Как найти независимый узел

Определение числа независимых узлов и контуров

Для
определения числа независимых узлов и
независимых контуров электрической
цепи и, следовательно, числа независимых
уравнений, составляемых на основании
законов Кирхгофа, воспользуемся тем
обстоятельством, что для линейной
независимости системы уравнений
достаточно, чтобы каждое из входящих в
систему уравнений отличалось от остальных
хотя бы одной переменной.

Общее
число линейно независимых уравнений,
которые можно составить для произвольной
цепи на основании законов Кирхгофа,
оказывается равным числу ветвей
рассматриваемой цепи:

m+n=(q-1)+(p+q-1)=p.

1.5. Уравнение электрического равновесия цепей Основные задачи теории цепей

Любую электрическую цепь можно
рассматривать как систему с одним или
несколькими входами и одним или
несколькими выходами.

Рис. 1.34

В зависимости от исходных данных и
конечной цели исследования в теории
цепей различают две группы задач: задачи
анализа и задачи синтеза.

Задача анализа цепи состоит в
определении реакции цепи s(t)
на заданное внешнее воздействие x(t).

Задача синтеза цепи заключается в
нахождении цепи по заданной реакции
цепи s(t) на некоторое
внешнее воздействие x(t).

В частном случае задача анализа может
сводиться к нахождению соотношений
между реакциями цепи на отдельных
выходах sj(t) и
воздействиями xi(t),
приложенным к определенным входам.
Такие соотношения называются
характеристическими (системными
функциями
, функциями) цепи. В
зависимости от того, какая величина —
частота или время — является аргументом
в выражениях, описывающих соотношения
между откликом и внешним воздействием,
различают частотные и временные
характеристики
цепи.

Понятие об уравнениях электрического равновесия

Математически задача анализа электрической
цепи сводится к составлению и решению
системы линейно независимых уравнений,
в которых в качестве неизвестных
фигурируют токи и напряжения ветвей
исследуемой цепи. Уравнения, решение
которых, позволяет определить токи и
напряжения ветвей электрической цепи,
называются уравнениями электрического
равновесия цепи
. Число уравнений
электрического равновесия должно быть
равно числу неизвестных токов и
напряжений.

На практике для анализа цепей используют
различные методы составления уравнений
электрического равновесия, в частности
методы токов ветвей, напряжений ветвей,
контурных токов, узловых напряжений,
переменных состояния.

Рис. 1.37

Рис. 1.35

Рис. 1.36

Рис. 1.38

Рис. 1.39

Рис. 1.40

При анализе цепей из рассмотрения
исключаются случаи, когда использование
топологических уравнений приводит к
результатам, противоречащим компонентным
уравнениям. Задача анализа цепи в этом
случае считается поставленной некорректно.
Ранее отмечались два случая возникновения
подобных противоречий: применение
источника напряжения в режиме короткого
замыкания и источника тока в режиме
холостого хода. Аналогичные противоречия
возникают при параллельном включении
источников напряжения с различными
задающими напряжениями, при последовательном
включении источников тока с различными
задающими токами, при использовании
контуров, составленных только из
источников напряжений, и сечений,
образованных только из источников тока,
при подключении источника постоянного
напряжения к индуктивности или источника
постоянного тока к емкости. Все задачи,
рассмотренные на рисунках, становятся
корректными при учете внутренних
сопротивлений источников энергии.

Как было показано ранее, топологические
уравнения являются алгебраическими, а
компонентные уравнения идеализированных
пассивных элементов могут быть как
алгебраическими, так и дифференциальными
или интегральными. Вследствие этого
уравнение электрического равновесия
цепи, составленные любым методом,
представляют собой в общем случае
систему интегродифференциальных
уравнений.

Пример. Составим основную систему
уравнений электрического равновесия
цепи.


Рис. 1.41

Для этой цепи p=6, q=4, pит=1,
p
ин=1.

Общее число неизвестных токов и напряжений
ветвей 2p-pит-pин=10.
Используя законы Кирхгофа, можно
составить m=q-1=3 уравнений балланса
токов:

-i1+i2=0;
-i
2+i3+i4=0;
-i
4+i5-i6=0
и n=p-q+1=3 уравнений баланса напряжений:
U2+U3=e(t);
-U
3+U4-U6=0;
U
5+U6=0, где
i5=I, U5=-UJ
— ток и напряжение ветви с источником
тока.

В сочетании с p-pит-pин=4
компонентными уравнениями невырожденных
ветвей


;
;
;

получаем систему из 10 линейно независимых
уравнений для определения 10 неизвестных
токов и напряжений: i1,
U2, i2,
U3, i3,
U4, i4,
U5, U6,
i5, i6.

Система уравнений электрического
равновесия цепи, составленная любым
методом, может быть путем дифференцирования
и последовательного исключений
неизвестных сведена к одному
дифференциальному уравнению для любого
из неизвестных токов и напряжений,
называемому дифференциальным уравнением
цепи
. Дифференциальное уравнение
цепи содержит информацию о характере
имеющих место в цепи электрических
процессов и является основой для
классификации электрических цепей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Методы анализа сложных электрических цепей:

Электрические цепи, которые не являются параллельно-последовательными, называются сложными. Для анализа сложных цепей используются прямые методы: метод узловых напряжений и метод контурных токов. Изучение указанных методов для простоты будет проводиться на примере резистивных цепей, что не утратит общности получаемых результатов.

Некоторые методы анализа сложных электрических цепей

Анализом электрических цепей называют определение токов (или напряжений) в ее ветвях.

Был рассмотрен расчет только относительно простых электрических цепей. В расчетах цепей сложной конфигурации с несколькими источниками энергии рассмотренные ранее методы применяются для отдельных простых участков, если имеются необходимые исходные данные.
В общих же случаях применяются другие методы, основой которых служат законы Кирхгофа.

Метод узловых и контурных уравнений

Методы анализа с применением законов Кирхгофа позволяют рассчитать электрическую цепь любой конфигурации и сложности, т. е. являются основными.

Обоснование метода

Рассматривая схему любой разветвленной электрической цепи, можно отметить в ней электрические узлы и выделить контуры. Например, в схеме рис. 3.16 имеется четыре узла (точки 1, 3, 4, 6) и несколько контуров (1-2-3-1; 1-3-6-1 и др.).

Для каждой узловой точки можно составить уравнения токов по первому закону Кирхгофа (узловые уравнения), например, для узла 3 I1 + I2 = I4 + I7 для каждого контура — уравнение напряжений по второму закону Кирхгофа (контурные уравнения), например для контура 1-3-6-1
Методы анализа сложных электрических цепей

В эти уравнения входят токи в ветвях, определение которых составляет ближайшую цель расчета, которая достигается совместным решением системы узловых и контурных уравнений; их число должно быть равно числу неизвестных токов. 

Прежде чем приступить к составлению уравнений по законам Кирхгофа, необходимо выбрать условно-положительное направление тока в каждой ветви (число неизвестных токов, как нетрудно видеть, равно числу ветвей).
Положительные направления токов выбирают произвольно. Действительные направления токов могут не совпадать с условно-положительными. Ошибка в выборе направления тока в результате решения будет обнаружена: ток с неправильно выбранным направлением получится отрицательным. Изменив его направление, в дальнейших расчетах можно считать его положительным.
 

Узловые уравнения

Запишем систему узловых уравнений для рассматриваемой схемы
Методы анализа сложных электрических цепей

В этой системе уравнений любые три уравнения являются независимыми, так как в каждое из них входит хотя бы один новый ток по сравнению с другими уравнениями.

Четвертое уравнение не содержит нового тока, поэтому его можно получить из предыдущих трех несложными подстановками.
 

При наличии в схеме n узлов можно составить по первому закону Кирхгофа n — 1 независимых уравнений.

Число независимых уравнений, составленных по первому закону Кирхгофа, недостаточно для определения всех неизвестных токов.
В схеме рис. 3.16 насчитывается семь неизвестных токов, а независимых узловых уравнений только три. Еще четыре уравнения составим по второму закону Кирхгофа.
 

Контурные уравнения

Из всех контуров схемы выбирают те, для которых можно составить наиболее простые независимые уравнения.

При этом можно руководствоваться таким правилом: каждое после-дующее уравнение будет независимо от предыдущих, если в данный контур входит хотя бы одна ветвь схемы, которая не входила в уже использованные контуры.
Можно доказать, что число независимых контурных уравнений для схемы, содержащей m ветвей и n узлов, составляет m — n + 1.

Для десяти контуров при m = 7 в данном случае независимых контурных уравнений можно составить четыре, т. е. столько, сколько необходимо для определения всех токов:
Методы анализа сложных электрических цепей

Правильность определения токов в цепи можно проверить, подставив их найденные величины в одно из уравнений, которые составлены для схемы этой цепи, но не вошли в систему уравнений, взятых для решения. С этой же целью можно составить баланс мощностей цепи.

Метод наложения токов

В некоторых случаях расчет электрических цепей можно провести относительно просто, используя принцип наложения.
Этот принцип применяется только к линейным системам, а в данном случае — для расчета линейных электрических цепей.
 

Обоснование метода

Рассмотрим в качестве примера схему рис. 5.1, а и составим для нее систему уравнений по законам Кирхгофа:
Методы анализа сложных электрических цепей
Ток каждой ветви из этой системы линейных уравнений-определяется однозначно.
Решение системы (5.3) дает выражения для токов:

Методы анализа сложных электрических цепей                      (5.4)

где Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей
Рис. 5.1. К методу наложения токов

Как и следовало ожидать, величины токов определяются действием всех э. д. с., имеющихся в схеме, т. е. каждая э. д. с. вносит в величину тока каждой ветви свою определенную долю. Предположим, что в схеме действует только э. д. с. Е1, а Е2 = 0. Тогда получим величины токов, вызываемых э. д. с. Е1:
Методы анализа сложных электрических цепей
Полагая Е1 =0, получим величины частных токов от действия э. д. с. Е2:
Методы анализа сложных электрических цепей

Для любой схемы с линейными элементами можно провести подобные рассуждения, из которых следует метод расчета электрических цепей: определяются частные токи в ветвях от действия каждой э. д. с.; действительный ток каждой ветви равен алгебраической сумме частных токов этой ветви:
Методы анализа сложных электрических цепей
где Ik(n)— ток к-й ветви от n-й э. д. с.

Порядок расчета

1.    На основе исходной схемы составляют частные расчетные схемы (рис. 5.1, б, в), в каждой из которых действует только одна э. д. с. Все другие э. д. с. исключают и от каждого источника в схеме остается только его внутреннее сопротивление.

2.    Любым подходящим методом определяют токи в частных схемах, которые чаще всего оказываются относительно простыми.
Для частных схем (рис. 5.1, б, в) выражения для токов, найденные путем свертывания, совпадают с (5.4), которые были записаны ранее из уравнений Кирхгофа. Например,
Методы анализа сложных электрических цепей

3.    Алгебраическим сложением (наложением) частных токов определяют токи в исходной схеме. В рассматриваемом примере
Методы анализа сложных электрических цепей

При определении общих токов необходимо правильно учесть направления частных токов: в исходной схеме намечают условно-положительные направления токов в ветвях. Частный ток считают положительным, если он направлен одинаково с положительным током в той же ветви исходной схемы. Частный ток противоположного направления считают отрицательным. 
При таком подходе общие токи в ветвях исходной схемы могут получиться положительными или отрицательными. В последнем случае надо изменить направление тока и считать его положительным в дальнейших расчетах.

Входные и взаимные проводимости и сопротивления

В равенствах (5.4) множители при э. д. с. имеют размерность проводимости. Обозначив их как проводимости, получим
Методы анализа сложных электрических цепей
где
Методы анализа сложных электрических цепей.
Методы анализа сложных электрических цепей

Коэффициенты с одинаковыми индексами называют входными проводимостями ветвей (G1.1; G2.2)- Коэффициенты с разными индексами называют взаимными проводимостими ветвей (G1.2; G2.1; G3.1; G3.2).
Если предположить, что э. д. с. Е2 = 0, из равенств системы (5.4) получим:
Методы анализа сложных электрических цепей
а при E1 = 0
Методы анализа сложных электрических цепей

Из этих выражений следует:
 

входная проводимость любой ветви равна отношению тока к э. д. с. этой ветви, если э. д. с. во всех остальных ветвях приняты равными нулю; входное сопротивление — величина, обратная входной проводимости:
Методы анализа сложных электрических цепей
 

Взаимная проводимость двух любых ветвей равна отношению тока в одной ветви к э. д. с. в другой ветви, если э. д. с. во всех остальных ветвях приняты равными нулю; взаимное сопротивление — величина, обратная взаимной проводимости:
Методы анализа сложных электрических цепей
причем Методы анализа сложных электрических цепей

Входные и взаимные проводимости и сопротивления можно определить расчетом, используя частные схемы, или найти путем измерений. После этого нетрудно найти токи в ветвях, составив равенства типа (5.8).

Коэффициенты передачи напряжения и тока

Режим электрической цепи в некоторых случаях характеризуется коэффициентами передачи напряжения и тока. Чаще всего они применяются к цепям, содержащим один источник э. д. с. (рис. 5.2, а) или один источник тока (рис. 5.2, б).
 

Коэффициент передачи напряжения равен отношению напряжения на зажимах приемника к напряжению источника э. д. с., действующего в цепи:
Методы анализа сложных электрических цепей
 

Коэффициент передачи тока равен отношению тока в приемнике к току источника тока, действующего в цепи:
Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
Рис. 5.2. К вопросу о коэффициентах передачи напряжений и токов

Задача 5.3.

Для цепи (рис. 5.3, а) известны: E1 = 120 В, Е2 = 100 В, R1 = 20 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 30 Ом.
Определить токи в цепи методом наложения.
Решение. Определим токи от действия каждой э. д. с. в отдельности по схемам, представленным на рис. 5.3, б, в. В схеме на рис. 5.3, б сопротивления R1 и R3 соединены параллельно. То же относится к паре сопротивлений R2 и R4.
Найдем эквивалентное сопротивление между точками 1-4:
Методы анализа сложных электрических цепей

Ток в неразветвленной части цепи

Методы анализа сложных электрических цепей

Сопротивления между точками 1-2 и 2-4 по данным задачи одинаковы (по 12 Ом). Поэтому Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей
Рис. 5.3. К задаче 5.3

Токи в схеме
Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
В схеме, изображенной на рис. 5.3, в, пары сопротивлений R1, R2 и R3, R4 соединены параллельно, а сопротивления, эквивалентные этим парам, — последовательно.
Найдем эквивалентные сопротивления схемы между точками 2-3:
Методы анализа сложных электрических цепей
Ток в неразветвленной части цепи

Методы анализа сложных электрических цепей
Напряжения на участках схемы между точками:
2-1

Методы анализа сложных электрических цепей
1-3

Методы анализа сложных электрических цепей
Токи в схеме
Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
Токи в исходной схеме (рис. 5.3, а) найдем по принципу наложения, учитывая направления токов в частных схемах:
Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепейтак как Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей так как Методы анализа сложных электрических цепей

Метод эквивалентного генератора

В практических расчетах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режим работы одной определенной ветви. 

Для определения тока, напряжения, мощности этой ветви можно воспользоваться одним из ранее описанных методов расчета.
При расчете сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объем этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно проводить несколько раз, задаваясь различными величинами сопротивления.

Решение такой задачи значительно упрощается при использовании метода эквивалентного генератора.

Обоснование метода

Исследуемая ветвь с сопротивлением Rab (рис. 5.5, а) присоединяется к остальной части схемы (внутри прямоугольника А) в двух точках a и b. Эту часть схемы можно рассматривать относительно исследуемой ветви как источник с некоторой эквивалентной э. д. с. Еэк и некоторым эквивалентным внутренним сопротивлением rэн (рис. 5.5, б). Такой условный источник энергии называется эквивалентным генератором или активным двухполюсником (А). Если в части схемы, относящейся к двухполюснику, нет источников энергии, то двухполюсник называется пассивным (П).
Методы анализа сложных электрических цепей
Рис. 5.5. К методу эквивалентного генератора

Ток в исследуемой ветви можно найти в эквивалентной схеме (рис. 5.5, б) по известной формуле (3.15):
Методы анализа сложных электрических цепей

Таким образом, решение задачи по определению тока Iab сводится к определению э. д. с. Еэк эквивалентного генератора и его внутреннего сопротивления rэк, которое называется также входным сопротивлением активного двухполюсника.

