3, -1, 6, 3}.[3]

  4. Изображение с названием Find the Range of a Function in Math Step 11

    4

    Запишите область значений в порядке возрастания. Областью значений множества координат {(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)} будет {-3, -1, 3, 6}.[4]

  5. Изображение с названием Find the Range of a Function in Math Step 12

    5

    Убедитесь, что множество координат дано для функции. Чтобы это было так, каждому одному значению х должно соответствовать одно значение у. Например, множество координат {(2, 3) (2, 4) (6, 9)} дано не для функции, потому что одному значению х=2 соответствуют два разных значения у: у=3 и у=4.[5]

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 13

    1

    Прочитайте задачу. «Ольга продает билеты в театр по 500 рублей за билет. Общая вырученная сумма за проданные билеты является функцией от количества проданных билетов. Какова область значений этой функции?»

  2. Изображение с названием Find the Range of a Function in Math Step 14

    2

    Запишите задачу как функцию. В этом случае М — общая вырученная сумма за проданные билеты, а t — количество проданных билетов. Так как один билет стоит 500 рублей, надо умножить количество проданных билетов на 500, чтобы найти вырученную сумму. Таким образом, функция может быть записана в виде M(t) = 500t.

    • Например, если она продаст 2 билета, нужно умножить 2 на 500 — в итоге получим 1000 рублей, вырученных за проданные билеты.
  3. Изображение с названием Find the Range of a Function in Math Step 15

    3

    Найдите область определения. Для нахождения области значений вы должны сначала найти область определения. Это все возможные значения t. В нашем примере Ольга может продать 0 или больше билетов, — она не может продать отрицательное число билетов. Поскольку мы не знаем количество мест в театре, можно предположить, что теоретически она может продать бесконечное число билетов. И она может продавать только целые билеты (она не может продать, например, 1/2 билета). Таким образом, область определения функции t = любое неотрицательное целое число.

  4. Изображение с названием Find the Range of a Function in Math Step 16

    4

    Найдите область значений. Это возможное количество денег, которые Ольга выручит от продажи билетов. Если вы знаете, что область определения функции — любое неотрицательное целое число, а функция имеет вид: М(t) = 5t, то вы можете найти вырученную сумму, подставив в функцию любое неотрицательное целое число (вместо t). Например, если она продаст 5 билетов, то М(5) = 5*500 = 2500 рублей. Если она продаст 100 билетов, то М(100) = 500 х 100 = 50000 рублей. Таким образом, область значений функции — любые неотрицательные целые числа, кратные пятистам.

    • Это означает, что любое неотрицательное целое число, которое делится на 500, является значением у (вырученная сумма) нашей функции.

    Реклама

Советы

  • В более сложных случаях лучше сначала чертить график, используя область определения, и только потом находить область значений.
  • Посмотрите, можете ли вы найти обратную функцию. Область определения обратной функции равна области значений исходной функции.
  • Проверьте, повторяется ли функция. Любая функция, которая повторяется вдоль оси x, будет иметь ту же область значений для всей функции. Например, область значений для f(x) = sin(x) будет составлять от -1 до 1.

Реклама

Об этой статье

Эту страницу просматривали 455 114 раз.

Была ли эта статья полезной?

Видеоурок 1: Множество значений функции-1

Видеоурок 2: Множество значений функции-2

Видеоурок 3: Множество значений функции-3

Лекция: Множество значений функции

Любая функция зависит от аргумента. В зависимости от области определение функции, она может принимать какие-то конкретные значения.

Рассмотрим область значения функции на конкретных примерах:

1. Функция:

 

Данная функция называется

гиперболой

.

Данная функция принимает следующие значения для  D(f) = (-∞; 0) и (0; ∞), Е(f) = (-∞; 0) и (0; ∞).

2. Функция:

Данная функция называется

параболой

.

Данная функция существует при всех «х», D(f) = (-∞; ∞) и принимает только неотрицательные значения Е(f) = [0; ∞).

3. Функция:

Данная функция называется

линейной

.

Данная функция существует при всех «х», D(f) = (-∞; ∞) и принимает значение Е(f) = (-∞; ∞).

