Как найти несколько вероятностей

Полезная страница? Сохрани или расскажи друзьям

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A subset B$.

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

$$P(A+B)=P(A)+P(B).$$

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

$$Pleft(sum_{i=1}^{n}A_i right)=sum_{i=1}^{n} P(A_i).$$

Если случайные события $A_1, A_2, …, A_n$ образуют полную группу несовместных событий, то имеет место равенство
$P(A_1)+P(A_2)+…+P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

$$P(A+B)=P(A)+P(B)-P(Acdot B).$$

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

$$P(Acdot B)=P(A)cdot P(B).$$

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.

Примеры решений задач с событиями

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

— вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

— черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда — промах первого, ;

— промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А+В – хотя бы одно попадание,

.

г) – одно попадание,

.

См. обучающую статью «решение задач о стрелках»

Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй — 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.

Решение.

Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.

Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):

$$
P(X)=Pleft(overline{A_1} cdot overline{A_2} cdot overline{A_3}right)= q_1 cdot q_2 cdot q_3 =
0,6cdot 0,4 cdot 0,7 = 0,168.
$$

Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):

$$
P(Z)= \ = P(A_1) cdot Pleft(overline{A_2} right) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1}right) cdot P(A_2) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1} right) cdot Pleft(overline{A_2} right) cdot P(A_3)=\
= p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3 =\ =
0,4cdot 0,4 cdot 0,7+0,6cdot 0,6 cdot 0,7+0,6cdot 0,4 cdot 0,3 = 0,436.
$$

См. обучающую статью «решение задач о станках»

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2. .

3.

Вероятность наступления хотя бы одного события

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?

Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, …, A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

$$
P(A)=1-Pleft(overline{A_1}right)cdot Pleft(overline{A_2}right)cdot … cdot Pleft(overline{A_n}right)= 1-q_1 cdot q_2 cdot … cdot q_n.
$$

Если события $A_1, A_2, …, A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:

$$
P(A)=1-(1-p)^n=1-q^n.
$$

Примеры решений на эту тему

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События «машина работает» и «машина не работает» (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие «при n выстрелах стрелок попадает в цель хотя бы один раз». События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

См. обучающую статью «решение задач с хотя бы один…»

На чтение 16 мин Просмотров 127к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И  как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

На этой странице вы узнаете

  • Как кот может быть одновременно жив и мертв? 
  • Можно ли всегда выигрывать спор с монеткой? 
  • Если рандомно ответить на вопрос теста, какой шанс угадать ответ?

Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.

Вероятность

Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…

Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться. 

Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов. 

Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат. 

Как кот может быть одновременно жив и мертв? 

Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом. 

По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив. 

Пока ящик закрыт, мы не знаем результат эксперимента — такой эксперимент в математике можно назвать случайным.  Тем временем кот находится одновременно в двух состояниях: он и жив, и мертв. 

Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:

  • выпадет орел;
  • выпадет решка. 

Эти два события образуют множество элементарных событий. 

Множество элементарных событий — множество всех возможных результатов случайного эксперимента. 

В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации. 

Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран. 

Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности. 

Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 

Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу. 

(P = frac{m}{n})

Вероятность можно обозначить, как P(x), где х — некоторое событие. 

Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.

Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.

Можно ли всегда выигрывать спор с монеткой?

Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна (P = frac{2}{2} = 1), то есть мы точно выиграем спор. 

Однако вероятность не так проста, и даже здесь подготовила ловушку. 

В редких случаях есть и третий вариант событий — монетка встанет на ребро. Вероятность такого события составляет  (frac{1}{6000}). То есть за миллион бросков это может случиться 150 раз или 1 раз в 2 дня, если подкидывать монету каждый день по 8 часов в течение года. Чтобы монета встала на ребро два раза подряд, придется подбрасывать ее в том же темпе около 35 лет.

Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%. 

Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?

Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна 
(frac{49}{140} = 0,35)

Выразим в процентах:  
0,35 * 100% = 35%

Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ. 

Ответ: 0,35

Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой. 

(P = frac{m}{n} * 100%)

Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.

Равновозможные и противоположные события

Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными. 

Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие. 

Вероятности появления событий равны. 

Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий. 

Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них. 

В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий. 

Мы подбросили монету и выпал орел. Следовательно, не выпала решка. 

А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными. 

Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 

Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как (overline{A}). 