После определения Еэк и rэк дальнейшее исследование режима работы ветви ab при изменении сопротивления Rab не требует громоздких вычислений, так как э.д.с Еэк и внутреннее сопротивление rэк эквивалентного генератора не изменяются.

Ток в ветви ab определяют по формуле (5.12) для любого значения Rab.

Определение э.д.с. и внутреннего сопротивления эквивалентного генератора

Для определения этих величин рассмотрим два крайних режима эквивалентного генератора — режим холостого хода и режим короткого замыкания.

Отсоединим исследуемую ветвь Rab в точках a и b, тогда эквивалентный генератор будет находиться в режиме холостого хода.
Напряжение холостого хода Uх на его внешних зажимах a и b согласно схеме, представленной на рис. 5.5, б равно эквивалентной э. д. с.:
Методы анализа сложных электрических цепей

Напряжение холостого хода Uх можно измерить (рис. 5.5, в) или определить с помощью расчета (рис. 5.5, г). Для рассматриваемой цепи
Методы анализа сложных электрических цепей

Сопротивление R4 в расчет не вошло, так как при отключенном сопротивлении Rab ток в сопротивлении R4 тоже равен нулю.
Сопротивление rэк эквивалентного генератора можно определить, используя режим короткого замыкания.

В режиме короткого замыкания эквивалентного генератора (рис. 5.5, б) ток короткого замыкания Iк выражается отношением
Методы анализа сложных электрических цепей
Отсюда
Методы анализа сложных электрических цепей

Для измерения тока Iк можно применить схему, изображенную на рис. 5.5, д, если короткое замыкание между точками a и b реальной цепи не вызовет опасного увеличения токов в ее элементах. При наличии такой опасности нужно измерить ток Iab нагрузки эквивалентного генератора и падение напряжения Uab в нагрузочном сопротивлении Rab (рис. 5.5, б), а внутреннее сопротивление
Методы анализа сложных электрических цепей

Ток Iк можно определить, применив один из известных методов расчета. Для рассматриваемого примера расчетная схема приведена на рис. 5.5, е.
Однако определение Iк может оказаться громоздким, поэтому в сложных схемах rэк определяется как входное сопротивление пассивного двухполюсника между точками a и b.

Для того чтобы получить расчетную схему для определения rэк, нужно все э. д. с. активного двухполюсника принять равными нулю, замкнув накоротко точки цепи, к которым присоединены источники этих э. д. с. Тогда активный двухполюсник превращается в пассивный.

Справедливость этого приема следует из схемы, представленной на рис. 5.5, б; при Еэк = 0 сопротивление rэк является входным сопротивлением этой схемы. Таким образом, входное сопротивление пассивного двухполюсника Rвх со стороны зажимов a и b (рис. 5.5, ж) определяет внутреннее сопротивление rэк эквивалентного генератора.

Равенство Еэк = 0 соответствует тому, что все э. д. с. активного двухполюсника равны нулю, поэтому расчетная схема для определения rэк имеет вид, как на рис. 5.5, з.
Для этой схемы
Методы анализа сложных электрических цепей

Задача 5.5.

Построить графики зависимости тока и мощности в ветви 2-4 (см. рис. 5.3, а) от сопротивления в этой ветви по данным условия задачи 5.1.
Решение. Для решения задачи применим метод эквивалентного генератора.
Отключим ветвь 2-4 для определения напряжения холостого хода (рис. 5.6, а). После отключения ветви 2-4 получилась схема с двумя узловыми точками 1 и 3, изображенная в несколько ином виде на рис. 5.6, 6.

Методы анализа сложных электрических цепей

Рис. 5.6. К задаче 5.5


Для расчета этой схемы целесообразно применить метод узлового напряжения:
Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Для определения разности потенциалов между точками 2 и 4 найдем ток
Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
Для определения внутреннего сопротивления эквивалентного генератора полагаем равными нулю действительные э. д. с. исходной схемы.
Получим схему, представленную на рис. 5.6, в, из которой видно, что по отношению к точкам 2 и 4 все три сопротивления пассивного двухполюсника соединены параллельно:
Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей
Ток в исследуемой ветви определим по формуле (5.12), задаваясь различными величинами сопротивления.
Для сопротивления R2 = 20 Ом получим:
Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей
Для других значений сопротивления R2 результаты подсчетов сведены в табл. 5.1.

Таблица 5.1

 R2, Ом 0 2 4 6 8 10 20 30 50
 I2, А
 P2, Вт
16,6
0
13,5
364
11,35
515
9,8
575
8,6
592
7,7
590
5
500
3,7
410
2,42
290
0
0

Графики I2(R2) и P2(R2) показаны в прямоугольной системе координат из рис. 5.5, г.

Метод контурных токов

Число узловых и контурных уравнений для сложной схемы оказывается большим, а решение системы m уравнений — громоздким. Число уравнений можно уменьшить до m — n + 1 и тем существенно упростить расчет, если ввести понятие контурных токов и применить их для решения задачи.
 

Контурные токи и э.д.с.

Рассмотрим в качестве примера уже известную схему рис. 3.16 и выделенные в ней ранее четыре независимых контура, для которых записаны уравнения (5.2). Заметим, что, применяя метод контурных токов, источники энергии удобнее представлять в схемах их э, д. с. и внутренними сопротивлениями. В данной схеме внутренние сопротивления источников энергии равны нулю (или отнесены к приемникам).

Контурный ток — это некоторая расчетная величина, которая одинакова для всех ветвей данного контура. Контурные токи на схеме обозначены II ; III ; IIII ; IIV .
Нетрудно заметить, что контурный ток равен действительному току ветви, которая принадлежит только данному контуру:
Методы анализа сложных электрических цепей
Некоторые ветви схемы относятся к двум смежным контурам (ветви 1-3; 3-6; 4-6).

Действительный ток в такой ветви определяется наложением контурных токов, т. е. равен алгебраической сумме контурных токов тех контуров, в которые эта ветвь входит:
Методы анализа сложных электрических цепей

В уравнениях (5.2) заменим токи ветвей их выражениями через контурные токи (5.14), (5.14 а):
Методы анализа сложных электрических цепей
В правую часть этих уравнений входят э. д. с. источников, встречающихся при обходе данного контура.
 

Алгебраическая сумма э. д. с. данного контура называется контурной э. д. с.
В данном примере в каждом контуре по одной э. д. с., поэтому контурные э. д. с.: ЕI = Е1; ЕII = Е2; ЕIII = — Е2; ЕIV = — Е3.
Если в данный контур не входят источники э. д. с., то контурная э. д. с. его равна нулю.
 

Собственные и общие сопротивления контуров

В левую часть уравнений (5.15) входят падения напряжения, обусловленные контурными токами.
 

Сумма сопротивлений всех ветвей, входящих в данный контур, называется собственным сопротивлением контура.

Для схемы рис. 3.16 собственные сопротивления контуров:

Методы анализа сложных электрических цепей
Методы анализа сложных электрических цепей
Сопротивления ветвей, входящих в два смежных контура, называются общими сопротивлениями контуров. Такими сопротивлениями в схеме рис. 3.16 являются R1.2 = R2; R2.3 = R7; R3.4 = R5.

При определении собственных и общих сопротивлений внутренние сопротивления источников э. д. с. учитываются как и сопротивления приемников энергии.
 

Метод контурных токов

С учетом новых понятий и обозначений перепишем уравнения (5.15):

Методы анализа сложных электрических цепей

Решая эту систему уравнений любым способом, известным из алгебры, определяют контурные токи, а по формулам (5.14) и (5.14а) находят токи в ветвях.
В данном примере вместо семи узловых и контурных уравнений для расчета достаточно четырех уравнений с четырьмя контурными токами.

Из всего сказанного следует порядок составления уравнений с контурными токами.

  1. В заданной схеме выбирают направления токов в ветвях (произвольно).
  2. Намечают независимые контуры и выбирают направление контурных токов, например по часовой стрелке.
  3. Определяют контурные э. д. с., собственные и общие сопротивления контуров, обходя контуры в направлении контурных токов.
  4. Записывают систему уравнений типа (5.16); в левой части их слагаемые с собственными сопротивлениями контуров берут со знаком плюс, а слагаемые с общими сопротивлениями — со знаком минус.

Метод узловых напряжения

Законы Кирхгофа являются основой для расчета электрических цепей методом узловых напряжений, который позволяет сократить число уравнений в системе до n — 1, где n — число узлов.
 

Узловые напряжения и токи

Для данных рассуждений примером может служить схема рис. 3.16. Однако, применяя метод узловых напряжений, удобнее источники э. д. с. заменить эквивалентными источниками токов на основе выводов, что и показано на рис. 5.7.

Методы анализа сложных электрических цепей

Рис. 5.7. К методу узловых напряжений

Источники энергии на рисунке представлены токами короткого замыкания Iк1 = E1G1; Iк2 = E2G7; Iк3 = E3G6, а внутренние проводимости их приняты равными нулю или отнесены к приемникам.

Один из узлов схемы принимается базисным, и его потенциал считается равным нулю (узел 6, V6 = 0).
 

Узловым напряжением называется разность потенциалов между данным узлом и базисным. В рассматриваемой схеме узловые напряжения
Методы анализа сложных электрических цепей
Выразим напряжения ветвей через узловые напряжения. Нетрудно заметить, что узловое напряжение численно равно напряжению ветви, которая присоединена к базисному узлу:
Методы анализа сложных электрических цепей
Напряжение ветви, не присоединенной к базисному узлу, равно разности узловых напряжений тех узлов, между которыми находится эта ветвь:
Методы анализа сложных электрических цепей
По первому закону Кирхгофа составим систему уравнений для трех независимых узлов (кроме базисного) рассматриваемой схемы:
Методы анализа сложных электрических цепей
Эти уравнения перепишем так, чтобы в правой части их были только внутренние токи источников тока, из которых складываются узловые токи:
Методы анализа сложных электрических цепей
Узловым током называется алгебраическая сумма внутренних токов источников тока всех ветвей, присоединенных к данному узлу.
В этой сумме токи источников тока, направленные к узлу, считаются положительными, а от узла — отрицательными:
Методы анализа сложных электрических цепей
Если к некоторому узлу не присоединены ветви с источниками токов, то его узловой ток равен нулю.

Узловые и общие проводимости

Выразим токи ветвей через напряжения и проводимости этих ветвей:
Методы анализа сложных электрических цепей
а учитывая (5.18), систему уравнений (5.19) представим в следующем виде:
Методы анализа сложных электрических цепей
Узловой проводимостью называется сумма проводимостей всех ветвей, присоединенных к данному узлу.
В системе уравнений (5.21) узловые проводимости выражаются так:
Методы анализа сложных электрических цепей
Общей проводимостью называется сумма проводимостей всех ветвей, соединяющих данные два узла.
В системе уравнений (5.21) общие проводимости G13 = G1 + G2; G3.4 = G4.
С учетом новых обозначений уравнения (5.21) перепишем так:
Методы анализа сложных электрических цепей
 

Метод узловых напряжений

Решая систему уравнений (5.22) любым способом, известным из алгебры, определяют узловые напряжения, затем по (5.18), (5.18, а) находят напряжения ветвей, а по формулам (5.20) — токи ветвей.

В данном примере вместо семи узловых и контурных уравнений для расчета достаточно трех уравнений с тремя узловыми напряжениями.

Из всего сказанного следует порядок составления уравнений с узловыми напряжениями.

  1. В заданной схеме выбирают направления токов в ветвях (произвольно). Если по условию источники энергии заданы как источники э. д. с. (напряжения), переходят к эквивалентным схемам источников тока.
  2. Намечают базисный узел и все независимые узлы и выбирают положительные направления узловых напряжений — от независимых узлов к базисному.
  3. Определяют узловые токи, узловые и общие проводимости; при этом токи источников тока, направленные к узлам, принимают положительными.
  4.  Записывают систему уравнений типа (5.22); в левой части уравнений слагаемые с узловыми проводимостями берут со знаком плюс, а слагаемые с общими проводимостями — со знаком минус.

Методы расчета сложных электрических цепей

Основные теоретические сведения:

Для расчета токов и напряжений в сложных электрических цепях разработаны разработаны методы, базирующиеся на основных законах токопрохождения, принципах (теоремах) теории цепей:

  1. Метод уравнений Кирхгофа (МУК).
  2. Метол контурных токов (MKT).
  3. Метол узловых напряжений (МУН).
  4. Метод сигнальных графов.
  5. Метод наложения (МН),
  6. Метод эквивалентного генератора (МЭГ) и другие методы.

Четыре первых метода являются универсальными, позволяющими в принципе рассчитать цепь любой сложности. С помощью других методой обычно решают частные (локальные) задачи. В ряде случаев решение задачи удается упростить, если предварительно произвести эквивалентные преобразования схемы цени.

Для решения конкретной задачи обычно выбирают метод, позволяющий описать цепь минимальным числом уравнений.

Анализ структуры электрической цепи

Анализ структуры цепи производят с целью определения числа ветвей с неизвестными токами и чисел независимых узлов и контуров.

Введем обозначения:

р — число ветвей с неизвестными токами, включающими все ветви цепи, за исключением ветвей с источниками токов; q — число узлов в цепи; НУ — число независимых узлов в цепи; НК — число независимых контуров в цепи.
Анализируя цепь, легко показать, что Методы анализа сложных электрических цепей Методы анализа сложных электрических цепей

Если электрическая цепь имеет достаточно простую структуру, то числа p и q определяются легко. Для анализа сложных разветвленных цепей строят топологический граф и дерево цепи. При этом ветвь и узел цепи отождествляются соответственно с ребром и узлом графа.

Внутреннее сопротивление идеального источника напряжения равно нулю. Поэтому ветвь, содержащая только этот источник, закорачивается и не образует ребра на графе цепи, вырождаясь в узел.

Внутреннее сопротивление идеального источника тока бесконечно велико, поэтому при построении графа цепи ветвь с таким источником разрывается.

Расчет электрических цепей методом уравнений Кирхгофа

Суть метода уравнений Кирхгофа состоит в том, что неизвестные токи и напряжения в цепи рассчитываются непосредственно из системы уравнений, составленных по законам Кирхгофа. По первому закону Кирхгофа составляют уравнения для независимых узлов, а по второму — для независимых контуров. При этом число уравнений в системе равно числу неизвестных токов в ветвях: Методы анализа сложных электрических цепей Расчет цепи по этому методу наиболее сложный из-за большого числа уравнений и их разнородности.

Порядок расчета:

  1. составляют комплексную схему замещения цепи;
  2. производят структурный анализ пени;
  3. выбирают условно положительные направления токов в ветвях, напряжений на элементах и направления обхода контуров;
  4. составляют для НУ уравнения по первому закону Кирхгофа и для НК уравнения по второму закону Кирхгофа относительно неизвестных токов в ветвях;
  5. по решению системы уравнений рассчитывают неизвестные токи в ветвях и неизвестные напряжении на элементах цепи.

Расчет электрических цепей методом контурных токов

Суть метода контурных токов состоит в том, что вводятся  дополнительные формальные неизвестные — контурные токи, которые определяются из системы контурных уравнений, составленных по второму закону Кирхгофа. Далее, по известным контурным токам рассчитывают искомые токи в ветвях, а затем искомые напряжения на элементах.

Контурным током Методы анализа сложных электрических цепей-го независимого контура называется условный ток, текущий и ветвях данного контура. Следовательно, число уравнении, необходимое для расчета цепи, равно числу независимых контуров:

Методы анализа сложных электрических цепей

Направления контурных токов в цепи выбираются произвольно. Для составления контурных уравнений в канонической форме вводятся три вспомогательных понятия: контурная ЭДС, собственное сопротивление независимого контура, общее сопротивление двух независимых контуров.

Контурной ЭДС Методы анализа сложных электрических цепей-гo независимого контура называется алгебраическая сумма всех ЭДС источников, включенных в этот контур. При суммировании ЭДС берется со знаком плюс, если ее направление совпадает с выбранным направлением контурного тока. В противном случае ЭДС имеет знак минус.