4. Функция:

 

Данная функция имеет вид

ветви параболы

.

Данная функция существует при неотрицательных «х», D(f) = [0; ∞), а значит, может принимать так же неотрицательные значения D(f) = [0; ∞).

Как найти множество значений функции

4 методика:Поиск множества значений функции по формулеПоиск множества значений функции на графикеПоиск области значений множества координатПоиск области значений в задачах

Множество значений (область значений) функции – все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые вы получаете при подстановке всех возможных значений х. Все возможные значения х и называются областью определения функции. Выполните следующие действия для нахождения множества значений функции.

Шаги

Метод 1 из 4: Поиск множества значений функции по формуле


  1. 1
    Запишите функцию. Например: f(x) = 3×2 + 6x -2. Эта квадратичная функция, и ее график – парабола.[1]


  2. 2
    Найдите вершину параболы. Если вам дана линейная функция или любая другая с переменной в нечетной степени, например, f(x) = 6×3+2x + 7, пропустите этот шаг. Но если вам дана квадратичная функция или любая другая с переменной х в четной степени, вы должны найти вершину графика этой функции. Для этого используйте формулу х=-b/2a.В функции 3×2 + 6x -2 a = 3, b = 6, c = -2. Вычисляем: х = -6/(2*3)= -1.[2]

    • Теперь подставьте х= -1 в функцию, чтобы найти у. f(-1) = 3*(-1)2 + 6*(-1) -2 = 3 — 6 -2 = -5.
    • Координаты вершины параболы (-1,-5). Нанесите ее на координатную плоскость. Точка лежит в третьем квадранте координатной плоскости.

  3. 3
    Найдите еще несколько точек на графике. Для этого подставьте в функцию несколько других значений х. Так как член x2 положительный, то парабола будет направлена вверх.[3]

    • f(-2) = 3(-2)2 + 6(-2) -2 = -2. первая точка на параболе (-2, -2)
    • f(0) = 3(0)2 + 6(0) -2 = -2. Вторая точка на параболе (0,-2)
    • f(1) = 3(1)2 + 6(1) -2 = 7. Третья точка на параболе (1, 7).

  4. 4
    Найдите множество значений функции на графике. Найдите наименьшее значение у на графике. Эта вершина параболы, где у=-5. Так как парабола лежит выше вершины, то множество значений функции y ≥ -5.[4]

Метод 2 из 4: Поиск множества значений функции на графике


  1. 1
    Найдите минимум функции. Вычислите наименьшее значение у. Допустим, минимум функции у=-3.

  2. 2
    Найдите максимум функции. Допустим, максимум функции у= 10.

  3. 3
    Запишите множество значений. Таким образом, множество значений функции лежит в диапазоне от -3 до +10. Запишите множество значений функции как: -3 ≤ f(x) ≤ 10

    • Но, допустим, минимум функции у=-3, а ее максимум – бесконечность (график функции уходит бесконечно вверх). Тогда множество значений функции: f(x) ≥ -3.
    • С другой стороны, если максимум функции у=10, а минимум – бесконечность (график функции уходит бесконечно вниз), то множество значений функции: f(x) ≤ 10.

Метод 3 из 4: Поиск области значений множества координат


  1. 1
    Запишите множество координат. Из множества координат можно определить его область значения и область определения. Допустим, дано множество координат: {(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)}.[5]

  2. 2
    Перечислите значения у. Чтобы найти область значений множества, просто запишите все значения у: {-3, 6, -1, 6, 3}.[6]

  3. 3
    Удалите все повторяющиеся значения у. В нашем примере удалите » 6″: {-3, -1, 6, 3}.[7]

  4. 4
    Запишите область значений в порядке возрастания. Областью значений множества координат {(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)} будет {-3, -1, 3, 6}.[8]
  5. 5
    Убедитесь, что множество координат дано для функции. Чтобы это было так, каждому одному значению х должно соответствовать одно значение у. Например, множество координат {(2, 3) (2, 4) (6, 9)} дано не для функции, потому что одному значению х=2 соответствуют два разных значения у: у=3 и у=4.[9]

Метод 4 из 4: Поиск области значений в задачах


  1. 1
    Прочитайте задачу. «Ольга продает билеты в театр по 500 рублей за билет. Общая вырученная сумма за проданные билеты является функцией от количества проданных билетов. Какова область значений этой функции?