Заметим, что вероятность события A равняется 12, как и вероятность события (overline{A}). Чему равна их сумма?

)frac{1}{2} + frac{1}{2} = 1) 

Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1. 

(P(A) + P(overline{A}) = 1)

Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить. 

Объединение и пересечение событий 

Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим? 

Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий. 

В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег. 

Объединение событий обозначается знаком (cup). Объединение событий А и В можно записать как (A cup B). 

Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?

Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям. 

Пересечение событий обозначается знаком (cap). Пересечение событий А и В можно записать как (A cap B). 

Несовместные и совместные события

Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.

Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно. 

Несовместные события — такие события, появление одного из которых исключает появление другого. 

Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?

Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности. 

Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.

Сформулируем определение суммы вероятностей двух несовместных событий. 

Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:

(P(A cup B) = P(A) + P(B))

Если существуют несовместные события, то существуют и совместные. 

Совместные события — события, наступление одного из которых не исключает наступления другого. 

В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят?  Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет. 

Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”. 

Найдем вероятность события А: (frac{1}{6}). 

Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна (frac{3}{6} = frac{1}{2})

Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А. 

Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги. 

А нужно получить вот такую картину:

Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок. 

Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:

(P(A cup B) = P(A) + P(B) — P(A cap B))

В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике. 

Независимые и зависимые события 

Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем. 

Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна (frac{95}{100} = 0,95). 

Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?

Ответим на вопрос: зависят ли булочки друг от друга? 

Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми. 

Независимые события — такие события, появление одного из которых не зависит от появления другого события. 

Определим вероятность независимых событий. 

Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95. 

А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:

(P(A cap B) = P(A) * P(B))

Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025. 

В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”. 

Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой. 

Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого. 

Но если автоматы стоят  рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого. 

Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?

Нужная последовательность может быть в двух случаях:

  • сначала вытащат фиолетовый кубик и потом снова фиолетовый;
  • сначала вытащат оранжевый кубик, а потом фиолетовый. 

Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна (frac{5}{7}). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые. 

Вероятность вытащить во второй раз фиолетовый кубик равна (frac{5}{7} * frac{4}{6} = frac{20}{42} = frac{10}{21}). 

Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна (frac{2}{7}). В мешке останется шесть кубиков, пять из которых будут фиолетовыми. 

Вероятность вытащить во второй раз фиолетовый кубик будет уже равна (frac{2}{7} * frac{5}{6} = frac{10}{42} = frac{5}{21}). 

В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы. 

Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.

Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.   

Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность. 

Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:

(P(A cap B) = P(A) * P(B | A))

Формула Бернулли

Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?

Пусть p — вероятность, что выпадет цифра 5. Тогда (p = frac{1}{6}). 

Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. (q = frac{5}{6}). 

Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k. 

Чтобы решить задачу, нужно воспользоваться формулой Бернулли. 

(P_n(k) = C_n^k * p^k * q^{n — k}) 

Множитель (C_n^k) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики». 

Решим задачу, подставив значения в формулу:

(P_8(3) = C_8^3 * (frac{1}{6})^3 * (frac{5}{6})^5 = frac{8!}{5!3!} * frac{1}{6^3} * frac{5^5}{6^5} = frac{6 * 7 * 8}{1 * 2 * 3} * frac{5^5}{6^8} approx 0,1) 

Фактчек

  • Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 
  • События могут быть противоположными. Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 
  • События можно разделить на совместные и несовместные. Несовместные события — такие события, появление одного из которых исключает появление другого. Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей: P(A (cup) B) = P(A) + P(B). Совместные события — события, наступление одного из которых не исключает наступления другого. Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения: P(A cup B) = P(A) + P(B) — P(A cap B).
  • События также можно разделить на независимые и зависимые. Независимые события — такие события, появление одного из которых не зависит от появления другого события. Вероятность независимых событий можно найти по формуле P(A cap B) = P(A) * P(B). Зависимые события — это события, появление одного из которых зависит от появления другого. Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило. P(A cap B) = P(A) * P(B | A). 
  • Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Проверь себя

Задание 1. 
Какие события являются несовместными?

  1. Подбрасывание монетки.
  2. Брак батареек в одной упаковке.
  3. “Миша идет” и “Миша стоит”.
  4. Случайное вытаскивание конфет из вазы. 

Задание 2. 
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?

  1. 0,17
  2. 1
  3. 0,83
  4. 1,17 

Задание 3. 
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?