Собственным сопротивлением Методы анализа сложных электрических цепей-гo независимого контура называется сумма комплексных сопротивлений всех пассивных элементов, включенных в этот контур.

Общим сопротивлением Методы анализа сложных электрических цепей или Методы анализа сложных электрических цепей-го и Методы анализа сложных электрических цепей-го независимых контуров называется сопротивление ветви, обшей для этих контуров, причем Методы анализа сложных электрических цепей. Если эти контуры не имеют общей ветви, то Методы анализа сложных электрических цепей

Как правило, направления всех контурных токов выбирают одинаковыми, например по часовой стрелке. Можно показать, что в этом случае все общие сопротивления должны иметь знак, противоположный знаку сопротивления общей ветви данных контуров.

С учетом введенных величин запишем систему линейных контурных уравнений в матричной форме, удобной для расчета с помощью определителей:
Методы анализа сложных электрических цепей
Если система (3.1) определенная, то контурные токи можно найти по формулам Крамера:
Методы анализа сложных электрических цепей
где Методы анализа сложных электрических цепей — определитель матрицы Методы анализа сложных электрических цепей контурных сопротивлений; Методы анализа сложных электрических цепей — частный определитель матрицы контурных сопротивлений, который получается путем замены Методы анализа сложных электрических цепей-ю столбца сопротивлений столбцом свободных членов уравнений (3.1), т. с. столбцом контурных ЭДС.

По известным контурным токам легко определить искомые токи и ветвях. Ток в ветви, принадлежащей только одному Методы анализа сложных электрических цепей-му контуру (собственная ветвь контура), равен контурному току Методы анализа сложных электрических цепей Ток в общей ветви Методы анализа сложных электрических цепей-го и Методы анализа сложных электрических цепей-го контуров равен разности контурных токов Методы анализа сложных электрических цепей

В систему (3.1) контурных уравнений входят только ЭДС источников напряжения. Поэтому при расчете все источники тока в цепи необходимо заменить эквивалентными источниками напряжения (см. табл. 2.1).

Порядок расчета:

  1. составляют комплексную схему замещения цепи;
  2. производят структурный анализ цепи;
  3. выбирают условно положительные направления токов в ветвях и контурных токов;
  4. составляют по второму закону Кирхгофа систему уравнений вида (3.1) относительно неизвестных контурных токов;
  5. рассчитывают по известным параметрам цепи собственные и общие сопротивления независимых контуров, их контурные ЭДС;
  6. рассчитывают неизвестные контурные токи, а затем неизвестные токи в ветвях и напряжения на элементаx цели.

Примечание. Если при расчете производили эквивалентную замену источников тока в ветвях цепи источниками напряжения, то для расчета токов в этих ветвях необходимо перейти к исходной схеме.

Расчет электрических цепей методом узловых напряжений

Суть метода узловых напряжении состоит в том, что вводятся дополнительные неизвестные — узловые напряжения, которые находятся из системы узловых уравнений, составленных по первому закону Кирхгофа. Далее по известным узловым напряжениям рассчитывают искомые токи в ветвях, а затем — искомые напряжения на элементах.

Узловым напряжением Методы анализа сложных электрических цепей называется напряжение между Методы анализа сложных электрических цепей-м независимым узлом цепи и базисным узлом. Следовательно, число уравнений, необходимое для расчета цепи, равно числу независимых узлов:

Методы анализа сложных электрических цепей

Направление узловых напряжений выбирают произвольно. Наиболее часто полагают, что все узловые напряжения направлены к базисному узлу. Для составления узловых уравнений в канонической форме вводятся три вспомогательных понятия: узловой ток; собственная проводимость независимого узла; общая проводимость двух независимых узлов.

Узловым током Методы анализа сложных электрических цепей-го узла называется алгебраическая сумма токов всех источников тока, подключенных к этому узлу. При суммировании ток берется со знаком минус, если источник направлен от этого узла. Если в цепи имеются источники напряжения, то в схеме замещения их заменяют эквивалентными источниками тока (см. табл. 2.1).

Собственной проводимостью Методы анализа сложных электрических цепей-го независимого узла называется сумма проводимостей всех ветвей, соединенных в этом узле.

Общей проводимостью Методы анализа сложных электрических цепей-го и Методы анализа сложных электрических цепей-го независимых узлов называется сумма проводимостей всех ветвей, соединяющих эти узлы, причем Методы анализа сложных электрических цепейЕсли эти узлы не имеют общих ветвей, то Методы анализа сложных электрических цепей

Если направления всех узловых напряжений выбраны одинаковыми, например, к базисному узлу, то общие проводимости должны иметь знак, противоположный знаку проводимостей общих ветвей данных узлов.

С учетом введенных величин запишем систему линейных узловых уравнений в матричной форме

:Методы анализа сложных электрических цепей

Если система (3.3) определенная, то узловые напряжения можно рассчитать но формуле Крамера:

Методы анализа сложных электрических цепей

где Методы анализа сложных электрических цепей — определитель матрицы Методы анализа сложных электрических цепей узловых проводимостей цепи: Методы анализа сложных электрических цепей — частный определитель матрицы Методы анализа сложных электрических цепей, полученный путем замены Методы анализа сложных электрических цепей-гo столбца проводимостей столбцом свободных членов системы (3.2), т.е. столбцом узловых токов.

По известным узловым напряжениям легко найти искомые токи. Если в ветви нет источника, то ток рассчитывают но закону Ома. Если в ветви есть источник напряжения, то для расчета тока удобно воспользоваться вторым законом Кирхгофа.

Порядок расчета:

  1. составляют комплексную схему замещения цепи;
  2. производят структурный анализ цепи;
  3. выбирают условно-положительные направления токов в ветвях и узловых напряжений;
  4. составляют по первому закону Кирхгофа систему уравнений вида (3.3) относительно неизвестных узловых напряжений:
  5. рассчитывают по известным параметрам цепи собственные и общие проводимости независимых узлов и узловые токи;
  6. рассчитывают неизвестные узловые напряжения, а затем неизвестные токи в ветвях и напряжения на элементах.

Примечание. Если при расчете производили эквивалентную замену источников напряжения источниками токи, то для расчета токов в преобразованных ветвях необходимо перейти к исходной схеме.

Расчет электрических цепей методом наложения

Сущность метода наложения состоит в том, что в соответствии с принципом наложения неизвестные токи в ветвях определяют как алгебраическую сумму частичных токов, обусловленных действием каждого источника отдельно.

Для расчета частичных токов исходную цепь с Методы анализа сложных электрических цепей источниками представляют и виде Методы анализа сложных электрических цепей частных схем. Каждая частная схема содержит только один источник. Все другие источники исключаются, остаются лишь их внутренние сопротивления. Идеальный источник напряжения заменяют коротким замыканием, так как для негоМетоды анализа сложных электрических цепей У идеального источника тока Методы анализа сложных электрических цепей поэтому ветвь, в которую он включен, разрывается.

Для расчета токов в частных схемах можно использовать любой метод, а для упрощения расчетов предварительно производят эквивалентные преобразования в цепи. В достаточно простых цепях при расчете удобно использовать известные приемы расчета делителей тока и напряжения.

Порядок расчета:

  1. составляют комплексную схему замещения цепи;
  2. составляют частные схемы, содержащие по одному источнику;
  3. рассчитывают частичные токи в ветвях;
  4. определяют искомые токи как алгебраические суммы частичных токов в соответствующих ветвях.

Расчет цепей методом эквивалентного генератора

Суть метода эквивалентного генератора состоит в том, что всю электрическую цепь, кроме одной ветви с неизвестным током, заменяют эквивалентным генератором с параметрами Методы анализа сложных электрических цепей. Далее, по закону Ома рассчитывают искомый ток Методы анализа сложных электрических цепейгде Методы анализа сложных электрических цепей— сопротивление ветви, в которой определяется ток.

Теорема об эквивалентном генераторе утверждает, что ЭДС эквивалентного генератора равна напряжению холостого хода активного двухполюсника, а его внутреннее сопротивление равно входному сопротивлению двухполюсники:

Методы анализа сложных электрических цепей

Напряжение можно определить экспериментально или рассчитать по схеме цепи. Для расчета напряжения необходимо по второму закону Кирхгофа составить уравнение для входного контура, который содержит зажимы эквивалентного генератора (расчетную ветвь).

Для расчета входного сопротивления эквивалентного генератора необходимо составить схему пассивною двухполюсника, т.е. исключить в исходной цепи все источники, заменив их соответствующими внутренними сопротивлениями. Далее, используя известные приемы эквивалентного преобразования схемы цепи, находят входное сопротивление.

Порядок расчета:

  1. составляют комплексную схему замещения цепи;
  2. исключают из схемы ветвь с искомым током (нагрузку), обозначая зажимы генератора с напряжением холостого хода;
  3. составляют для входного контура уравнение но второму закону Кирхгофа и рассчитывают Методы анализа сложных электрических цепей
  4. составляют схему пассивного двухполюсника, считая входом зажимы эквивалентного генератора, и рассчитывают его входное сопротивление;
  5. рассчитывают искомый ток.

Примеры решения задач

Пример 3.2.1. 

Произвести структурный анализ цепей, схемы которых приведены на рис. 3.1, а; 3,2, а; 3,3, а.

При поверхностном анализе структуры цепи рис. 3.1, а может сложиться мнение, что цепь имеет три независимых контура и три независимых узла. Однако из-за наличия в цепи идеального источника тока узлы 1 и 3 являются устранимыми. Это становится очевидным, если построить граф цепи (рис, 3,1, б), При построении графа ветвь с источником тока размыкается, поэтому узлы 1, 3 и 4 образуют узел.

Следует заметить, что в ветвях с сопротивлениями Методы анализа сложных электрических цепей течет один и тот же ток. Поэтому рассматриваемая цепь имеет четыре ветви с неизвестными токами Методы анализа сложных электрических цепей один независимый узел и два независимых контура (на графе им соответствуют две хорды).

Методы анализа сложных электрических цепей

На графе для цепи, показанной на рис.3.2,а, из-за наличия идеального источника ЭДС Методы анализа сложных электрических цепей узлы 1 и 2 слились в один (рис. 3.2, б). Видно, что токи в ветвях источника Методы анализа сложных электрических цепей и сопротивления Методы анализа сложных электрических цепей одинаковые, поэтому в данной цепи Методы анализа сложных электрических цепей

Построение дерева и графа для цепи (рис. 3.3, а) показывает, что в данном случае имеется один независимый узел и два независимых контура. Включение в цепь идеального источника Методы анализа сложных электрических цепей привело к тому, что узлы 1 и 2 слились в один, а на графе цепи образовалась петля. Ток в ветви сопротивления Методы анализа сложных электрических цепей можно считать известным, так как его легко рассчитать по закону Ома

Методы анализа сложных электрических цепей

Поэтому анализ показывает, что в данной цепи (рис.3.3, а) Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Пример 3.2.2. 

Составить по методу уравнений Кирхгофа систему уравнений для расчета токов в ветвях цепи (рис. 3.4).

Методы анализа сложных электрических цепей

Решение

1. Произведем структурный анализ цепи. На рис. 3.5 показаны граф и деревья цепи (хорды графа обозначены пунктиром). Анализ показывает, что число неизвестных токов Методы анализа сложных электрических цепей независимых узлов — четыре, независимых контуров — четыре.

2. Зададимся условно-положительными направлениями токов в ветвях и напряжений на элементах (см. рис. 3.4), а также направлением обхода контуров

3. Считая узлы 1, 2, 3 и 4 независимыми, составим для них уравнения по первому закону Кирхгофа:

Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Токи, направленные к узлу, учитываются и уравнениях со знаком (+), направленные от узла — со знаком (-).

4. Выбрав независимые контуры I—IV (см, рис. 3.4), составим для них уравнения по второму закону Кирхгофа: 

Методы анализа сложных электрических цепей

Примечание. Падения напряжений на элементах контуров выразим через искомые токи в ветвях.

Совместное решение полуденных восьми уравнений позволяет рассчитать все неизвестные токи в ветвях, а затем, если необходимо напряжения на элементах цепи.

Из приведенного примера видно, что достоинство метода уравнений Кирхгофа заключается в его простоте (с точки зрения составления уравнений). Недостаток этого метода — сложность решения системы уравнений из-за большого числа уравнений и их разнородности.

Пример 3.2.3.

Рассчитать токи в ветвях цепи (рис. 3.6) методом контурных токов.

Методы анализа сложных электрических цепей       Методы анализа сложных электрических цепей

Решение

1. Составляем комплексную схему замещений цепи (рис. 3.7).
Методы анализа сложных электрических цепей       Методы анализа сложных электрических цепей

2. Произведем структурный анализ цепи с помощью топологического графа (рис.З.8). Анализ цепи показывает, что она содержит пять ветвей, а число ветвей с неизвестными токами р = 4. Цепь имеет 1ри узла, причем узел 3 является устранимым. Поэтому независимых узлов в схеме q = 2. Очевидно, что число независимых контуров равно двум (число хорд на графе): НК = 4- 3 + 1 = 2.

3. Реальный источник тока заменяем эквивалентным источником напряжения и выбираем направления контурных токов (рис. 3.9).

Методы анализа сложных электрических цепей

4. Составляем каноническую систему контурных уравнений для независимых контуров в матричной форме

Методы анализа сложных электрических цепей

5.  Рассчитаем собственные и общие сопротивления и контурные ЭДС:

Методы анализа сложных электрических цепей

6. Рассчитаем контурные токи по формулам Крамера:
   Методы анализа сложных электрических цепей

Рассчитаем определитель системы

Методы анализа сложных электрических цепей

Рассчитаем частные определители системы:

Методы анализа сложных электрических цепей

Тогда контурные токи будут соответственно равны:

Методы анализа сложных электрических цепей

7.  Рассчитаем токи в ветвях через контурные токи:

Методы анализа сложных электрических цепей

8. Проверим достоверность произведенного расчета по балансу мощности. Мощности, отдаваемые источниками в цепь:

Методы анализа сложных электрических цепей

Таким образом, общая мощность источников равна

Методы анализа сложных электрических цепей

Активная и реактивная мощности в пассивных элементах цепи равны соответственно:

Методы анализа сложных электрических цепей

Как видно из приведенных расчетов, отдаваемая и потребляемая мощности в электрической цепи совпадают.

Пример 3.2.4.

Рассчитать токи в ветвях цепи (рис.3.10) методом узловых напряжений.

Методы анализа сложных электрических цепей    Методы анализа сложных электрических цепей

Решение

1. Составим комплексную схему замещения (рис. 3.11) и определим комплексные источники ЭДС и тока:

Методы анализа сложных электрических цепей

2. Произведем структурный анализ цепи с помощью топологического графа (рис. 3.12).

Методы анализа сложных электрических цепей

Анализ цепи показывает, что она содержит 6 ветвей, а ветвей с неизвестными токами р= 5. Число независимых узлов составляет Методы анализа сложных электрических цепей

3. Ветви с реальными источниками напряжения заменим эквивалентными источниками тока (рис. 3.13) и выберем направления узловых напряжений.
Методы анализа сложных электрических цепей

4.Составим каноническую систему уравнений для независимых узлов и рассчитаем собственные и общие проводимости и узловые токи.

Методы анализа сложных электрических цепей

где

Методы анализа сложных электрических цепей

5. Рассчитаем узловые напряжения по формулам Крамера:

Методы анализа сложных электрических цепей

Составим и рассчитаем определители системы:

Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Тогда узловые напряжения равны:

Методы анализа сложных электрических цепей

6. Рассчитаем токи в ветвях по законам Ома и Кирхгофа.

Токи в ветвях по найденным узловым напряжениям находятся из уравнений, составляемых по второму закону Кирхгофа для исходной непреобразованной схемы. При этом контур замыкается через ветвь с искомым током и найденными узловыми напряжениями. Так, если путем решения системы уравнений найдены узловые напряжения Методы анализа сложных электрических цепей то токи Методы анализа сложных электрических цепей определяются из уравнений:

Методы анализа сложных электрических цепей

Тогда

Методы анализа сложных электрических цепей

Пример 3.2.5.

Определить ток в сопротивлении Методы анализа сложных электрических цепей электрической цепи (рис.3.14) методом эквивалентного генератора.