  2. 2
    Запишите задачу как функцию. В этом случае М — общая вырученная сумма за проданные билеты, а t – количество проданных билетов. Так как один билет стоит 500 рублей, надо умножить количество проданных билетов на 500, чтобы найти вырученную сумму. Таким образом, функция может быть записана в виде M(t) = 500t.

    • Например, если она продаст 2 билета, вы должны умножить 2 на 500 и получить 1000 рублей, вырученных за проданные билеты.

  3. 3
    Найдите область определения. Для нахождения области значений вы должны сначала найти область определения. Это все возможные значения t. В нашем примере Ольга может продать 0 или больше билетов, — она не может продать отрицательное число билетов. Поскольку мы не знаем количество мест в театре, можно предположить, что теоретически она может продать бесконечное число билетов. И она может продавать только целые билеты (она не может продать, например, 1/2 билета). Таким образом, область определения функции t = любое неотрицательное целое число.

  4. 4
    Найдите область значений. Это возможное количество денег, которые Ольга выручит от продажи билетов. Если вы знаете, что область определения функции — любое неотрицательное целое число, а функция имеет вид: М(t) = 5t, то вы можете найти вырученную сумму, подставив в функцию любое неотрицательное целое число (вместо t). Например, если она продаст 5 билетов, то М(5) = 5*500 = 2500 рублей. Если она продаст 100 билетов, то М(100) = 500 х 100 = 50000 рублей. Таким образом, область значений функции — любые неотрицательные целые числа, кратные пятистам.

    • Это означает, что любое неотрицательное целое число, которое делится на 500, является значением у (вырученная сумма) нашей функции.

Советы

  • Посмотрите, можете ли вы найти обратную функцию. Область определения обратной функции равен области значений исходной функции.

Область значений функции, ее свойства и примеры решения

В данном материалы мы подробно рассмотрим значение функции. Определим основные методы ее вычисления. Изучим множество значений функции.

Подробно, разберем на примерах, методы нахождения функции.  Прежде, чем начать изучение материала, охарактеризуем основное определение значению функции.

Определение

Функция — это определенное соответствие между двумя множествами, каждому элементу значению первого множества соответствует только один элемент второго множества.

Функции удобно изображать в виде графических прямых или кривых.

Понятие области определения функции

Функция задается тогда, когда любому значению, например x соответствует любое значение y. Независимой переменной называют значение х или по другому аргументом. Числовое значение y, как правило является зависимой переменной.

Данная зависимость между x и y в алгебре называют функциональной.  Записывают ее в виде функции y = f(x)

Другими словами, функция, это когда значения одной переменной зависят от значений другой переменной.

Далее можно сформулировать определение область функции. То есть, на какой промежуток действе функции распространяется.

Область функции можно выразить геометрически. Например, в виде графика. Где за основу берутся оси х и y.

Например:

Область значений функции y = z2 — это все значения, которые будут  больше либо равные нулю. В виде записи это выглядит следующим образом: f(у): у ≥ 0. Не все функции обозначаются одинаковыми формулировками, в основном D(f). Но тригонометрические функции обозначаются немного иначе. D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус. Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = x. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) =  [-1, 1]. Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Для указания множества чисел в определенном промежутке, необходимо выполнить следующие действия:

  • назначается левая и правая границы, два числа через запятую или точку с запятой;
  • ставится круглая или квадратная скобка; это зависит, входит ли граница в промежуток;
  • круглая скобка, ставится, в том случае, если граница не входит в заданный промежуток;
  • квадратная, в обратном случае.

Если у промежутка нет правой границы, записываем знак бесконечности или плюс бесконечности. Если отсутствует левая граница, записываем знак минус бесконечности.

В случае, если записывается множество, которое состоит из нескольких промежутков, ставится знак объединение. 

Рассмотрим на примерах

Все действительные числа от 1 до 9, можно выразить в следующей записи. [1;9]

Все положительные числовые значения, имеют следующий вид: (0; +);

Так как ноль, не является положительным число, то возле него ставится круглая скобка.