  1. 1
  2. 0,216
  3. 0,45
  4. 1,5 

Задание 4. 
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут. 

  1. 0,3
  2. 0,001
  3. 2,7
  4. 0,729 

Задание 5. 
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой. 

  1. 0,77
  2. 0,135
  3. 0,23
  4. -0,23

Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1

Сложение и умножение вероятностей

  1. Сложение вероятностей несовместных событий
  2. Вероятность противоположного события
  3. Умножение вероятностей независимых событий
  4. Вероятность появления хотя бы одного события
  5. Примеры

п.1. Сложение вероятностей несовместных событий

События называют несовместными, если они не могут произойти одновременно в результате одного опыта.

Например:
1) Нельзя одновременно A = «получить 5» и B = «получить 2» на экзамене. События A и B – несовместны.
2) Нельзя одновременно C = «достать туз» и D = «достать шестерку» из колоды карт. События C и D – несовместны.

Вероятность появления одного из двух несовместных событий A или B равна сумме вероятностей этих событий: $$ mathrm{ P(Avee B)=P(A) + P(B) } $$

Если обобщить на любое количество событий:

Вероятность появления нескольких несовместных событий A1 или A2 или …Ak равна сумме вероятностей этих событий: $$ mathrm{ P(A_1vee A_2vee … vee A_k)=P(A_1) + P(A_2) + … + P(A_k) } $$

Например:
Стрелок может попасть в «10» с вероятностью P(10) = 0,3, в «9» – с вероятностью P(9) = 0,2. Значит, попасть в «10 или 9» он может с вероятностью:

P(«10 или 9») = 0,3 + 0,2 = 0,5

п.2. Вероятность противоположного события

Пространство элементарных событий образует полную группу событий.

Сумма вероятностей всех событий, образующих полную группу, равна единице. $$ mathrm{ Omega={A_1, A_2, …, A_k}, P(A_1) + P(A_2) + … + P(A_k) = 1 } $$

Например:
При бросании кубика Ω = {1; 2; … ; 6} – полная группа событий.
Вероятности выпадения каждой грани: (mathrm{p_1=p_2=…=p_6=frac16})
Сумма всех вероятностей: (mathrm{p_1+p_2+…+p_6=6cdot frac16=1})

Два случайных события A и B называют противоположными, если они несовместны и образуют полную группу событий: $$ mathrm{ Omega=left{A;Bright}, B=overline{A}, } $$ Сумма вероятностей противоположных событий равна единице. $$ mathrm{ P(A) + P(B) = P(A) + P(overline{A}) = 1 } $$

Например:
Вероятность попадания стрелка в мишень p = 0,8.
Противоположное событие: стрелок не попадёт в мишень. Его вероятность:
q = 1 – p = 0,2.

п.3. Умножение вероятностей независимых событий

Два случайных события A и B называют независимыми, если наступление одного из них не изменяет вероятность наступления другого.
Вероятность совместного появления двух независимых событий A и B равна произведению вероятностей этих событий: $$ mathrm{ P(A wedge B) = P(A) cdot P(B) } $$

Если обобщить на любое количество событий:

Вероятность совместного появления нескольких независимых событий A1 и A2 и … Ak равна произведению вероятностей этих событий: $$ mathrm{ P(A_1wedge A_2wedge …wedge A_k)=P(A_1)cdot P(A_2)cdot … cdot P(A_k) } $$

Например:
Вероятность попадания стрелка в мишень p = 0,8.
Стрелок делает три выстрела подряд.
1) Какова вероятность, что он попал все три раза?
Каждый выстрел является независимым событием, поэтому вероятность трёх удачных выстрелов подряд:

P3 = P(+, +, +) = p · p · p = 0,83 = 0,512

2) Какова вероятность, что он не попал ни разу?
Вероятность промаха равна q = 1 – p = 0,2.
Вероятность трёх промахов подряд:

P0 = P(–, –, –) = q · q · q = 0,23 = 0,008

3) Какова вероятность, что он попал только один раз?
Стрелок мог попасть при первом выстреле, а затем два раза промахнуться, или при втором выстреле (промахнуться на первом и третьем), или при третьем (промахнувшись два раза поначалу). Сложение и умножение вероятностей даёт итоговую вероятность одного попадания:

P1 = P(+,–,–) + P(–,+,–) + P(–,–,+) =
p · q · q + q · p · q + q · q · p = 3pq2 = 3 · 0,8 · 0,22 = 0,096

4) Какова вероятность, что он промахнулся один раз?
Аналогичные предыдущему пункту рассуждения приводят к такому выражению для вероятности двух попаданий (одного промаха):

P2 = P(–,+,+) + P(+,–,+) + P(+,+,–) =
q · p · p + p · q · p + p · p · q = 3p2q = 3 · 0,82 · 0,2 = 0,384

Мы получили следующий закон распределения для возможного количества попаданий из трёх выстрелов:

Количество попаданий, X

0

1

2

3

Вероятность, Px

0,008

0,096

0,384

0,512

X = {0; 1; 2; 3} образует полную группу событий. Сумма всех вероятностей:

P0 +P1 + P2 + P3 = 0,008 + 0,096 + 0,384 + 0,512 = 1

п.4. Вероятность появления хотя бы одного события

Вероятность появления хотя бы одного из событий A1, A2, …, Ak, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий: $$ mathrm{ P(A)=1-q_1cdot q_2cdot … cdot q_{k}, q_{i}=1-p_{i} } $$

Например:
Студент сдаёт два экзамена.
Вероятность сдать первый экзамен равна p1 = 0,7 второй – p2 = 0,6.
Тогда вероятность сдать хотя бы один экзамен: P = 1 – q1q2 = 1 – 0,3 · 0,4 = 0,88.

п.5. Примеры

Пример 1. Подбрасывают четыре игральных кубика. Какова вероятность, что на каждом из них выпадет нечётное число очков?

Для кубика Ω = {1; 2; 3; 4; 5; 6} – пространство элементарных событий.
Выпадение нечётного числа A = {1; 3; 5}. Вероятность выпадения нечётного числа для одного кубика: (mathrm{p=frac{k}{n}=frac36=frac12}).
Результаты подбрасывания 4-х кубиков являются независимыми. Вероятность, что на каждом выпадет нечётное число: $$ mathrm{ P=pcdot pcdot pcdot p=p^4=frac{1}{2^4}=frac{1}{16} } $$ Ответ: (frac{1}{16}).

Пример 2. На полигоне испытываются три ракеты.
Вероятность успешного испытания для каждой из ракет: p1 = 0,8, p2 = 0,75, p3 = 0,6.
Какова вероятность, что хотя бы одна ракета пройдёт испытания успешно?

Найдём вероятность того, что ни одна из ракет не пройдёт испытаний:

q1 = 1 – p1 = 0,2,   q2 = 1 – p2 = 0,25,   q3 = 1 – p3 = 0,4
q1 · q2 · q3 = 0,2 · 0,25 · 0,4 = 0,02

Тогда, искомая вероятность (противоположное событие):

P = 1 – q1 · q2 · q3 = 1 – 0,02 = 0,98

Ответ: 0,98.
Мораль: инвестору нужно показывать сразу несколько сырых проектов.

Пример 3. В системе пожарной сигнализации установлены два независимых датчика. Вероятность срабатывания каждого из датчиков при пожаре: p1 = 0,6; p2 = 0,7. Найдите вероятность того, что при пожаре:
1) сработает ровно один датчик;
2) сработает хотя бы один датчик.

Вероятности отказов: q1 = 1 – p1 = 0,4; q2 = 1 – p2 = 0,3.
1) Событие «сработает ровно один датчик» является суммой двух событий «первый сработал, второй – отказал» или «первый отказал, второй – сработал». Вероятность:

P1 = p1q2 + q1p2 = 0,6 · 0,3 + 0,4 · 0,7 = 0,46

2) Найдем вероятность отказа обоих датчиков:

P0 = q1q2 = 0,4 · 0,3 = 0,12

Событие «сработает хотя бы один датчик» является противоположным отказу обоих датчиков. Вероятность:

P1 ∨ 2 = 1 – P0 = 1 – 0,12 = 0,88

Ответ: 1) 0,46; 2) 0,88.

Пример 4. У админа в ящике 11 плат, из которых 3 – бракованные.
Наугад берётся 2 платы. Какова вероятность того, что хотя бы одна из них – рабочая?