Дано: Методы анализа сложных электрических цепей Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Решение

1. Составим схему для определения напряжения холостого хода (рис.3.15) и рассчитаем Методы анализа сложных электрических цепей.

Для определения Методы анализа сложных электрических цепей предварительно рассчитываются токи Методы анализа сложных электрических цепей и Методы анализа сложных электрических цепей

Методы анализа сложных электрических цепей

Тогда

Методы анализа сложных электрических цепей

2.Составим схему для определения внутреннего сопротивления эквивалентного генератора (рис. 3.16) и рассчитаем его.

Методы анализа сложных электрических цепей    Методы анализа сложных электрических цепей

3. Рассчитаем ток

Методы анализа сложных электрических цепей

Пример 3.2.6.

Рассчитать токи в ветвях цепи (рис. 3.17) методом наложения.

Дано:Методы анализа сложных электрических цепей Методы анализа сложных электрических цепей

Решение

1.Составляем частную схему с источником ЭДС (рис. 3.18) и выбираем произвольно направление токов в ветвях цепи.

Методы анализа сложных электрических цепей

2. Рассчитаем частичные токи в ветвях:
Методы анализа сложных электрических цепей

3. Составляем частную схему с источником тока (рис. 3.19).

Методы анализа сложных электрических цепей

4. Рассчитаем частные токи в ветвях. Для расчета определим напряжение между узлами 1 и 2 схемы:
Методы анализа сложных электрических цепей

Тогда

Методы анализа сложных электрических цепей

5. Рассчитаем комплексные токи в ветвях исходной схемы, как алгебраическую сумму частичных токов:
Методы анализа сложных электрических цепей

  • Метод узловых напряжений
  • Метод узловых потенциалов 
  • Принцип и метод наложения
  • Входные и взаимные проводимости
  • Электрическая энергия, ее свойства и применение
  • Электрическая цепь
  • Электрический ток
  • Электрические цепи постоянного тока

Правила Кирхгофа для электрической цепи, понятным языком

Формулировка правил

Сразу необходимо внести ясность. Хотя во многих технических текстах используется слово закон, на самом деле это правило. В чем различие? Закон основывается на фундаментальных истинах, фактах, правило несет более абстрактное понимание. Чтобы это лучше понять рассмотрим основы этого метода.

Из-за сложности вычислений его лучше использовать там, где схема имеет узлы и контуры. Узлом называется место соединения более двух цепей. Это как если взять три и более обычных нитки и связать их вместе. Контуром называется замкнутая цепь, включающая в себя три и более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, под которыми подразумеваются нагрузки с активным сопротивлением. Все они объединяются в один общий резистор, так как это упрощает решение задачи. Также в цепи может быть один или несколько источников питания, которые также объединяются в один элемент, либо их может и не быть. Тогда цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, то в уравнении будет на одну букву больше, чем самих соединений. Например, участок состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. На самом деле, начинать отсчет можно с любой буквы петли, например, C, D, A, B, C, просто в первом варианте легче будет не запутаться.

Определения

Как уже было сказано ветвь – это отрезок электрической цепи, в которой направление движения заряда происходит в одну сторону. Сходящиеся в узле ветви имеют разное направление токов. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также относятся к этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящиеся к узлу и контуру. Самым главным и сложным является составление уравнений, учитывающих все составляющие этой формулы.

Первый закон

Первое правило говорит о сохранении заряда. Согласно ему, в узле напряжение должно быть равно нулю. Это возможно только в том случае, если все входящие токи в эту точку заходят через одни ветви, а выходят через другие. Соотношение входящих и выходящих токов может быть разным, но суммарная составляющая положительных и отрицательных потенциалов всегда одинакова.

Предположим, в узел входят токи по трем ветвям, а выходят по двум. Суммарная величина входящих токов будет точно равняться суммарной величине выходящих. Если отобразить это математически, то сумма положительных векторов I1, I2 и I3 будет равняться сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в контуре. Другими словами, энергия источников э. д. с, входящих в контур или рассматриваемый участок, равна падению напряжения на сопротивлениях этого участка. Если выбранный участок не имеет источников питания, то суммарное падение напряжения на всех нагрузках будет равно нулю. Прежде чем переходить к расчетам, следует ознакомиться еще с некоторыми моментами.

Первый закон Кирхгофа

Первый закон Кирхгофа гласит, что в ветвях образующих узел электрической цепи алгебраическая сумма токов равна нулю(токи входящие в узел считаются положительными, выходящие из узла отрицательными).

Пользуясь этим законом для узла A (рисунок 1) можно записать следующее выражение:


Рисунок 1 — Первый закон Кирхгофа

I1 + I2 − I3 + I4 − I5 − I6 = 0.

Попытайтесь самостоятельно применить первый закон Кирхгофа для определения тока в ветви. На приведенной выше схеме изображены шесть ветвей образующие электрический узел В, токи ветвях входят и выходят из узла. Один из токов i неизвестен.

Запишите выражение для узла В

I1 + I2 + I3 + I4 + I5 − i = 0 I1 – I2 + I3 − I4 + I5 − i = 0 I1 + I2 + I3 − I4 + I5 − i = 0

Второй закон Кирхгофа.

Второй закон Кирхгофа:в контуре электрической цепи алгебраическая сумма эдс равна алгебраической сумме падений напряжения на всех сопротивлениях данного контура.

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i-й ветви.

Применение второго закона Кирхгофа

Для контура ABСDE, изображенного на рисунке 4, стрелками указаны положительные направления токов (произвольно). Составим уравнение согласно второму закону Кирхгофа. Для этого произвольно зададимся направлением обхода контура по часовой или против часовой стрелки. В данном примере направление обхода контура выберем по часовой стрелке.


Рисунок 4

При составлении уравнений по второму закону Кирхгофа, ЭДС записывается со знаком “+”, если ее направление совпадает с направлением произвольно выбранного обхода контура. В противном случае ЭДС записывается со знаком “-”.

Падения напряжения записываются со знаком “+”, если направление тока в нем совпадает с направлением обхода.

Начнём с эдс E1, так как её направление совпадает с обходом контура — записываем её со знаком “+” перед знаком равно.

Контур ABСDE E1 =

E2 направленна против обхода контура записываем со знаком “-” перед знаком равно.

Контур ABСDE E1 − E2=

Так как больше ЭДС в контуре ABСDЕ нет — левая часть уравнения готова.

В правой части уравнения указываются падения напряжения контура, так как направления токов I1 и I2 совпадает с обходом контура – записываем падения напряжения со знаком “+”.

Контур ABСDЕE E1 − E2 = I1*R1 + I2*R2

Направление тока I3 не совпадет с обходом контура:

Контур ABСDE E1 − E2 = I1*R1 + I2*R2 − I3*R3.

Уравнение для контура готово.

Законы Кирхгофа являются основой для расчета электрической цепи, вот несколько методов применяющие данные законы.

Расчеты электрических цепей с помощью законов Кирхгофа

Частота вращения: формула

Для выполнения подобных расчётов электрических цепей существует определённый алгоритм, при котором вычисляются токи для каждой ветви и напряжения на выводах всех элементов, включённых в ЭЦ. Для того чтобы рассчитать любую схему, придерживаются следующего порядка:

  1. Разбивают ЭЦ на ветви, контуры и узлы.
  2. Стрелками намечают предполагаемые направления движения I в ветвях. Произвольно намечают направление, по которому при написании уравнений обходят контур.
  3. Пишут уравнения, применяя первое и второе правило Кирхгофа. При этом учитывают правила знаков, а именно:
  • «плюс» имеют токи, втекающие в узел, «минус» – токи, вытекающие из узла;
  • Е (ЭДС) и снижение напряжения на резисторах (R*I) обозначают знаком «плюс», если ток и обход совпадают по направлению, или «минус», если нет.
  1. Решая полученные уравнения, находят нужные величины токов и падения напряжений на резистивных элементах.

Информация. Независимыми узлами называют такие, которые отличаются от других как минимум одной новой веткой. Ветви, содержащие ЭДС именуют активными, без ЭДС – пассивными.

В качестве примера можно рассмотреть схему с двумя ЭДС и рассчитать токи.

Пример схемы для расчёта с двумя E

Произвольно выбирают направление токов и контурного обхода.

Намеченные направления на схеме

Составляются следующие уравнения с применением первого и второго закона Кирхгофа:

  • I1 – I3 – I4 = 0 – для узла a;
  • I2 + I4 – I5 = 0 – для узла b;
  • R1*I1 + R3*I3 = E1 – контур acef;
  • R4*I4 — R2*I2 – R3*I3 = — E2 – контур abc;
  • R6*I5 + R5*I5 + R2*I2 = E2 – контур bdc.

Уравнения решаются с помощью методов определителей или подстановки.

Особенности составления уравнений для расчёта токов и напряжений

В первую очередь выбирается участок, который необходимо исследовать. Затем на каждой ветке произвольно устанавливается стрелка показывающая направление движения тока. Это нужно для того, чтобы потом не ошибиться. При расчете неточность направления будет исправлена. Каждую стрелку обозначают буквой I с индексом. Удобнее будет рассматривать участок, если стрелки находятся в непосредственной близости от точки соединения цепей. Источники питания и резисторы тоже обозначают, а у общего резистора добавляют сопротивление.

Внутри участка также произвольно показывают направление обхода, ориентируясь на возможные потенциалы. Оно необходимо для сравнения направления движения тока. Это сравнение покажет, какой знак должен стоять у числа. Если оба направления совпадают, ставят знак + и знак – если направления противоположны.

Число поставленных задач должно соответствовать количеству выбранных неизвестных. Допустим, имеется три цепи и необходимо вычислить их токи, значит, составленных формул также должно быть три. Получается, что в новом уравнении должен быть хотя бы один новый элемент, которого нет в предыдущих задачах.

Значение для электротехники

Правила Кирхгофа являются дополнением к другим законам. Основная сложность состоит в нахождении участков, поскольку их границы не всегда легко обнаружить. После ограничения нужной области необходимо выделить все неизвестные. Составление задач уже относительно легкое дело. Решаются они как обычные уравнения.

Поэтому, несмотря на первые трудности, эти правила все же легче составить и решить, чем использовать, допустим, закон Ома. Поэтому они широко используются в электротехнике. Чтобы понять, как на практике применить описанный способ, рассмотрим один пример.

Значение в математике

Имеется контур, состоящий из четырех цепей. В первой содержится источник питания ε1 с внутренним сопротивлением источника r1, во второй какая-то нагрузка R1. Третья имеет источник питания и нагрузку. Четвертая состоит из нагрузки. Точки B и F являются узлами. Стрелки возле них показывают предположительное направление тока. Стрелка внутри участка показывает направление обхода. Необходимо найти ток в цепях: AK, AB, BF, CD. По идее нужно составить четыре уравнения, но поскольку ε1 и R1 единственные на участке KAB, то их объединим в одну цепь. Выходит, нужно составить три уравнения.

Первое берется из первого правила: I1 + I2 + I3 = 0. Поскольку I1, I2 втекают в узел B, они имеют положительный знак, а I3 вытекает из него, то имеет отрицательный знак. Подставляем в уравнение и получаем I1 + I2 – I3 = 0, или в таком виде I1 + I2 = I3. Второе и третье уравнение берем из второго правила. Для этого используем контур BCDFB и преобразуем формулировку в математическое решение: ε2 = I2 × R2 + I3 × R3. Для участка ACDKA получаем соответственно ε1 = I1 × R1 + I3 × R3. Для наглядности вынесем их отдельно.

ε1 = I1 × R1 + I3 × R3

ε2 = I2 × R2 + I3 × R3

Получилось три задачи. Определимся с номиналами. Первый источник питания равен 6 В, второй – 12 В. Хотя так поступать нельзя, потому что параллельные источники питания должны быть одинаковыми, но нам это пригодится для получения важного урока. Первое сопротивление равно 2 Ом, второе – 4 Ом, третье – 8 Ом.

Осталось вставить данные в уравнения и получаем: для второго номера 6 = 2I1 + 8I3, для третьего номера 12 = 4I2 + 8I3. Дальше избавляемся от общего неизвестного I3. Согласно первому пункту, он равен I1 + I2. Подставляем вместо него эту сумму и получаем: 6 = 2I1 + 8(I1 + I2), 12 = 4I2 + 8(I1 + I2). Раскрываем скобки и складываем одинаковые неизвестные: 6 = 10I1 + 8I2; 12 = 12I2 + 8I1. Чтобы найти I1, нужно избавиться от I2. Для этого первое уравнение умножаем на 12, а второе на 8 и получаем: 72 = 120I1 + 96I2; 96 = 96I2 + 64I1. От первого отнимаем второе и записываем остаток -24 = 56I1, или I1 = -24/56 = -6/14 А. Почему ток отрицательный?

Потому что источники питания разные. На втором источнике напряжение выше, чем на первом, поэтому ток идет в обратном направлении. Находим I2, для этого значение I1 вставляем в любое из последних уравнений: 96 = 96I2 – 64 24/56. Разделим левую и правую часть на 96 и получим: 1 = I2 – (64×24)/(96×56) или дробную часть переносим влево, меняя знак. I2 = 1(64×24)/(96×56), после всех сокращений получаем 1 4/14 А. Для нахождения I3 воспользуемся первым номером: I3 = I1 + I2. I3 = -24/56 + 1 4/14 = 1(4×56)/(14×56) – (24×14)/(56×14) = 1 224/784 -336/784 = 1008/784 -336/784 = 672/774 ≈ 0,87А. Получили I1 = -6/14 А, I2 = 1 4/14 А, I3 ≈ 0,87А.

Закон Кирхгофа в химии

Когда в ходе химреакции система меняет свою теплоёмкость, вместе с тем меняется и температурный коэффициент возникающего в результате этого процесса теплового эффекта. Применяя уравнение, вытекающее из этого закона, можно рассчитывать тепловые эффекты в любом диапазоне температур. Дифференциальная форма этого уравнения имеет вид:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение теплового эффекта;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730С).

Теорема Кирхгофа для термодинамики

Третье уравнения Максвелла, а также принцип сохранения зарядов позволили Густаву Кирхгофу создать два правила, которые применяются в электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитывать протекающий I или приложенное U для любого элемента цепи.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу — второй закон этого автора, используемый для анализа электрической схемы. Вторым законом Кирхгофа утверждается, что для последовательного замкнутого контура алгебраическая сумма всех напряжений по кругу любой замкнутой цепи равна нулю. Утверждение обусловлено тем, что контур цепи является замкнутым проводящим путём, где потери энергии исключаются. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равняется нулю:

Следует обратить внимание: под термином «алгебраическая сумма» имеется в виду учёт полярностей и признаков источников ЭДС, а также падения напряжений по кругу контура. Эта концепция закона Кирхгофа, известная как «сохранение энергии», как движение по кругу замкнутого контура или схемы, утверждает логику возврата к началу цепи и к первоначальному потенциалу без потери напряжения по всему контуру.


Следовательно, любое падение напряжения по кругу контура теоретически равно потенциалу любых источников напряжения, встречающихся на этом пути.

Отсюда следует вывод: применяя Второй закон Кирхгофа к определенному элементу электрической схемы, важно обращать особое внимание на алгебраические знаки падений напряжения на элементах (источниках ЭДС), иначе вычисления оборачиваются ошибкой.

Одиночный контурный элемент — резистор

Простым примером с резистором предположим — ток протекает в том же направлении, что и поток положительного заряда. В этом случае поток тока через резистор протекает от точки A до точки B. Фактически — от положительной клеммы до отрицательной клеммы. Таким образом, поскольку движение положительного заряда отмечается в направлении аналогичном направлению течения тока, на резистивном элементе зафиксируется падение потенциала, которое приведет к падению минусового потенциала на резисторе (— I * R).