Область значения и определения функции

Область определения —  y(x) любые числовые значения аргумента x.

Чаще всего  область определения выражают как функцию D(y).

В математике существует две главных запрещенных (недопустимых) операции:

  • деление любого числового значения на ноль;
  • извлечение квадратного корня, из числа, которое имеет отрицательное значение.

При определении области функции, вступают в силу два основных ограничения:

  • В функции может быть деление на любую переменную. Таким образом, знаменатель, будет равен нулю и получим недопустимое значение. В таком случае, принято считать областью определения все действительные числа.
  • Функция имеет действие: как извлечение квадратного корня. Подкоренное выражение обязательно не должно быть отрицательным. Множество решений этого неравенства и будет областью определения функции.

Область определения постоянной функции

Постоянная функция записывается обычной формулой y = N, а именно f(x) = N, где N — любое действительное число. Иными словами, принято называть константа.

Определение

Постоянная функция — это функция, при которой всегда наблюдается одно и то же числовое значение, независимо от того какое числовое значения имеет аргумент.

Область определения степенной функции

Степенная функция выглядит следующим образом: y = xk, то есть, f(x) = xk, где x — переменный показатель в основании степени, a — любое число в степени.

Область определения степенной функции, всегда имеет непосредственную зависимость, от значений показателя степени.

Рассмотрим основные моменты:

Если k — неотрицательное  целое число, то областью определения  данной функции является  множество любых, обязательно, действительных чисел: (-∞, +∞).

Когда  степенной показатель, является не целое число, то функция имеет следующий вид  D(f) = [0, +∞).

Когда k — отрицательное целое число, то область определения функции представляет собой (-∞, 0) ∪ (0, +∞).

Для остальных действительных отрицательных, a область определения степенной функции — числовой промежуток (0, +∞).

Если k равно нулю, то функция определена для всех чисел, кроме нуля. Так как ноль нельзя возвести в степень, а любое другое число в нулевой степени равно 1.

То есть, при k = 0, y =x0 = 1, на заданной области  определения (-∞, 0) ∪ (0, +∞).

Область определения показательной функции

Показательная функция записывается как: y=kx

где значение x — показатель степени;

k — число, которое обязательно больше нуля и не равно единице.

Область определения показательной функции — это множество значений R.

Основные примеры показательных функций:

Основные примеры показательных функций

Область определения, для этих функций, записывается следующим образом: (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выражается как: y=log nk

Где значение n, имеет значение больше нуля и не менее единицы. Область определения логарифма и логарифмической функции — это  множество положительных значений и действительных чисел.

Рассмотрим на примере, характер решения задачи данной функции.

Пример №1

y=ln x, определить область определения натурального логарифма. D(y)=(0;+).

На заданном интервале, производная будет иметь положительное значение, и функция будет возрастать на всем промежутке.

[y=ln x=frac{1}{x}]

Определим односторонний предел при, стремлении аргумента к нулю и когда значение x стремится к бесконечности.

Область определения логарифмической функции 1

Из данного решения мы видим, что значения будут возрастать от минус бесконечности до плюс бесконечности.

Из этого следует, что множество всех действительных чисел – является областью значений функции натурального логарифма ln.

Ответ: множество всех действительных чисел, это и есть область значений функции ln.

Область определения и множество значений функций косинус, синус, тангенс, котангенс

Множество значений всех действительных чисел, будет являться областью определения функций синус и косинус, и записываться следующим образом.

Функции являются ограниченными, как сверху, так и снизу.

y = sin x и y = cos x

Промежуток их действия сводится к неравенству -1 ≤ y ≤ 1

Областью определения функции тангенс tg x, является выражение [x neq frac{pi}{2}+pi k, k in z].

Областью определения функции y = сtg x  является множество чисел [x neq frac{pi}{2}, k in z].

На нижеприведенных примерах подробно расписано решение задач, при определении области функции, при заданных промежутках значений.

Пример №1

Определить область значения функции sin x

Данный вид функции относится к категории периодической. Ее период равняется  

Определяем множество значений на следующем отрезке: (0;2π).