Найдём вероятность того, что обе выбранные платы – бракованные.
Выбрать 2 платы из 3 бракованных можно (mathrm{C_3^2=C_3^1=3}) способами.
Выбрать 2 платы из общей совокупности можно (mathrm{C_{11}^2=frac{11cdot 10}{1cdot 2}=55}) способами.
Вероятность взять обе бракованные платы из ящика: (mathrm{P_{2 text{бр}}=frac{C_3^2}{C_2^{11}}=frac{3}{55}})
Значит, вероятность того, что хотя бы одна плата не будет бракованной (противоположное событие):
(mathrm{P=1-P_{2 text{бр}}=1-frac{3}{55}=frac{52}{55}}).
Ответ: (mathrm{frac{52}{55}}).

Пример 5*. Парадокс дней рождения
В классе учится k человек. Исследуйте вероятность того, что хотя бы у двух одноклассников дни рождения совпадают.

Считаем, что в году n = 365 дней.
Пусть день рождения одного из учеников известен (один день в году – «занят»).
Тогда вероятность того, что день рождения второго ученика не совпадает с днём рождения первого: (mathrm{q_2=1-frac{1}{365}}) («заняты» два дня).
Вероятность того, что день рождения третьего ученика не совпадает с днями рождения первых двух: (mathrm{q_3=1-frac{2}{365}}) («заняты» три дня). И т. д.
Для всех k учеников вероятность того, что все дни рождения разные: begin{gather*} mathrm{ widetilde{p}(k)=q_2cdot q_3cdot … cdot q_{k}=left(1-frac{1}{365}right)left(1-frac{2}{365}right)…left(1-frac{k-1}{365}right)= }\ mathrm{ =frac{364cdot 363cdot … cdot(365-k+1)}{365^{k-1}}= frac{365cdot 364cdot 363cdot … cdot(365-k+1)}{365^{k}}= frac{365!}{365^{k}(365-k)!} } end{gather*} Значит, вероятность того, что хотя бы у двух одноклассников дни рождения совпадают: begin{gather*} mathrm{ p(k)=1-widetilde{p}(k)=1-frac{365!}{365^{k}(365-k)!} } end{gather*}
Пример 5
Таким образом, в классе из 30 человек вероятность совпадения дней рождения равна 70,63%. А в группе из 50 человек она достигает 97,04%.

Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей

Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.

Теоремы сложения вероятностей

Найдем вероятность суммы событий A и B (в предположении их совместности либо несовместности).

Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:

P{A+B+ldots+N}=P{A}+P{B}+ldots+P{N}.

Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го — 0,04; 46-го и большего — 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.

Решение. Искомое событие D произойдет, если будет продана пара обуви 44-го размера (событие A) или 45-го (событие B), или не меньше 46-го (событие C), т. е. событие D есть сумма событий A,B,C. События A, B и C несовместны. Поэтому согласно теореме о сумме вероятностей получаем

P{D}=P{A+B+C}=P{A}+P{B}+P{C}=0,!12+0,!04+0,!01 =0,!17.

Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.

Решение. События «очередной будет продана пара обуви меньше 44-го размера» и «будет продана пара обуви размера не меньше 44-го» противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события

P{overline{D}}=1-P{D}=1-0,!17=0,!83.

поскольку P{D}=0,!17, как это было найдено в примере 1.

Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой «Electra Ltd» оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно A,B,C. Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим P{A+B+C}=0,!7+0,!7+0,!7=2,!1. Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события A,B,C являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.

Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).

Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:

P{A+B}=P{A}+P{B}-P{AB}.


Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Пример 3. Монета брошена два раза. Вероятность появления «герба» в первом испытании (событие A) не зависит от появления или не появления «герба» во втором испытании (событие B). В свою очередь, вероятность появления «герба» во втором испытании не зависит от результата первого испытания. Таким образом, события A и B независимые.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается P{B|A}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости — в виде P{B|A}ne{P{B}}. Рассмотрим пример вычисления условной вероятности события.


Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Решение. Обозначим A извлечение изношенного резца в первом случае, а overline{A} — извлечение нового. Тогда P{A}=frac{2}{5},~P{overline{A}}=1-frac{2}{5}=frac{3}{5}. Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.

Обозначим B событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:

P{B|A}=frac{1}{4},~~~P{B|overline{A}}=frac{2}{4}=frac{1}{2}.

Следовательно, вероятность события B зависит от того, произошло или нет событие A.


Формулы умножения вероятностей

Пусть события A и B независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий A и B.

Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

P{AB}=P{A}cdot P{B}.

Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P{A_1A_2ldots{A_n}}=P{A_1}P{A_2}ldots{P{A_n}}.


Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие A), P{A}=frac{8}{10}=frac{4}{5}. Вероятность того, что из второго ящика взята стандартная деталь (событие B), P{B}=frac{7}{10}. Вероятность того, что из третьего ящика взята стандартная деталь (событие C), P{C}=frac{9}{10}. Так как события A, B и C независимые в совокупности, то искомая вероятность (по теореме умножения)

P{ABC}=P{A}P{B}P{C}=frac{4}{5}frac{7}{10}frac{9}{10}=0,!504.

Пусть события A и B зависимые, причем вероятности P{A} и P{B|A} известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие A, и событие B.

Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

P{AB}=P{A}cdot P{B|A};qquad P{AB}=P{B}cdot P{A|B}

Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.


Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие A), при втором — черный (событие B) и при третьем — синий (событие C).

Решение. Вероятность появления белого шара при первом испытании P{A}=frac{5}{12}. Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность P{B|A}=frac{4}{11}. Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором — черный, P{C|AB}=frac{3}{10}. Искомая вероятность

P{ABC}=P{A}P{B|A}P{C|AB}=frac{5}{12}frac{4}{11}frac{3}{10}.


Формула полной вероятности

Теорема 2.5. Если событие A наступает только при условии появления одного из событий B_1,B_2,ldots{B_n}, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из событий B_1,B_2,ldots{B_n} на соответствующую условную вероятность события B_1,B_2,ldots{B_n}:

P{A}=sumlimits_{i=1}^{n}P{B_i}P{A|B_i}.

(2.1)

При этом события B_i,~i=1,ldots,n называются гипотезами, а вероятности P{B_i} — априорными. Эта формула называется формулой полной вероятности.

Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором — 30%, на третьем — 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.

Решение. Обозначим A событие, означающее годность собранного узла; B_1, B_2 и B_3 — события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда

P{B_1}=0,!5;~~~~~P{B_2}=0,!3;~~~~~P{B_3}=0,!2;
P{A|B_1}=0,!98;~~~P{A|B_2}=0,!95;~~~P{A|B_3}=0,!8.

Искомая вероятность

begin{gathered}P{A}=P{B_1}P{A|B_1}+P{B_2}P{A|B_2}+P{B_3}P{A|B_3}=hfill\=0,!5cdot0,!98+0,!3cdot0,!95+0,!2cdot0,!8=0,!935.end{gathered}


Формула Байеса

Эта формула применяется при решении практических задач, когда событие A, появляющееся совместно с каким-либо из событий B_1,B_2,ldots{B_n}, образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез B_1,B_2,ldots{B_n}. Априорные (до опыта) вероятности P{B_1},P{B_2},ldots{P{B_n}} известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности P{B_1|A},P{B_2|A},ldots{P{B_n|A}}. Для гипотезы B_j формула Байеса выглядит так:

P{B_j|A}=frac{P{B_j} P{A|B_j}}{P{A}}.

Раскрывая в этом равенстве P{A} по формуле полной вероятности (2.1), получаем

P{B_j|A}=dfrac{P{B_j}P{A|B_j}}{sumlimits_{i=1}^{n}P{B_i}P{A|B_i}}.


Пример 8. При условиях примера 7 рассчитать вероятности того, что в сборку попала деталь, изготовленная соответственно на первом, втором и третьем станке, если узел, сходящий с конвейера, качественный.

Решение. Рассчитаем условные вероятности по формуле Байеса:

для первого станка

P{B_1|A}=dfrac{P{B_1}P{A|B_1}}{P{A}}=frac{0,!5cdot0,!98}{0,!935}approx0,!525;

для второго станка

P{B_2|A}=dfrac{P{B_2}P{A|B_2}}{P{A}}=frac{0,!3cdot0,!95}{0,!935}approx0,!304;

для третьего станка

P{B_3|A}=dfrac{P{B_3}P{A|B_3}}{P{A}}=frac{0,!2cdot0,!8}{0,!935}approx0,!171.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как найти область определения подкоренного выражения
  • Как найти длину развертки дуги
  • Как найти пассивную конструкцию в английском
  • Как составить ментальную карту по английскому языку
  • Как брекеты исправили кривизну зубов