Если же поток тока от точки B до точки A протекает в противоположном направлении относительно потока положительного заряда, тогда через резистивный элемент отметится рост потенциала, поскольку имеет место переход от минусового потенциала к потенциалу плюсовому, что даёт падение напряжения (+ I * R). Таким образом, чтобы правильно применить закон Кирхгофа по напряжению к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление потока тока по замкнутому контуру допустимо определять либо по часовой стрелке, либо против часовой стрелки, и любой вариант допустим к выбору. Если выбранное направление отличается от фактического направления тока, соответствие закону Кирхгофа получится корректным и действительным, но приведет к результату, когда алгебраический расчёт будет иметь знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть ещё один пример с одним контуром цепи на соответствие Второму Закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа утверждает — алгебраическая сумма разностей потенциалов любого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутого контура с двумя резисторами и одним источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одного контура. Соответственно, одинаковый ток протекает через каждый из резисторов.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2, дают напряжение по Второму закону Кирхгофа:

Очевидно: применение Второго закона Кирхгофа к одиночному замкнутому контуру даёт формулу эквивалентного или полного сопротивления для последовательной цепи. Допустимо расширить эту формулу, чтобы найти значения падений потенциалов по кругу контура:

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора номинальным сопротивлением 10, 20, 30 Ом, соответственно. Все три резистивных элемента соединены последовательно к 12-вольтовому аккумулятору.

Интересно по теме: Как проверить стабилитрон.

  • общее сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитаем общее сопротивление:

Ro = R1 + R2 + R3 = 10Ω + 20Ω + 30Ω = 60Ω

I = V / Ro = 12 / 60 = 0,2A (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2A (200 мА)

Падение потенциала на каждом из резисторов:

VR1 = I * R1 = 0.2 * 10 = 2В

VR2 = I * R2 = 0.2 * 20 = 4В

VR3 = I * R3 = 0.2 * 30 = 6В

Таким образом, Второй закон Кирхгофа справедлив, учитывая что индивидуальные падения напряжения, отмеченные по кругу замкнутого контура, в итоге составляют сумму напряжений.

Что такое правило напряжений Кирхгофа (второй закон Кирхгофа)?

Принцип, известный как правило напряжений Кирхгофа (открытое в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать следующим образом:

«Алгебраическая сумма всех напряжений в замкнутом контуре равна нулю»

Под алгебраической я подразумеваю, помимо учета величин, учет и знаков (полярностей). Под контуром я подразумеваю любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи, и, наконец, обратно в исходную точку.

Демонстрация закона напряжений Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на наш пример последовательной схемы, на этот раз нумеруя точки цепи для обозначения напряжений:


Рисунок 1 – Демонстрация закона напряжений Кирхгофа в последовательной цепи

Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, вольтметр зарегистрировал бы значение +45 вольт. Для положительных показаний на дисплеях цифровых счетчиков знак «+» обычно не отображается, а скорее подразумевается. Однако для этого урока полярность показаний напряжений очень важна, поэтому я буду явно показывать положительные числа:

Когда напряжение указывается с двойным нижним индексом (символы «2-1» в обозначении «E2-1»), это означает напряжение в первой точке (2), измеренное по отношению ко второй точке (1). Напряжение, указанное как «Ecd», будет означать значение напряжения, показанное цифровым мультиметром с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно точки «d».


Рисунок 2 – Значение Ecd

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего мультиметра на точке впереди и черным измерительным проводом на точке позади, мы получили бы следующие показания:


Рисунок 3 – Определение напряжений в последовательной цепи

Нам уже должен быть знаком общий для последовательных цепей принцип, утверждающий, что отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и уделение внимания полярности (математическому знаку) показаний открывает еще один аспект этого принципа: все измеренные напряжения в сумме равны нулю:

В приведенном выше примере контур образован следующими точками в следующем порядке: 1-2-3-4-1. Не имеет значения, с какой точки мы начинаем или в каком направлении движемся при следовании по контуру; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем той же цепи подсчитать напряжения в контуре 3-2-1-4-3:

Этот пример может быть более понятен, если мы перерисуем нашу последовательную схему так, чтобы все компоненты были представлены на одной прямой линии:


Рисунок 4 – Изменение представления последовательной цепи

Это всё та же последовательная схема, только с немного перераспределенными компонентами. Обратите внимание на полярность падений напряжения на резисторах по отношению к напряжению батареи: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторах ориентированы в другую сторону (положительное слева и отрицательное справа). Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толкание», прилагаемое резисторами против потока электрического заряда, должно происходить в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, если черный провод будет слева, а красный провод – справа:


Рисунок 5 – Измерение напряжений в последовательной цепи

Если бы мы взяли тот же вольтметр и измерили напряжение между комбинациями компонентов, начиная с единственного R1 слева и продвигаясь по всей цепочке компонентов, мы увидели бы, как напряжения складываются алгебраически (до нуля):


Рисунок 6 – Измерение суммы напряжений в последовательной цепи

Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений имеет большое значение в том, как эти значения складываются. При измерении напряжения на R1 – R2 и R1 – R2 – R3 (я использую символ «двойное тире» «–» для обозначения последовательного соединения между резисторами R1, R2 и R3), мы видим, как измеряются бо́льшие значения напряжений (хотя и отрицательные), потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (плюс слева, минус справа).

Сумма падений напряжения на R1, R2 и R3 равна 45 вольт, что соответствует выходному напряжению батареи, за исключением того, что полярность напряжения батареи (минус слева, плюс справа) противоположна падениям напряжения на резисторах, поэтому при измерении напряжения на всей цепочке компонентов мы получаем 0 вольт.

То, что мы должны получить ровно 0 вольт на всей линии, тоже не должно быть тайной. Глядя на схему, мы видим, что крайняя левая часть линии (левая сторона R1, точка номер 2) напрямую соединена с крайней правой частью линии (правая сторона батареи, точка номер 2), что необходимо для завершения схемы.

Поскольку эти две точки соединены напрямую, они являются электрически общими друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.

Демонстрация закона напряжений Кирхгофа в параллельной цепи

Правило напряжений Кирхгофа (второй закон Кирхгофа) будет работать вообще для любой конфигурации схемы, а не только для простых последовательных цепей. Обратите внимание, как это работает для следующей параллельной схемы:


Рисунок 7 – Параллельная схема из резисторов

При параллельной схеме напряжение на каждом резисторе равно напряжению питания: 6 вольт. Суммируя напряжения вдоль контура 2-3-4-5-6-7-2, мы получаем:

Обратите внимание, что конечное (суммарное) напряжение я обозначил как E2-2. Поскольку мы начали наше пошаговое прохождение по контуру в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E2-2), которое, конечно, должно быть равно нулю.

Справедливость закона Кирхгофа о напряжениях независимо от топологии цепи

Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего со справедливостью закона Кирхгофа о напряжениях. В этом отношении схема может быть «черным ящиком» (конфигурация ее компонентов полностью скрыта от нашего взгляда) с набором открытых клемм, между которыми мы можем измерить напряжение, – и правило напряжений Кирхгофа всё равно останется верным:


Рисунок 8 – Справедливость закона Кирхгофа напряжениях независимо от топологии схемы

Попробуйте на приведенной выше диаграмме выполнить обход в любом порядке, начиная с любого вывода, и вернувшись к исходному выводу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

Более того, «контур», который мы отслеживаем для второго закона Кирхгофа, даже не обязательно должен быть реальным путем протекания тока в прямом смысле этого слова. Всё, что нам нужно сделать, чтобы соответствовать правилу напряжений Кирхгофа, – это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между точками. Рассмотрим следующий абсурдный пример, проходя по «контуру» 2-3-6-3-2 в той же параллельной резисторной цепи:


Рисунок 9 – Параллельная схема из резисторов

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):


Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи

Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:

E4-3 + E9-4 + E8-9 + E3-8 = 0

E4-3 + 12 + 0 + 20 = 0


Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3
Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4
Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9
Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8

Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:


Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3

Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:


Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

или в комплексной форме

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_textrm<у>-1 $, где $ N_textrm <у>$ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_textrm<в>-N_textrm<у>+1 $, где $ N_textrm <в>$ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ underline_ <1>$, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ underline_<1>- underline_<2>- underline_ <3>= 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -underline_<1>- underline_ <4>+ underline_ <6>= 0; $$

$$ underline_<2>+ underline_ <4>+ underline_<5>- underline_ <7>= 0; $$

$$ underline_<3>- underline_<5>- underline_ <1>= 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ underline_ cdot underline_ <1>+ R_ <2>cdot underline_<2>- underline_ cdot underline_ <4>= underline_<1>; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_ <2>cdot underline_ <2>+ R_ <4>cdot underline_ <3>+ underline_ cdot underline_ <5>= underline_<2>; $$

для контура «3 к.»:

$$ underline_ cdot underline_ <4>+ (underline_ + R_<1>) cdot underline_ <6>+ R_ <3>cdot underline_ <7>= underline_<3>; $$

где $ underline_ = -frac<1> <omega C>$, $ underline_ = omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ begin underline_<1>- underline_<2>- underline_ <3>= 0 \ -underline_<1>- underline_ <4>+ underline_ <6>= 0 \ underline_<2>+ underline_ <4>+ underline_<5>- underline_ <7>= 0 \ underline_<3>- underline_<5>- underline_ <1>= 0 \ underline_ cdot underline_ <1>+ R_ <2>cdot underline_<2>- underline_ cdot underline_ <4>= underline_ <1>\ -R_ <2>cdot underline_ <2>+ R_ <4>cdot underline_ <3>+ underline_ cdot underline_ <5>= underline_ <2>\ underline_ cdot underline_ <4>+ (underline_ + R_<1>) cdot underline_ <6>+ R_ <3>cdot underline_ <7>= underline_ <3>end $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ begin 1 & -1 & -1 & 0 & 0 & 0 & 0 \ -1 & 0 & 0 & -1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 1 & 0 & -1 \ 0 & 0 & 1 & 0 & -1 & 0 & 0 \ underline_ & R_ <2>& 0 & -underline_ & 0 & 0 & 0 \ 0 & -R_ <2>& R_ <4>& 0 & underline_ & 0 & 0 \ 0 & 0 & 0 & underline_ & 0 & R_<1>+underline_ & R_ <3>\ end cdot begin underline_ <1>\ underline_ <2>\ underline_ <3>\ underline_ <4>\ underline_ <5>\ underline_ <6>\ underline_ <7>\ end = begin 0 \ 0 \ 0 \ underline_ <1>\ underline_ <1>\ underline_ <2>\ underline_ <3>\ end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ underline<bold> $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Метод узловых напряжений

Содержание:

Метод узловых напряжений:

Метод узловых напряжений (узловых потенциалов) является наиболее общим. Он базируется на первом законе Кирхгофа (ЗТК) и законе Ома. В отличие от методов, рассмотренных в лекции 4, метод позволяет уменьшить число уравнений, описывающих схему, до величины, равной количеству рёбер (ветвей) дерева (2.1)

Идея метода состоит в следующем:

  1. Выбирается базисный узел — один из узлов цепи, относительно которого рассчитываются напряжения во всех узлах; базисный узел помечается цифрой 0.
  2. Потенциал базисного узла принимается равным нулю.
  3. Рассчитываются напряжения во всех узлах относительно базисного.
  4. По закону Ома находятся токи и напряжения в соответствующих ветвях.

Напряжения в узлах цепи, отсчитанные относительно базисного, называют узловыми напряжениями.

Определение:

Метод анализа колебаний в электрических цепях, в котором неизвестными, подлежащими определению, являются узловые напряжения, называется методом узловых напряжений.

В дальнейшем будем полагать, что цепь имеет

  • — задающий ток источника тока, который может быть подключён к -му узлу; этот ток считается известным и характеризует воздействие на цепь;
  • — узловое напряжение -го узла, отсчитанное относительно нулевого (базисного)узла;
  • — активная проводимость, связывающая £-ый и -ый узлы;
  • — ток в ветви между -ым и -ым узлами, отсчитываемый от -го узла в направлении -го; токи, направления отсчётов которых ориентированы от узла, входят в уравнения со знаком «+ «;
  • — напряжение в ветви между -ым и -ым узлами.

Предварительно покажем, что при известных узловых напряжениях можно найти напряжения на всех элементах цепи, а потому и все токи. Действительно, напряжение на любой ветви определяется по второму закону Кирхгофа (ЗНК) как разность соответствующих узловых напряжений, а токи в элементах найдутся по закону Ома. Для контура, включающего элементы (рис. 5.1), по ЗНК имеем:

Аналогично можно записать

что и требовалось показать.

Составление узловых уравнений

При составлении уравнений для, схемы рис. 5.1 будем полагать, что задающие токи и источников тока (их на схеме два) известны.

Тогда согласно первому закону Кирхгофа для узлов 1 и 2 в предположении, что в общем случае они связаны со всеми другими узлами, получим:

Выразим токи в уравнениях через узловые напряжения, как показано в разд. 5.1:

Раскрыв скобки и приведя подобные члены, получаем узловые уравнения:

Полученный результат позволяет сделать следующие выводы:

  • в левую часть каждого из уравнений входит N слагаемых, пропорциональных искомым узловым напряжениям
  • коэффициент при узловом напряжении -го узла, для которого составляется уравнение, представляет собой сумму проводимостей всех элементов, подключённых одним из своих зажимов к этому узлу; этот коэффициент входит в уравнение с положительным знаком;
  • остальные слагаемые представляют собой произведение узлового напряжения на проводимость элемента, связывающего

— ый и -ый узлы; все эти слагаемые входят в уравнение с отрицательным знаком.

Аналогично записываются узловые уравнения для всех других узлов цепи, в результате чего образуется система узловых уравнений вида:

собственная проводимость -го узла цепи, являющаяся арифметической суммой проводимостей всех элементов, подключённых одним из зажимов к -му узлу;

взаимная проводимость -го и -го узлов цепи, являющаяся проводимостью элемента, включённого между -ым и -ым узлами;

задающий ток -го узла цепи, являющийся алгебраической суммой задающих токов источников тока, подключённых одним из зажимов к -му узлу цепи; слагаемые этой суммы входят в правые части уравнений со знаком «+», если направление отсчёта задающего тока источника ориентировано в сторону к-го узла, и со знаком в противном случае.

Систему узловых уравнений принято записывать в канонической форме, а именно:

  • токи, как свободные члены, записываются в правых частях уравнений;
  • неизвестные напряжения записываются в левых частях уравнений с последовательно возрастающими индексами;
  • уравнения располагаются в соответствии с порядковыми номерами узлов. Такая запись применена в (5.2).

Система (5.2) является линейной неоднородной системой независимых уравнений, поэтому позволяет найти искомые узловые напряжения. Методы решения таких систем широко известны (Крамера, Гаусса, Гаусса—Жордана).

Метод узловых напряжений даёт существенное сокращение необходимого числа уравнений по сравнению с методом токов элементов. Выигрыш оказывается тем значительнее, чем больше независимых контуров имеет цепь.

Система называется неоднородной, если хотя бы один из свободных членов (в данном случае это ) не равен нулю.

Особенности составления узловых уравнений

Метод узловых напряжений можно применять и в тех случаях, когда в анализируемой цепи имеются источники напряжения. При этом:

  • напряжение между любой парой узлов, к которым подключён источник напряжения, известно;
  • в качестве базисного желательно выбирать узел, к которому одним из своих зажимов подключён источник напряжения — тогда узловое напряжение, отсчитываемое между базисным узлом и вторым зажимом источника, равно ЭДС источника или отличается от него знаком; кроме того, базисным может быть выбран узел, к которому подключено наибольшее число элементов, если этот выбор не противоречит первой рекомендаций;
  • уменьшается число независимых узловых напряжений, а потому понижается и порядок системы, т. е. число входящих в систему независимых уравнений;
  • если цепь содержит источников напряжения, имеющих один общий зажим, то число узловых уравнений, которое можно составить для такой цепи, равно

Пример 5.1.

Записать систему узловых уравнений для удлинителя(рис. 5.2), рассмотренного в лекции 4.

Решение. Удлинитель содержит четыре узла и один источник тока, поэтому согласно (5.3) достаточно составить всего два узловых уравнения

Положим узел 0 базисным, поскольку к нему одним из своих зажимов подключён источник напряжения. Узловое напряжение узла 1 известно и равно. ЭДС источника напряжения поэтому остаётся записать уравнения для узлов 2 и 3 по правилам, рассмотренным в разд. 5.1. Предварительно запишем собственные и взаимные проводимости узлов.

Такое обращение справедливо,-поскольку удлинители применяются для построения магазина затуханий, или аттенюатора.