Область определения и множество значений функций 1

Пример №2

Необходимо определить область значения функции cos x.

область значения функции cos x

Наименьшее значение равно -1;

Минимальное значение косинуса равняется -1, потому что наименьшее значение х, на окружности стремится к этому значению и, следовательно, равняется -1.

Максимальное значение косинуса будет соответственно 1. Поскольку значение на окружности х имеет число 1.

Область значение, следовательно, будет от минус одно до плюс одного. [-1;1].

Применяем двойное неравенство и записывает следующее выражение:

[-1 leq cos 1 leq 1]

Область значения косинуса никогда не зависит от аргумента, только если сам аргумент выражен в виде сложного выражения. Где имеют место ограничения касающиеся области определения и области значения.

Область значения косинуса 1

Таким образом, минимальное  значение cos x, cos (15α), cos(5-11x) и так далее, будет однозначно равняться -1;

Самым максимальным значением cos x, cos(4φ), cos(5х+3) равняется 1.

Область значений функции y=cos x — также промежуток [-1;1].

Область значения квадрата косинуса, будет промежуток от нуля до единицы [0;1]. Потому что число в четной степени, является не отрицательным.

Область значения квадрата косинуса 1

Аналогичным образом находим область значений модуля косинуса — промежуток [0;1]

[0 leq(cos alpha) leq 1]

Пример №3

y = tgx на определенном интервале [left(-frac{pi}{2} ; frac{pi}{1}right)].

Решение:

Из правил алгебры, известно, что производная тангенса имеет положительное значение. Соответственно функция будет иметь возрастающую характеристику.

Далее необходимо определить поведение функции, в заданных пределах.

Поведение функции в заданных пределах

Выполнив решение, мы получаем рост значений от минус до плюс бесконечности. Решение будет сводится к следующему: множество решение заданной функции, будет множество всех действий функции.

Пример №4

[y=(arcsin x)=frac{1}{sqrt{1-x^{2}}}] на определенном интервале (-1;1).

Решение:

Для всех значений x производная будет положительной, в пределах от -1;1

Область определения и множество значений функций 1

Следовательно, область значения арксинуса равняется:

[ E=(arcsin x)=-frac{pi}{2} ; frac{pi}{2} ]

Пример №5

Разберем функцию 2sinx2-4, где значение х меньше либо равно значению 3. Необходимо вычислить область значений.

[frac{1}{x-3}] , где x > 3

Функция является для всех значений x определенной.

Пример 5

Наблюдаем недопустимый вид при значении аргумента − 3.

При приближении к данному аргументу функция стремится к [-2 sin frac{3}{2}-4]. При стремлении x к − 3 с правой стороны значения будут стремиться к − 1.

Пример 6

Наблюдается разрыв в точке 3. Когда функция стремится к данному разрыву ее числовые значения приближаются к -1. Минус бесконечность будет наблюдаться при стремлении к такой точке, но только с правой стороны.

Из этого следует вся область значений данной функции разбивается на три интервала. (-;−3], (−3 ;3], (3;+)(-;-3], (-3; 3], (3;+).

Первый интервал имеет функцию, следующего вида [y=2 sin frac{3}{2}-4]. Так как синус должен быть, меньше либо равен 1, или больше либо равен -1. Получаем следующие выражения:

[-1 leq sin frac{3}{2} leq 1] из этого следует [-2 leq 2 sin frac{3}{2} leq 2 Rightarrow-6 leq 2 sin frac{3}{2}-4 leq-2]

На промежутке -∞;-3, функция имеет следующие значения [-6;-2].

Функция y=-1, получается на полуинтервале (−3;3]. Следовательно, все значения будут сводится на данном интервале к одному числу, а именно -1.

Проанализируем второй промежуток (3;-+∞). Так как функция [y=frac{1}{x-3}] меньше нуля, она будет убывающей [y=frac{-1}{(x-) 2}<0]. Промежуток ее убывания будет от плюс бесконечности до нуля, однако значение ноль она не достигнет.

Пример 6

Если значение x больше значения 3, то большинство множеств функции будет в промежутке от нуля до +∞.

f(x)=-6;-2-1]∪(0;+∞).