Собственная проводимость второго узла

взаимные проводимости второго узла

собственная проводимость третьего узла

взаимные проводимости третьего узла

Теперь получим систему узловых уравнений, записав узловые уравнения для второго и третьего узлов:

Поскольку запишем эту систему уравнений в каноническом виде

Эта система уравнений и является окончательным результатом решения задачи, поставленной в примере.

Если содержащиеся в цепи источники напряжения не имеют общего зажима, то задачу анализа следует решать или методом узловых напряжений в сочетании с принципом наложения или путём эквивалентных преобразований перейти к другой модели цепи.

При составлении узловых уравнений для цепей, содержащих многополюсники (например, транзисторы, операционные усилители
и т. д), следует прежде всего заменить эти многополюсники их схемами замещения.

Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками и двумя узлам, можно осуществить методом узлового напряжения. Напряжение межи узлами и называется узловым. UAB R3 узловое напряжение цепи (рис. 4.9) Для различных ветвей (рис. 4.9) узловое напряжение UAB можно опредо лить следующим образом.

1. Поскольку для первой ветви источник работает в режиме генератор:

Величина тока определяется как

где — проводимость

2.Для второй ветви источник работает в режиме потребителя следовательно

3.Для третьей ветви

(Потенциал точки В для третьей ветви больше, чем потенций точки А, так как ток направлен из точки с большим потенциалом в точку с меньшим потенциалом)

Величину тока можно определить по закону Ома

По первому закону Кирхгофа для узловой точки А (или В):

Подставив в уравнение (4.6) значения токов из уравнений (4.3), .4) и (4.5) для рассматриваемой цепи, можно записать

Решив это уравнение относительно узлового напряжения UAB, можно определить его значение

Следовательно, величина узлового напряжения определяется отношением алгебраической суммы произведений ЭДС и проводимости ветвей с источниками к сумме проводимостей всех ветвей:

Для определения знака алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т.е. от одного узла другому (рис. 4.9). Тогда ЭДС источника, работающего в режиме генератора, берется со знаком «плюс», а источника, работающего в режиме потребителя, со знаком «минус». Таким образом, для определения токов в сложной цепи с двумя узлами вычисляется сначала узловое напряжение по выражению 4.9), а затем значения токов по формулам (4.3), (4.4), (4.5). Узловое напряжение UAB может получиться положительным или отрицательным, как и ток в любой ветви.

Знак «минус» в вычисленном значении тока указывает, что реальное направление тока в данной ветви противоположно словно выбранному.

Пример 4.7

В ветвях схемы (рис. 4.10) требуется определить токи, если:

Решение

Узловое напряжение

где

тогда

Токи в ветвях будут соответственно равны

Как видно из полученных результатов, направление токов противоположно выбранному. Следовательно, источник £ работает в режиме потребителя.

Пример 4.8

Два генератора (рис. 4.11), ЭДС и внутреннее сопротивление которых одинаковы: , питают потребитель (нагрузку) с сопротивлением R= 5,85 Ом.

Как изменится ток второго генератора: 1) при увеличении его ЭДС (£2) на 1 %; » 2) при увеличении узлового напряжения (UAB) на 1 %.

Решение

Определяется узловое напряжение UAB цепи (рис. 4.11)

=

Тогда ток второго генератора

При увеличении Е2 на 1 %, его величина станет равной

При этом

Следовательно, увеличение ЭДС генератора Е2 на 1 % приводит увеличению тока этого генератора на 24 %.

2. При увеличении узлового напряжения на 1% его величины станет равной

При этом Таким образом, ток второго генератора при увеличении узлового напряжения на 1 % уменьшится на 23,4 %.

Знак «минус» означает уменьшение, а не увеличение тока .

Определение метода узловых напряжений

Метод узловых напряжений заключается в том, что на основании первого закона Кирхгофа определяются потенциалы в узлах электрической цепи относительно некоторого базисного узла. Эти разности потенциалов называются узловыми напряжениями, причем положительное направление их указывается стрелкой от рассматриваемого узла к базисному.

Напряжение на какой-либо ветви равно, очевидно, разности узловых напряжений концов данной ветви; произведение же этого напряжения на комплексную проводимость данной ветви равно току в этой ветви. Таким образом, зная узловые напряжения в электрической цепи, можно найти токи в ветвях.

Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны также потенциалам этих узлов. Поэтому данный метод называется также методом узловых потенциалов.

На рис. 7-7 в виде примера изображена электрическая схема с двумя источниками тока, имеющая три узла: 1, 2 и 3. Выберем в данной схеме в качестве базиса узел 3 и

обозначим узловые напряжения точек 1 и 2 через Согласно принятым на рис. 7-7 обозначениям комплексные проводимости ветвей равны соответственно:

Для заданной электрической цепи с тремя узлами могут быть записаны два уравнения по первому закону Кирхгофа, а именно: для узла 1

Величина представляющая собой сумму комплексных проводимостей ветвей, сходящихся в узле 1, называется собственной проводимостью узла 1 величина равная комплексной проводимости ветви между узлами 1 и 2, входящая в уравнения со знаком минус, называется об-, щей проводимостью между узлами 1 и 2.

Если заданы токи источников тока и комплексные проводимости ветвей, то узловые напряжения находятся совместным решением уравнений.

В общем случае если электрическая схема содержит q узлов, то на основании первого закона Кирхгофа получается система из q — 1 уравнений (узел q принят за базисный):

Здесь ток источника тока, подходящий к узлу, берется со знаком плюс, а отходящий от узла — со знаком минус; — собственная проводимость всех ветвей, сходящихся в данном узле — общая проводимость между узламп входящая со знаком минус при выбранном направлении всех узловых напряжений к базису, независимо от того, является ли данная электрическая цепь планарной или непланарной.

Решив систему уравнений (7-5) при помощи определителей получим формулу для узлового напряжения относительно базиса:

где — определитель системы

— алгебраическое дополнение элемента данного определителя.

Первый индекс i алгебраического дополнения, обозначающий номер строки, вычеркиваемой в определителе системы, соответствует номеру узла, заданный ток источника тока которого умножается на данное алгебраическое дополнение. Второй индекс обозначающий номер столбца, вычеркиваемого в определителе системы, соответствует номеру узла, для которого вычисляется узловое напряжение.

Уравнения (7-5), выражающие первый закон Кирхгофа, записаны в предположении, что в качестве источников электрической энергии служат источники тока. При наличии в электрической схеме источников э. д. с. последние должны быть заменены эквивалентными источниками тока.

Если в схеме имеются ветви, содержащие только э. д, с. (проводимости таких ветвей бесконечно велики), то эти ветви следует рассматривать как источники неизвестных токов, которые затем исключаются при сложении соответствующих уравнений. Дополнительными связями между неизвестными узловыми напряжениями будут являться известные напряжения между узлами, равные заданным э. д. с.

Определитель снабжен индексом у, так как его элементами являются комплексные проводимости.

При наличии только одной ветви с э. д. с. и бесконечной проводимостью целесообразно принять за базисный узел один из узлов, к которому примыкает данная ветвь; тогда напряжение другого узла становится известным и число неизвестных сокращается на одно.

Метод узловых напряжений имеет преимущество перед методом контурных токов в том случае, когда число уравнений, записанных по первому закону Кирхгофа, меньше числа уравнений, записанных по второму закону Кирхгофа. Если заданная электрическая схема имеет q узлов и р ветвей, то в соответствии со сказанным выше, метод узловых напряжений представляет преимущество при q — 1

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

Выполнение домашнего задания № 1 (первая часть)

Тема «Расчёт сложной цепи постоянного тока »

Методические указания

Цель работы: освоение методов анализа линейных электрических цепей постоянного тока.

  1. Задание:

1) Начертить схему согласно варианту.

2) Определить количество ветвей, узлов и контуров.

3) Составить уравнения по первому и второму законам Кирхгофа.

Рекомендуемые материалы

4) Определить токи всех ветвей методом узловых потенциалов и методом контурных токов.

5) Составить и рассчитать баланс мощностей.

6) Определить ток в ветви (номер ветви в таблице соответствует номеру резистора в схеме) методом эквивалентного генератора.

7) Определить показания приборов.

8) Построить потенциальную диаграмму.

9) Сделать выводы.

2. Указания по оформлению расчетно-графической работы

1) Начертить схему в соответствии с номером варианта (схема Приложение 1, таблица Приложение 2). Номер варианта соответствует номеру в учебном журнале.

2) Домашнее задание выполняется на листах формата А4 с одной стороны листа, желательно использовать компьютерные программы.

3) Выполнить чертеж  схемы и её элементов в соответствии с ГОСТом.

4) Образец оформления титульного листа представлен в Приложении 3.

5) Каждый пункт задания должен иметь заголовок. Формулы, расчёты, диаграммы должны сопровождаться необходимыми пояснениями и выводами. Полученные значения сопротивлений, токов, напряжений и мощностей должны заканчиваться единицами измерения в соответствии с системой СИ.

6) Графики (диаграммы) должны выполняться на мм бумаге  с обязательной градуировкой по осям и указанием масштабов по току и напряжению.

7) Если студент сделал ошибки при выполнении домашнего задания, то исправление проводится на отдельных листах с заголовком «Работа над ошибками».

8) Срок выполнения домашнего задания 5 неделя семестра.

3. Теоретическое введение

3.1 Топологические компоненты электрических схем

а) ветвь — участок электрической цепи с одним и тем же током

ветвь активная

ветвь пассивная

Количество ветвей — р

б) узел q  место соединения трех и более ветвей, узлы  бывают потенциальные или геометрические рис. 1

            Рис. 1

Четыре узла геометрических (abcd) и три потенциальных (abc) так как потенциалы узлов с и d равны: φс = φd

в) Контур — замкнутый путь, проходящий через несколько ветвей и узлов   разветвленной  электрической цепи – abcd , рис. 1. Независимый контур имеющий хотя бы одну новую ветвь.

3.2. Баланс мощностей

Составляем уравнения для определения мощности приемника:

                                               ΣРпр = Σ I²·R

Составляем уравнения для определения мощности источника:

                                               ΣPистE·I

Баланс сходится при условии равенства уравнений мощностей источника и приемника, т.е.:                                                ΣРпр = ΣPист

Баланс считается сошедшимся, если погрешность не сходимости составляет не более 2%.

3.3. Эквивалентные преобразования пассивных участков электрической цепи

Соединения бывают: последовательное, параллельное и смешанное, звезда, треугольник, мостовое.

1. Последовательное соединение, когда ток в каждом элементе один и тот же.

U1                   U2                   U3

R           R2       R3

I

                                               U

Rэкв = R1+R2+R3

I = E/R экв

U = U1+U2+U3 =

=R1·I + R2·I + R3·I = R экв ·I

Свойства последовательного соединения:

а) Ток цепи  и напряжения зависит от сопротивления любого из элементов;

б) Напряжение на каждом из последовательно соединенных элементов меньше входного;

Ui < U

в) Последовательное соединение является делителем напряжения.

2. Параллельное соединение

Соединение, при котором все участки цепи присоединяются к одной паре узлов, находящихся под воздействием одного и того же напряжения.

Iвх = I1+I2+I3

I1 = U/R1 = UG1

I2 = U/R2 = UG2

I3 =U/R3 = UG3

Iвх =ΣGi

Свойства параллельного соединения:

1) Эквивалентное сопротивление всегда меньше наименьшего из сопротивлений ветвей;

2) Ток в каждой ветви всегда меньше тока источника. Параллельная цепь является делителем тока;

3) Каждая ветвь находится под одним и тем же напряжением источника.

3. Смешанное соединение

Это сочетание последовательных и параллельных соединений.

Метод эквивалентных преобразований

Решение любой задачи с одним источником питания с помощью законов Ома, Кирхгофа и умением сворачивания схемы.

3.4 Методы расчета электрических цепей с несколькими источниками питания

3.4.1 Метод с помощью законов Кирхгофа.

Самый точный метод, но с его помощью можно определять параметры схемы с небольшим количеством контуров (1-3).

            Алгоритм:

1. Определить количество узлов q, ветвей p и независимых контуров;

2. Задаться направлениями токов и обходов контуров произвольно;

3. Установить число независимых уравнений по 1-ому закону Кирхгофа (q — 1) и составить их, где q-количество узлов;

4.  Определить число уравнений по 2-ому закону Кирхгофа  (pq + 1) и составить их;

5. Решая совместно уравнения, определяем недостающие параметры цепи;

6. По полученным данным производится проверка расчетов, подставляя значения в уравнения по 1-ому и 2-ому законам Кирхгофа или составив и рассчитав баланс мощностей.

Пример:

Рис 1.

Согласно предложенному алгоритму, определим количество узлов и ветвей схемы рис. 1

q = 3, p = 5, следовательно, уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3.

Запишем эти уравнения согласно правилам:

                        для узла «а»                          I1 — I2 — I4 = 0

                        для узла «b»                       I4 — I5 — I3 = 0

                        для контура 1                                   R1·I1+R2·I2 = E1 — E2

                        для контура 2                                   R4·I4+R5·I5 — R2·I2 = E2

                        для контура 3                                   R3·I3 — R5·I5  =E3

Правило: если ЭДС и ток имеют одинаковое направление с направлением обхода  контура, то они берутся с «+», если нет, то с «-».

                        Составим уравнения баланса мощностей:

Pпр= R1·I1² + R2·I2² + R3·I3² + R4·I4² + R5·I5²

Pист= E1·I1 + E3·I3 — E2·I2

3.4.2 Метод контурных токов

Используя этот метод, сокращается число уравнений, а именно исключаются уравнения по 1-ому закону Кирхгофа. Вводится понятие контурный ток (таких токов в природе не бывает – это виртуальное понятие), составляются уравнения по второму закону Кирхгофа.

Рассмотрим наш пример рис. 2

Рис.2

Контурные токи обозначены Iм, Iн, Iл, заданы их направления, как показано на рис. 2

Алгоритм решения:

1. Запишем действительные токи через контурные:  по внешним ветвям   I1 = Iм,

     I3 = Iл, I4 = Iн  и по смежным ветвям I2 = IмIн, I5 = IнIл

2. Составим уравнения по второму закону Кирхгофа, так, как  контура три, следовательно будет и три уравнения:

для первого контура      Iм·(R1 + R2) — Iн·R2 = E1E2, знак «–» перед Iн ставится потому, что этот ток направлен против Iм

для второго контура      — Iм·R2 + (R2 + R4 + R5) ·IнIл·R5 = E2

для третьего контура    — Iн·R5 + (R3 + R5) ·Iл = E3

3. Решая полученную систему уравнений, находим контурные токи

4. Зная контурные токи, определяем действительные токи схемы (см. пункт 1.)

 3.4.3 Метод узловых потенциалов

Предлагаемый метод самый эффективный из предложенных методов.

            Ток в любой ветви схемы можно найти по обобщённому закону Ома. Для этого необходимо определить потенциалы узлов схемы.

Если схема содержит n-узлов, то уравнений будет (n-1):

  1. Заземлим любой узел схемы φ = 0;
  2. Необходимо определить (n-1) потенциалов;
  3. Составляются уравнения согласно первому закону Кирхгофа по типу:      

φ1·G11 + φ2·G12 +…+ φ(n-1)·G1,(n-1) =  I11

φ1·G21 + φ2·G22 +…+ φ(n-1)·G2,(n-1)  = I22

…………………………………………………

…………………………………………………

φ1·G(n-1),1 + φ2 ·G(n-1),2 +…+  φ(n-1)·G(n-1),(n-1) = I (n-1), (n-1)

где I11I (n-1), (n-1) узловые токи в ветвях с ЭДС подключенных к данному узлу, Gkk собственная проводимость (сумма проводимостей ветвей в узле k), Gkm – взаимная проводимость (сумма проводимостей ветвей соединяющие узлы   k и m), взятая со знаком «–».

  1. Токи в схеме определяются по обобщенному закону Ома.

Пример:

Заземлим узел с, т.е. φс = 0

φа ( +  + )  —  φb  = E1 + E2

φb (++) — φa = — E3

определив потенциалы φа и φb, найдем токи схемы. Составление формул для расчета токов осуществляется в соответствии с правилами знаков ЭДС и напряжений, при расчете по обобщенному закону Ома (см. лекция 1).

      

        

Правильность расчета токов проверяется с помощью законов Кирхгофа и баланса мощностей.

3.4.4  Метод двух узлов

Метод двух узлов это частный случай метода узловых потенциалов. Применяется в случае, когда схема содержит только два узла (параллельное соединение).

Алгоритм:

  1. Задаются положительные направления токов и напряжение между двумя узлами  произвольно;
  2. Уравнение для определения межузлового напряжения 

,

где   G – проводимость ветви, J – источники тока;

  1. Правило: E и J берутся со знаком «+», если Е и J направлены к узлу с большим потенциалом;
  2. Токи схемы определяются по обобщенному закону Ома

Пример:

Составление формул для расчета токов осуществляется в соответствии с правилами знаков ЭДС и напряжений, при расчете по обобщенному закону Ома (см. лекция 1).

                                  

3.4.5 Метод активного двухполюсника

Данный метод применяется, когда необходимо рассчитать параметры одной ветви в сложной схеме. Метод основан на теореме об активном двухполюснике:  «Любой активный двухполюсник может быть заменен эквивалентным двухполюсником с параметрами Еэкв и Rэкв или Jэкв  и Gэкв , режим работы схемы при этом не изменится».

Алгоритм:

1. Разомкнуть ветвь, в которой необходимо определить параметры.

2. Определить напряжение на разомкнутых зажимах ветви, т.е. при режиме холостого хода Еэкв = Uхх любимым методом.

3. Заменить активный двухполюсник, т.е. схему без исследуемой ветви, пассивным (исключить все источники питания, оставив их внутренние сопротивления, не забывая, что у идеальной ЭДС Rвн = 0, а у идеального источника тока   Rвн = ∞). Определить эквивалентное сопротивление полученной схемы Rэкв.

4. Найти ток в ветви по формуле I = Eэкв/(R+Rэкв) для пассивной ветви и

I = E ± Eэкв/(R+Rэкв) для активной ветви.

3.5 Построение потенциальной диаграммы

Распределение потенциалов в электрической цепи можно представить с помощью потенциальной диаграммы.

Потенциальная диаграмма представляет собой зависимость φ(R) в виде графика, на котором по вертикальной оси  отложены значения потенциалов последовательного ряда точек выбранного контура,  а по горизонтальной – сумма значений сопротивлений последовательно проходимых участков цепи этого контура. Построение потенциальной диаграммы начинается из произвольно выбранной точки контура, потенциал которой принят за нулевой  φ1 = 0. Последовательно обходим выбранный контур. Если построение диаграммы начали в точке 1, то и закончиться она должна в этой же точке 1. Скачки потенциала на графике соответствуют включенным в цепь источникам напряжения.

1.1.  Определение показаний приборов

Вольтметр измеряет напряжение (разность потенциалов) между двумя точками в электрической цепи. Для определения показания вольтметра необходимо составить уравнение по второму закону Кирхгофа по контуру, в который входит измеряемое напряжение.

Ваттметр показывает мощность участка электрической цепи, которая определяется по закону Джоуля – Ленца.

4. Пример:

Дано: R1 = R5 =10 Ом, R4 = R6 = 5 Ом, R3 = 25 Ом, R2 = 20 Ом, Е1 =100 В, Е2 =80 В, Е3 =50 В

Определить токи в ветвях разными методами, составить и рассчитать баланс мощностей.

Решение:

Определяем количество узлов, ветвей и независимых контуров: q = 3,  p = 5, контуров 3. Составляем уравнения по законам Кирхгофа: уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3 для узлов а и b.  Для контуров выбираем обходы по часовой стрелке:

1) Метод контурных токов

Так как три контура, то будет три контурных тока I11, I22, I33. Направления этих токов выбираем по часовой стрелке рис 3. Запишем настоящие токи через контурные:

 I1 = I11I33,   I2 = — I22,   I3 = — I33,   I4 = I11,   I5 = I11 I22

Запишем уравнения по второму закону Кирхгофа для контурных уравнений в соответствии с правилами.

Правило: если ЭДС и ток имеют одинаковое направление с направлением обхода  контура, то они берутся с «+», если нет, то с «–».

Решим систему уравнений математическим методом Гаусса или Крамера.

Решив систему, получаем значения контурных токов:

I11 = 2,48 А, I22 = — 1,84 А, I33 = — 0,72 А

Определим настоящие токи: I1 = 3,2 А, I2 = 1,84 А, I3 = 0,72 А, I4 = 2,48 А, I5 = 4,32 А

Проверим правильность расчёта токов, подставив их в уравнения по законам Кирхгофа.

Составим уравнения для расчёта баланса мощностей:

Из расчёта видно, что баланс мощностей сошёлся. Погрешность меньше 1%.

2) Метод узловых потенциалов

            Решаем туже задачу методом узловых потенциалов

Составим уравнения:

Ток в любой ветви схемы можно найти по обобщённому закону Ома. Для этого необходимо определить потенциалы узлов схемы. Заземлим любой узел схемы φс = 0.

Решая систему уравнений, определяем потенциалы узлов φa и φb

φa= 68 B       φb = 43,2 B

По обобщенному закону Ома определяем токи в ветвях. Правило: ЭДС и напряжение берутся со знаком «+», если их направления совпадают с направлением тока, и со знаком «–», если нет.

3)Построение потенциальной диаграммы внешнего контура

Определим значение потенциалов узлов и точек схемы.

Правило: обходим контур против часовой стрелки, если ЭДС совпадает с обходом тока, то ЭДС бреется с «+» (φе). Если ток по обходу, то падение напряжения на резисторе, т.е «-» (φb).

Потенциальная диаграмма:

  1. Список рекомендуемой литературы
  1. Бессонов Л.А. Теоретические основы электротехники. В 2-х томах. М.: Высшая школа, 1978.
  2. Электротехника и электроника. Учебник для вузов. / Под редакцией В.Г.Герасимова. — М.: Энергоатомиздат, 1997.
  3. Сборник задач по электротехнике и основам электроники. / Под редакцией В.Г. Герасимова. Учебное пособие для вузов.- М.: Высшая школа, 1987.
  4. Борисов Ю.М., Липатов Д.Н., Зорин Ю.Н. Электротехника. Учебник для вузов – М.: Энергоатомиздат, 1985. 
  5. Липатов Д.Н. Вопросы и задачи по электротехнике  для  программированного обучения. Учебное пособие для студентов вузов. – М.:  Энергоатомиздат, 1984.
  6. Волынский Б.А., Зейн Е.Н., Шатерников В.Е. Электротехника, -М.: Энергоатомиздат, 1987.
  1. Контрольные вопросы
  1. Свойства последовательной цепи
  2. Свойства параллельной цепи
  3. Правила составления баланса мощностей
  4. Правила составления уравнений по первому закону Кирхгофа
  5. Как определяется мощность источника питания?
  6. Независимый контур. Напишите уравнение по 2-ому закону Кирхгофа любого контура Вашей схемы.
  7. Правила составления уравнений по 2-ому закону Кирхгофа
  8. Как определяется мощность приемника?
  9. Как определить количество уравнений по 1-ому закону Кирхгофа?
  10. Алгоритм метода эквивалентного генератора
  11. Как включается вольтметр в цепь?
  12. Как включается амперметр в цепь?
  13. Как определить количество уравнений по 2-ому закону Кирхгофа?
  14. С помощью какого закона определяем ток в ветви, в методе эквивалентного генератора?
  15. В чём смысл метода эквивалентных преобразований?

Приложение 1

Схема 1 и данные для группы СМ3 – 41

E1=50 В,  E2 = 100 В,  E3 = 80 В, 

R1= 40 Ом,   R2 = 30 Ом,  R3 = 20 Ом,

R4 = 30 Ом,  R5 = 20 Ом, R6 = 30 Ом, 

Е = 60 В

Схема 1 и данные для группы СМ3 – 42

E1=100 В,  E2 = Е4= 50 В,  E3 = 80 В,

 R1= 80 Ом,   R2 = 50 Ом, 

R3 = 40 Ом, R4 = 30 Ом,

R5= R7= 20 Ом, R6 =30 Ом,

Е =40 В

Приложение 2.

Для группы СМ3 – 41

Вариант

ветвь

Заменить

1

1

R3→E

2

2

R1→0

3

4

R1→E

4

3

R1→(-E)

5

2

R2→0

6

6

R2→E

7

5

R2→(-E)

8

1

R3→0

9

3

R4→E

10

2

R4→(-E)

11

6

R6→E

12

1

R5→E

13

5

R6 и R5→(-E)

14

4

R6 и R5→0

15

3

R5→0

16

1

R5→(-E)

17

2

R6 и R5→(E)

18

3

R6→0

19

4

R1→R2

20

3

E2→R4

21

2

R2→E

22

1

R4→E

23

5

R1→0

24

1

E1→R4

25

3

E2→R5

26

2

E3→R1

27

5

E2→R2

28

4

R3→E

29

3

R1→R4

30

6

E2→R6

Для группы СМ3 – 42

Вариант

ветвь

Заменить

1

1

R3→E

2

5

E1→0

3

4

R1→E

4

3

R1→(-E)

5

2

E2→0

6

6

R4→E

7

5

R2→(-E)

8

4

E3→0

9

3

R4→E

10

2

R7→(-E)

11

1

E4→0

12

3

R5→E

13

5

R6 и R5→(-E)

14

4

R6 и R7→0

15

6

R7→0

16

1

R3 и  E3→0

17

2

R6 и R4→0

18

3

R6 и R2→0

19

4

R3 и R4→0

20

5

E2→R4

21

6

R2→E

22

1

R4 и R7→E

23

2

R1→0

24

5

E1→R4

25

3

E2→R5

26

2

E3→R1

27

5

E2→R2

28

4

R3→E

29

3

R1→R4

30

2

E2→R6

Выполнение домашнего задания № 1 вторая часть

по курсу «Электротехника и электроника»

тема «Расчёт линейных цепей синусоидального тока»

Методические указания

Цель работы: освоение анализа электрических цепей однофазного синусоидального тока с использованием символического метода.

  1. Задание

1) Изучить теоретическое введение и методические указания по выполнению домашнего задания.

2) Начертить схему с элементами согласно варианту.

3) Определить количество узлов, ветвей и независимых контуров.

4) Определить количество уравнений по первому и второму законов Кирхгофа.

5) Составить уравнения по первому и второму законов Кирхгофа.

6) Рассчитать эквивалентное сопротивление схемы и определить характер цепи.

7) Определить токи в ветвях методом эквивалентных преобразований.

Записать токи в алгебраической, показательной и во временной форме.

8) Составить и рассчитать баланс мощностей. Определить коэффициент мощности цепи.

9) Рассчитать напряжения на элементах и построить векторную диаграмму токов и напряжений всей цепи.

10) Определить показания приборов.

11) Начертить схему замещения исходя из характера цепи. Ввести в схему замещения дополнительный элемент, обеспечивающий в цепи   резонанс напряжений. Рассчитать напряжения и ток, построить векторную диаграмму.

12) Ввести в схему замещения дополнительный элемент, обеспечивающий в цепи   резонанс токов. Рассчитать напряжение и токи, построить векторную диаграмму.

13) Собрать исходную схему в среде MULTISIM. Поставить приборы и  измерить токи, напряжение и мощность.

  1. Указания по оформлению расчетно-графической работы

9) Выписать параметры сопротивлений ветвей схемы в соответствии с номером варианта (таблица приложение1). Номер варианта соответствует номеру в учебном журнале.

10) Домашнее задание выполняется на листах формата А4 с одной стороны листа, желательно использовать компьютерные программы.

11) Выполнить чертеж  схемы и её элементов в соответствии с ГОСТом. Схема представлена в приложении 2.

12) Образец оформления титульного листа представлен в приложении 2.

13) Каждый пункт задания должен иметь заголовок. Формулы, расчёты, диаграммы должны сопровождаться необходимыми пояснениями и выводами. Полученные значения сопротивлений, токов, напряжений и мощностей должны заканчиваться единицами измерения в соответствии с системой СИ.

14) Графики (векторные диаграммы) должны выполняться на миллиметровой бумаге  с обязательной градуировкой по осям и указанием масштабов по току и напряжению.

15) При работе с программой MULTISIM необходимо в рабочем поле собрать схему, подключить в ветви амперметры. Перевести картинку с результатами в Word. Амперметры убрать из ветвей. Подключить вольтметр и ваттметр и измерить напряжение и мощность. Перевести картинку с результатами в Word. Результаты включить в отчет.

16) Если студент сделал ошибки при выполнении домашнего задания, то исправление проводится на отдельных листах с заголовком «Работа над ошибками».

17) Срок выполнения домашнего задания 10 неделя семестра.

  1. Теоретическое введение

3.1       Временная форма представления электрических величин, при синусоидальных воздействиях

Аналитическое выражение мгновенных значений тока, ЭДС и напряжения определяется тригонометрической функцией:

                                   i(t) = Im sin(ωt + ψi)

                                   u(t) = Um sin(ωt + ψu)

                                   e(t) = Em sin(ωt + ψe),

где Im, Um, Em— амплитудные значения тока, напряжения и ЭДС.

t + ψ) — аргумент синуса, который определяют фазовый угол синусоидальной функции в данный момент времени t.

             ψ — начальная фаза синусоиды, при t = 0.

i(t), u(t) временные формы тока и напряжения.

По ГОСТу ƒ = 50 Гц, следовательно, ω = 2πƒ = 314  рад/сек.

Временную функцию можно представить в виде временной диаграммы, которая полностью описывает гармоническую функцию, т.е. дает представление о начальной фазе, амплитуде и периоде (частоте).

3.2 Основные параметры электрических величин

При рассмотрении нескольких функций электрических величин одной частоты интересуются фазовыми соотношениями, называемой углом сдвига фаз.

Угол сдвига фаз φ двух функций определяют как разность их начальных фаз. Если начальные фазы одинаковые, то φ = 0 , тогда функции совпадают по фазе, если φ = ± π, то функции противоположны по фазе.

Особый интерес представляет угол сдвига фаз между напряжением и током: φ = ψuψi

На практике используют не мгновенные значения электрических величин, а действующие значения. Действующим значением называют среднеквадратичное значение переменной электрической величины за период.

Для синусоидальных величин действующие значения меньше амплитудных в √2  раз, т.е.

                           

Электроизмерительные приборы градуируются в действующих значениях.

3.3 Применение комплексных чисел

Расчет электрических цепей с использованием тригонометрических функций весьма сложен и громоздок, поэтому при расчете электрических цепей синусоидального тока используют математический аппарат комплексных чисел. Комплексные действующие значения записываются в виде: 

                          

Синусоидальные электрические величины, представленные в комплексной форме, можно изображать графически. На комплексной плоскости в системе координат с осями +1 и +j, которыми обозначены положительные действительная и мнимая полуоси, строятся комплексные векторы. Длина каждого вектора пропорциональна модулю действующих значений. Угловое положение вектора определяется аргументом комплексного числа. При этом отсчет положительного угла ведется против часовой стрелки от положительной действительной полуоси.

Пример: построение вектора напряжения на комплексной плоскости рисунок 1.

Напряжение в алгебраической форме записывается:

Длина вектора напряжения:

Комплексное сопротивление выражается через комплексные действующие значения напряжения и тока в соответствии с законом Ома:

3.4 Законы Ома и Кирхгофа в комплексной форме

Закон Ома в комплексной форме:

 

Комплексное сопротивление выражается через комплексные действующие значения напряжения и тока в соответствии с законом Ома:

• Анализ цепей синусоидального тока происходит при условии, что все элементы цепи R, L, C идеальны (таблица 1).

• Электрическое состояние цепей синусоидального тока описывается теми же законами и рассчитываются теми же методами, что и в цепях постоянного тока.

Первый закон Кирхгофа в комплексном виде: 

Второй закон Кирхгофа в комплексном виде:

Сводная таблица идеальных элементов и их свойств.

                                                                                                          Таблица 1

Элемент

Сопротивление

Угол сдвига фаз

Закон Ома

Мощность

Векторная диаграмма

R

Z = R

0

S = P

C

Z = — jXC

-90o

S = — jQ

 

L

Z = jXL

90o

S =  jQ

3.5 Баланс мощностей  в цепях синусоидального тока

Для приемников вычисляем раздельно активную мощность

                            

и реактивную мощность

                                   .