Нет времени решать самому?

Наши эксперты помогут!

Таблица областей определения функций

Составим таблицу, где покажем взаимосвязь области определения функции и самой функции.

Таблица областей определения функций 1

Способы задания функции

Аналитический способ в виде формулы. К примеру:

y = x4-5x3+6x2 ;

y = x2-3x3+6x2 ;

y = x3-2x2+6x2.

Таблица из множеств значений (x; y).

Графическим способом. Два значения (x; y) изображаются на координатной плоскости

Методы определения области значения функции

  • определение значений сложных аргументов функции;
  • способ оценки;
  • использование свойств непрерывности и монотонности функции;
  • применение производной значений;
  • использование максимального и минимального значения функции;
  • построение графика;
  • вводные параметры;
  • обратная функция и ее особенности.

Функции подразделяются на две категории:

  • четные.
  • нечетные

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = xy и другие.

А области их определения изучаем, как свойства.

Определения области значения функции x

На примерах рассмотрим, как определить области значений функции.

Первоначально, необходимо определить значения непрерывной функции y=f(x).

Известно, что функция непрерывная и достигает своих максимальных max f(x) и минимальных min f(x) значений, на разных периодах. Из этого следует отрезок, где находятся значения исходной функции. Тогда решение состоит в нахождении точек максимума и минимума.

Пример №1

Необходимо вычислить область значений уравнения

y = x4-5x3+6x2 на отрезке [1;4 ][1;4].

Для решения задачи необходимо произвести следующие действия:

Пример 7

Следующим шагом будет определение значений функции в конечной и начальной точках.

Пример 8

Ответ: [left(frac{117-165 cdot sqrt{33}}{512} ; 32right)].

Пример №2

Необходимо вычислить область значений уравнения

y = x4-7x3+5x2 на отрезке [1;4] [1;4]

Для решения задачи необходимо произвести следующие действия:

Пример 9

Следующим шагом будет определение значений функции в конечной и начальной точках.

Пример 10

Ответ: [left(frac{231-165 cdot sqrt{33}}{512} ; 34right)].

Пример №3

На этом примере подробно рассмотрим, как вычисляются значения непрерывной функции y= f(x), в определенных промежутках.

Для этого, первоначально вычислим:

  • наименьшее и наибольшее значение;
  • определим промежуток возрастания и убывания функции;
  • односторонние пределы;
  • предел бесконечности.

Решение:

Для решения возьмем функцию [y=frac{1}{x^{2}-4}] и вычислим область значений на промежутке (-2;2).

Находим наименьшее и наибольшее значение функции на заданном отрезке.

наименьшее и наибольшее значение функции 2

Из данных вычислений видно, что максимальное значение равно 0, так как в этой точке происходит перемена знака функции и соответственно функция начинает убывать.

А именно: [y=frac{1}{0^{2}-4}=-frac{1}{4}];

[-frac{1}{4}] — будет являться наибольшим значение заданной функции.

Следующим шагом в нашем решении, будет выяснение направления функции. Когда x значение стремится к (-2) и (+2).

В алгебре иными словами эти значения называют односторонними пределами.

Решение выглядит следующим образом.

Пример 12

В конечном итоге мы получаем, что в пределах от -2 до 0, функции будут возрастать от -∞ до [-frac{1}{4}]. Если аргумент меняется, от 0 до то наоборот будет убывать к -∞.

Следовательно, необходимое множество значений будет на интервале -∞ до [-frac{1}{4}].

Ответ: [left(infty-frac{1}{4}right)].

Пример №4

Для решения возьмем функцию [y frac{1}{x^{2}-6}] и вычислим область значений на промежутке (-2;3).

Находим наименьшее и наибольшее значение функции на заданном отрезке.

Пример 13

Из данных вычислений видно, что максимальное значение равно 0, так как в этой точке происходит перемена знака функции и соответственно функция начинает убывать.

А именно: [y(0)=frac{1}{0^{2}-6}=-frac{1}{6}];

[-frac{1}{6}] — будет являться наибольшим значение заданной функции.

Следующим шагом в нашем решении, будет выяснение направления функции. Когда x значение стремится к (-2) и (+4).