При выполнении реальных расчетов мощности источников и приемников могут несколько отличаться. Эти погрешности обусловлены погрешностями метода, округления результатов расчётов.

Точность выполненного расчета схемы оценивают с помощью относительной погрешности при вычислении баланса активных мощностей

                                    δР% =  

и реактивных мощностей

                                  δQ% =   

    При выполнении расчетов погрешности не должны превышать  2%.

3.6 Определение коэффициента мощности

Электрооборудование энергетически выгодно эксплуатировать, если он совершает максимальную работу. Работа в электрической цепи определяется активной мощностью Р.

Коэффициент мощности показывает, насколько эффективно используется генератор или электрооборудование.

λ = P/S = cosφ ≤ 1

Мощность максимальна в случае, когда Р = S, т.е. в случае резистивной цепи.

3.7 Резонансы в цепях синусоидального тока

3.7.1 Резонанс напряжений

Режим работы RLC цепи рисунок 2 или LCцепи, при условии равенства реактивных сопротивлений XC  = XL, когда общее напряжение цепи совпадает по фазе с её током , называется резонансом напряжения.

                      

XC = XL – условие резонанса

Признаки резонанса напряжения:

1. Напряжение на входе совпадает по фазе с током, т.е. сдвиг фаз между I и U    φ = 0, cos φ = 1

2. Ток в цепи будет наибольшим и как следствие Pmax = I2maxR мощность тоже максимальна, а реактивная мощность равна нулю.

3. Резонансная частота

4.  

Резонанс можно достигнуть, изменяя L, C или ω.

Векторные диаграммы при резонансе напряжений

LC цепь                                                                    RLC цепь

                   

3.7.2.  Резонанс токов

Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.

Условие резонанса токов: разность реактивных проводимостей параллельных ветвей равна 0

В1 – реактивная проводимость первой ветви,

В2 – реактивная проводимость второй ветви

Признаки резонанса токов:

  1. Реактивные составляющие токов ветвей равны IPC  IPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;
  2. Токи ветвей превышают общий ток цепи, который имеет минимальное значение;
  3. и совпадают по фазе

RLC – цепь                                                                                      Векторная диаграмма

LC – цепь                                                                             Векторная диаграмма

                             

  1. Методические указания

4.1  Начертить схему с элементами согласно варианту.

Схема рисунок 1 преобразуем согласно варианту ( Z1RC, Z2R, Z3RL).

Рисунок 1 Исходная схема

4.2  Рассмотрим схему рисунок 2, и запишем уравнения по законам Кирхгофа.

Схема содержит два узла, два независимых контура и три ветви.

            Рисунок 2  Схема с элементами

Запишем первый закон Кирхгофа для узла а:

Запишем второй закон Кирхгофа для первого контура:

Запишем второй закон Кирхгофа для второго контура:

4.3  Определим эквивалентное сопротивление цепи.

Свернём схему рис 2.

                                    

По эквивалентному сопротивлению определяется характер цепи и чертится схема замещения.

Рисунок 3 свернутая схема

4.4 Определяем токи в ветвях схемы рисунок 2, методом эквивалентных преобразований: зная эквивалентное сопротивление, определяем ток первой ветви .

Рассчитываем ток в комплексной форме по закону Ома в соответствии со схемой рисунок 3:                

Чтобы определить токи в остальных ветвях, нужно найти напряжение между узлами  «ab» рисунок 2:           

Определяем токи:

4.5  Запишем уравнения баланса мощностей:

где I1, I2, I3 – действующие значения токов.

Определение коэффициента мощности

Расчёт коэффициента мощности проводят, определив активную и полную мощности:     P/S = cosφ . Используем рассчитанные мощности, которые найдены при расчёте баланса.

 модуль полной мощности .

4.6  Рассчитаем напряжения на элементах, используя схему рисунок 2:

              

4.7 Построение векторной  диаграммы

Построение  векторной диаграммы ведется после полного расчета всей цепи, определения всех токов и напряжений. Построение начинаем с задания осей комплексной плоскости  [+1; +j]. Выбираются удобные для построения масштабы для токов и напряжений. Сначала строим  на комплексной плоскости вектора токов (рисунок 4), в соответствии с первым законом Кирхгофа для схемы 2. Сложения векторов осуществляется по правилу параллелограмма.

Рисунок 4 векторная диаграмма токов

Затем строим  на комплексной плоскости вектора рассчитанных напряжений проверка по таблице 1 рисунок 5.

Рисунок 5 Векторная диаграмма напряжений и токов

4.8 Определение показаний приборов

Амперметр измеряет ток, проходящий через его обмотку. Он  показывает действующее значение тока в ветви, в которую он включен. В схеме  (рис.1) амперметр показывает действующее значение (модуль) тока  . Вольтметр показывает действующее значение напряжения между двумя точками электрической цепи, к которым он подключен. В рассматриваемом примере (рис.1) вольтметр подключен к точкам  а  и  b.

Вычисляем напряжение    в комплексной форме:

Ваттметр измеряет активную мощность, которая расходуется на участке цепи, заключенном между точками, к которым подключена обмотка напряжения ваттметра, в нашем примере (рис.1) между точками   а  и  b.

Активную мощность, измеряемую ваттметром, можно вычислить по формуле

                   ,

где   — угол между векторами    и  .

В этом выражении    действующее значение напряжения, на которое подключена обмотка напряжения ваттметра, и    действующее значение тока, проходящего через токовую обмотку ваттметра.

Или рассчитываем полную комплексную мощность

 ваттметр покажет активную мощность Р.

4.9 Расчёт резонансных цепей

4.9.1 Добавить в схему замещения элемент для получения резонанса напряжений. Например, схема замещения представляет RL цепь. Тогда необходимо добавить последовательно включённый конденсатор С – элемент. Получается  последовательная RLC цепь.

Рассчитать ток и все напряжения цепи в комплексной форме, при выполнении условия резонанса,  построить векторную диаграмму, см.теоретическое введение пункт 3.7.1

4.9.2 Добавить в схему замещения элемент для получения резонанса токов. Например, схема замещения представляет RL цепь. Тогда необходимо добавить параллельно включённый конденсатор С – элемент.

 

Рассчитать проводимости ветвей, токи и напряжения, при выполнении условия резонанса. Построить векторную диаграмму, см.теоретическое введение пункт 3.7.2

5. Собрать схему в среде MULTISIM. Поставить приборы и  измерить токи, напряжение и мощность.

Сборка схемы в среде Multisim 10.1. На рисунке 6  рабочее окно в среде Multisim. Панель приборов располагается справа.  

Рисунок 6 рабочее окно в среде Multisim

Разместить на рабочем поле необходимые для схемы элементы. Для этого на верхней панели инструментов слева нажмём кнопку «Place Basic » (см. Рисунок 7 ). Выбор резистор: появится окно «Select a Component », где из списка «Family » выбрать «Resistor ». Под строкой «Component » появятся  номинальные значения сопротивлений, выбираем нужное нажатием левой кнопки мыши или же непосредственным введением в графу «Component » необходимого значения. В Multisim используются стандартные приставки системы СИ (см. Таблицу 1)

Таблица 1         

Обозначение Multisim

(международное)

Русское обозначение

Русская приставка

Порядок

m

м

мили

10−3

µ (u)

мк

микро

10−6

n

н

нано

10−9

p

п

пико

10−12

f

ф

фемто

10−15

Рисунок 7

В поле «Symbol » выбираем элемент. После выбора, нажимаем кнопку «OK » и размещаем элемент на поле схемы нажатием левой кнопки мыши. Далее можно продолжать размещение необходимых элементов или нажать кнопку «Close », чтобы закрыть окно «Select a Component ». Все элементы можно поворачивать для более удобного и наглядного расположения на рабочем поле. Для этого необходимо навести курсор на элемент и нажать левую кнопку мыши. Появится меню, в котором надо выбрать опцию «90 Clockwise » для поворота на 90° по часовой стрелке или «90 CounterCW »  для поворота на 90° против часовой стрелки. Размещённые на поле элементы необходимо соединить проводами. Для этого наводим курсор на клемму одного из элементов, нажимаем левую кнопку мыши. Появляется провод, обозначенный пунктиром, подводим его к клемме второго элемента и снова нажимаем левую кнопку мыши. Проводу так же можно придавать промежуточные изгибы, обозначая их кликом мыши (см. Рисунок 8). Схему необходимо заземлить.

Подключаем к цепи приборы. Для того, чтобы подсоединить вольтметр, на панели инструментов выбираем «Place Indicator », в списке Family » открывшегося окна выбираем тип элемента «Voltmetr_V », приборы перевести в режим измерения переменного тока (АС).

Измерение токов

Соединив все размещённые элементы,  получаем разработанную схему рисунок .

На панели инструментов выбираем «Place Source ». В списке «Family » открывшегося окна выбираем тип элемента «Power Souces », в списке «Component » — элемент «DGND ».

Измерение напряжения

Измерение мощности

6.  Контрольные вопросы

1. Сформулируйте законы Кирхгофа и объясните правила составления системы уравнений по законам Кирхгофа.

2. Метод эквивалентных преобразований. Объясните последовательность расчета.

3. Уравнение баланса мощностей для цепи синусоидального тока. Объясните правила составления уравнения баланса мощностей.

4. Объясните порядок расчета и построения векторной диаграммы для Вашей схемы.

5. Резонанс напряжений: определение, условие, признаки, векторная диаграмма.

6. Резонанс токов: определение, условие, признаки, векторная диаграмма.

7. Объясните, как рассчитать показания приборов (амперметра, вольтметра, ваттметра).

8. Сформулируйте понятия мгновенного, амплитудного, среднего и действующего значений синусоидального тока.

9. Напишите выражение для мгновенного значения тока в цепи, состоящей  из соединенных последовательно элементов R и L, если к зажимам цепи приложено напряжение   .

10. От каких величин зависит значение угла сдвига фаз между напряжением и током на входе цепи с последовательным соединением  R , L , C ?

11.  Как определить по экспериментальным данным при последовательном соединении сопротивлений  R , XL  и  XC  значения величин   Z , R , X , ZК , RК , L , XC , C ,cosφ , cosφК?

12.  В последовательной  RLC  цепи  установлен режим резонанса напряжений. Сохранится ли резонанс, если:

а) параллельно конденсатору подключить активное сопротивление;

б) параллельно катушке индуктивности подключить активное сопротивление;

в)  последовательно включить активное сопротивление?

13.  Как должен изменяться ток  I  в неразветвленной части цепи при параллельном соединении потребителя и батареи конденсаторов в случае увеличения емкости от С = 0  до  С = ∞ , если потребитель представляет собой:

а)  активную,

б) емкостную,

в) активно-индуктивную,

г) активно-емкостную нагрузку?

  6.  Литература

1. Бессонов Л.А. Теоретические основы электротехники- М.: Высшая школа, 2012г.

2. Беневоленский С.Б., Марченко А.Л. Основы электротехники. Учебник для ВУЗов – М.,Физматлит, 2007г.

3. Касаткин А.С., Немцов М.В. Электротехника. Учебник для вузов- М.: В. ш, 2000г.

4. Электротехника и электроника. Учебник для вузов, книга 1. / Под редакцией

В.Г.Герасимова. — М.: Энергоатомиздат, 1996г.

4. Волынский Б.А., Зейн Е.Н., Шатерников В.Е. Электротехника, -М.: 

      Энергоатомиздат, 1987г.

Приложение 1

Схема  группа 1

Схема  группа 2                             

Приложение 2

Вариант

Z1

Z2

Z3

Z4

U

1

2+j2

5

5+j3

8-j2

40

2

2-j2

-j5

8-j2

4-j4

50

3

3

j5

4-j4

6+j3

80

4

-j5

2+j2

6+j3

2-j5

60

5

j4

2-j2

6

3

20

6

5-j2

4

5+j3

j4

80

7

2-j5

-j6

8-j2

5+j3

40

8

5+j3

3-j4

4-j4

8-j2

100

9

4+j6

4-j3

3

2-j5

20

10

6-j3

5+j5

7

j4

70

11

3-j6

8-j2

2-j5

-j5

50

12

5

2+j4

8-j2

6+j3

90

13

8+j4

5

6+j3

8

40

14

6

5+j3

j4

2

60

15

-j3

j4

6

-j5

40

16

j8

-j5

5+j3

2-j5

20

17

5

5+j3

-j5

4

60

18

6+j3

8-j2

2-j5

5+j3

80

19

4-j4

j4

8

8-j2

60

20

4+j4

5+j3

4-j4

6+j3

50

21

2

j6

2

5

120

22

-j5

5

5-j5

8

110

23

2+j4

-j4

7

j5

70

24

3-j4

3-j4

2

9

150

Вам также может быть полезна лекция «8 Рождение индустриальной цивилизации и ее влияние на Беларусь».

25

j4

2+j6

7

-j2

130

1.3.1. Метод уравнений Кирхгофа

    Этот метод сводится к решению системы уравнений, количество которых равно числу неизвестных токов (числу ветвей). Покажем его применение на примере схемы, изображенной на рис. 1.9.

Первый закон Кирхгофа: в узле электрической цепи алгебраическая сумма токов равна нулю.

    Произвольно задавшись направлениями токов в ветвях и принимая токи, подтекающие к узлу, положительными, а оттекающие от узла – отрицательными, записываем:

(1,6)

    Число независимых уравнений в первом законе Кирхгофа – на единицу меньше числа узлов, поэтому для последнего узла d уравнение не пишем.

    В заданной схеме семь ветвей, семь неизвестных токов. Система (1.6) содержит только три уравнения. Недостающие четыре записываем по второму закону Кирхгофа.

    Второй закон Кирхгофа: в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех сопротивлениях контура.

    Число уравнений, составляемых по этому закону, равно числу взаимно независимых контуров. При рассмотрении схемы каждый последующий контур является независимым относительно предыдущих, если он отличается от них хотя бы одной новой ветвью. В заданной схеме таких контуров четыре. Они отмечены пронумерованными дугообразными стрелками. Любой другой контур новых ветвей не содержит, поэтому не является независимым. Дугообразные стрелки показывают произвольно выбранные направления обхода контуров. Если направления ЭДС и токов совпадают с направлением обхода контура, то они записываются с плюсом, если не совпадают – то с минусом.

(1.7)

Системы (1.6) и (1.7) дают достаточное количество уравнений для отыскания всех неизвестных токов.

1.3.2. Метод узловых потенциалов

    Уравнения, составляемые по этому методу, называются узловыми уравнениями. В качестве неизвестных они содержат потенциалы узлов, причем один из них задается заранее – обычно принимается равным нулю. Пусть таким узлом будет узел d: φ d = 0. Равенство нулю какой-то точки схемы обычно показывается как ее заземление.

Запишем для каждой ветви выражение закона Ома:

    (1.8)

    Подставляя формулы (1.8) в систему (1.6) после несложных преобразований получаем следующие уравнения, количество которых на единицу меньше числа узлов:

(1.9)

   При решении практических задач указанный вывод не делают, а узловые уравнения записывают сразу, пользуясь следующим правилом.

    Потенциал узла, для которого составляется уравнение (например, в первом уравнении последней системы – это узел а), умножается на сумму проводимостей ветвей, присоединенных к этому узлу: φ а (G1+G2+G3).Это произведение записывается в левой части уравнения со знаком плюс. Потенциал каждого соседнего узла (b и с) умножается на проводимости ветвей, лежащих между этим (соседним) узлом и узлом, для которого составляется уравнение.

    Эти произведения φ b (G1 + G2) и j сG3 записываются со знаком минус. В правой части уравнения стоит алгебраическая сумма произведений ЭДС на проводимости тех ветвей, которые присоединены к рассматриваемому узлу: E1G1, E2G2 и E3G3. Эти произведения записываются с плюсом, если ЭДС направлены к узлу, и с минусом, если от узла.

    Найдя из (1.9) потенциалы узлов и подставляя их в (1.8), определяем токи ветвей.

Далее: 1.3.3. Метод контурных токов

Понравилась статья? Поделить с друзьями:
  • Как найти перегоревшую лампу в гирлянде
  • Как найти номер двигателя мотоцикла
  • Как найти прямой угол в ромбе
  • Как правильно составить документ в ворде
  • Как найти человека по его одежде