В алгебре иными словами эти значения называют односторонними пределами.

Решение выглядит следующим образом.

Пример 14

В конечном итоге мы получаем, что в пределах от -2 до 0, функции будут возрастать от -∞ до [-frac{1}{6}]. Если аргумент меняется, от 0 до то наоборот будет убывать к -∞.

Следовательно, необходимое множество значений будет на интервале -∞ до[-frac{1}{6}].

Ответ: (-∞ [-frac{1}{6}]).

Область определения функции y

Пример №1

Данная функция имеет определенное значение, только при положительных значениях. D(y) = (0;+).

Производная будет иметь следующий вид: [y=(ln x)=frac{1}{x}].

Так как функция имеет положительное значение, то всем промежутке будет наблюдаться ее возрастание. От -∞ до +∞.

Поэтому область значения — это множество всех натуральных значений.

Пример №2

У функции [y=frac{9}{z^{2}-1}];

Если значение z имеет положительное значение, то функция будет считаться определенной.

Вычислим наибольшее и наименьшее значение, а также промежутки возрастания и убывания.

Пример 15

Если значение x будет больше, либо равным 0, то функция будет убывать. 

Если значение x будет меньше либо равным нулю, функция будет возрастать.

Затем рассмотрим поведение функции и ее значения на бесконечной прямой.

Пример 16

Вывод: если аргумент изменяется от -∞ до 0, тогда значение функции увеличиваются от 0 до 9. Когда значения аргумента меняются от 0 до+∞, значения функции будут уменьшаться от 9 до 0.

Пример №3

Определить область значений [y=frac{x}{x-2}];

По правилам математики. знаменатель не может равняться нулю. Поэтому: D(y)=(-∞;2)(+∞;2).

Определим множества на первом отрезке (-∞;2). На этом отрезке функция будет убывающей и значение отрицательным.

Пример 17

Функция асимметрично начнет приближаться к 1, когда аргумент будет изменяться к минус бесконечности.

Определим множества на втором отрезке (+∞;2). На этом отрезке функция будет также убывающей.

Пример 18

Вывод: E(y) = (∞;1)∪(1;∞).

Пример №4

Вычислить область значений функции [y=frac{2}{sqrt{2 x-1}}+3]

[y=2 cdot(2 x-1)^{-frac{1}{2}}+3]

Функцию и получаем следующий вид уравнения: [y=x^{-frac{1}{2}}];

Промежуток  значений будет следующим: (0;+∞);

[(2 x-1)^{-frac{1}{2}}>0]

В таком случае: [(2 x-1)^{-frac{1}{2}}>0 Rightarrow 2 cdot(2 x-1)^{-frac{1}{2}}>0 Rightarrow 2 cdot(2 x-1)^{-frac{1}{2}}+3>3]

Значит, E(y) = (3;+∞).

Пример №5

Определить область значений [y=frac{x}{x-2}];

По правилам математики. знаменатель не может равняться нулю. Поэтому: D(y)=(-∞;2)(+∞;2).

Определим множества на первом отрезке от минус бесконечности до двух (-∞;2). На этом отрезке функция будет убывающей и значение отрицательным.

Пример 19

Функция ассиметрично начнет приближаться к 1, когда аргумент будет изменяться к минус бесконечности.

Определим множества на втором отрезке (+∞;2). На этом отрезке функция будет также убывающей

Пример 20

Вывод решения: E(y) = (+∞;1)∪(1;+∞).

Подводя итоги рассмотренного изученного материала стоит отметить следующие моменты:

Для вычисления и определения области значения функции, нужно обязательно знать основные правила математики.

Всегда помнить, что на ноль делить, ни в коем случае нельзя, это недопустимое действие. Число, из которого необходимо вычислить корень числа, также должно быть положительным.

Все основные законы определения области значения, очень удобно сводить в таблицу и пользоваться ею в процессе обучения.

Понравилась статья? Поделить с друзьями:
  • Можно найти как бюджетные
  • Как исправить ошибку на листе а4 от ручки
  • Как в диабло 2 найти зеленые вещи
  • Как исправить синтаксическую ошибку на флешки
  • Фото клитора как его найти