Как найти низкую изоляцию

Приветствую читателей блога! В этой статье мы разберем первые действия электромеханика при возникновении низкой изоляции 220В на судне. Как нужно искать источник низкой изоляции и какие действия пошагово выполнять.

Low insulation 220V

На судне очень важно уделять этому повышенное внимание, т.к. своевременно устранив низкую изоляцию можно предотвратить опасное задымление, возгорание или даже пожар.

Как это часто бывает, выходит аларм «Low insulation 220V» на мониторинг системе в ЦПУ и электромеханику приходится искать источник низкой изоляции на судне.

Аларм на мониторинг системе
Аларм на мониторинг системе

Способ поиска низкой изоляции заключается в том, чтобы поочередно отключать автоматы на фидерной панели 220В ГРЩ и при этом следить за стрелкой мегаомметра. 

Фидерная панель 220В на ГРЩ
Фидерная панель 220В на ГРЩ

Мегаомметр показывает как меняется сопротивление изоляции судовой сети в реальном времени, поэтому если отключить нужный автомат (обесточить группу потребителей с низкой изоляцией) его стрелка должна мгновенно направиться в сторону бесконечности.

Ground monitor
Уставка аларма граунд монитора стоит 0.01 МОм.
Сколько должно стоять? Жду ответ в комментариях.

Первые действия электромеханика при поиске низкой изоляции заключаются в том, чтобы отключить нужный автомат и сузить круг поиска. В первую очередь отключаются неответственные потребители, это могут быть розетки или освещение на палубе, камбуз, стиральные машинки и сушки.

Индикация низкой изоляции на ГРЩ
Индикация низкой изоляции на ГРЩ
  1. Первый автомат, который отключаю я, — это освещение и розетки подшкиперской и бака. 
  2. Второй автомат — это камбуз и прачечные. 
  3. Третий автомат — это освещение и розетки главной палубы и кормы.
  4. Дальше я отключаю по секциям навигационные огни, освещение и розетки машинного отделения.
  5. Если ничего из вышеперечисленного не помогает, то приходится отключать каюты по палубам. При этом обязательно нужно сделать объявление, чтобы личный состав выключил свои компьютеры и телефоны из розеток.
  6. Если проблема не в этом, то нужно отключать системы и механизмы, которые используют 220В. Например, fire alarm system, water ingress alarm system, public address system, shaft power meter и т.д.

Если отключены все автоматы, но низкая изоляция все равно висит, то нужно инспектировать главный сервисный трансформатор, но до этого редко доходит.

После того как найден главный автомат необходимо взять портативный меггер и проинспектировать секущие автоматы данной группы. Каждую фазу нужно замерить относительно корпуса (обязательно сняв питание с фазы).

Портативный меггер
Портативный меггер (мегаомметр)

Дальше мы обращаемся непосредственно к источнику низкой изоляции. Ниже будут представлены самые распространенные проблемы низкой изоляции на судне.

Сгнили наружные светильники

Сгнили наружные светильники

Сгнили наружные светильники

Сгнили наружные светильники
Сгнили наружные светильники
Снесло волной якорные огни
Снесло волной якорные огни
Сгорели тэны в стиральной машине
Сгорели тэны в стиральной машине
Залило клеммную коробку прожектора
Залило клеммную коробку прожектора
Сгорел дроссель в наружном светильнике
Сгорел дроссель в наружном светильнике

Все вышеперечисленные случаи плохой изоляции на судне являются лишь малой частью причин почему выходит аларм Low insulation 220V. Работа электромеханика заключается в поиске и устранении этих проблем.

Рассмотрим реальную ситуацию, когда вышла низкая изоляция 220В. При отключении автоматов был найдет автомат 4ой группы с низкой изоляцией.

Автомат 4ой группы
Автомат 4ой группы

С помощью портативного меггера нашли 9ый автомат в 4ом распределительном щите с низкой изоляцией.

Проверка сопротивления изоляции 9го автомата

9ый автомат с низкой изоляцией
9ый автомат с низкой изоляцией

По схеме мы видим, что на этом автомате навешано множество разных розеток.

Схема потребителей 9го автомата
Схема потребителей 9го автомата

В результате прозвонки всех розеток поочередно была найдена розетка с низкой изоляцией в помещении SUEZ CREW.

Розетка с низкой изоляцией

Розетка с низкой изоляцией
Розетка с низкой изоляцией

Несмотря на то, что это помещение, розетка находилась практически на открытой палубе (при выходе на правый борт главной палубы) и испытывала максимальные нагрузки агрессивной морской среды. После замены розетки изоляция 220В восстановилась до нормального значения.

Очень важно знать режимы работы судна и понимать, что в данный момент включили и что могло привести к низкой изоляции. Например, судно находится в маневровом режиме и проходит узкий канал, включили Steering Light на носовой мачте. Судно проходит Суэцкий канал и включили Суэцкие огни или противотуманный прожектор на баке. Судно подходит к Сингапуру и включили специальные три зеленых огня на топовой мачте. При этом может выйти низкая изоляция этих огней. Все эти и другие примеры говорят о том, что на судне всегда что-то включается и выключается, и важно понимать что именно и когда.

Для проверки таких огней или наружного освещения нужно прозванивать фазы на контакторах, которые срабатывают при включении светильников.

Панель навигационных огней
Панель навигационных огней
Панель наружного освещения
Панель наружного освещения

Например, нажали кнопку «ACC. OUTSIDE PASSAGE LIGHT (UPPER DECK)», сработал контактор MC2 в распределительном щите 4ой группы автоматов и включилось наружное освещение на главной палубе. 

Контактор MC2
Звоним 1408 и 1406 на корпус

Т.е. в данном случае мы должны прозванивать цепь на корпус после контактора. 

Контактор MC2 на схеме
Контактор MC2 на схеме

Если мы будем мерить сопротивление фазы на корпус после автомата, то будет звониться только цепь «контактор — автомат».

Earth Test
Earth Test

Напоследок, сделаем Earth Test, чтобы убедиться что мегаомметр исправен и ни одна из фаз «не сидит» на корпусе.

Сопротивление изоляции – важнейший показатель, характеризующий работоспособность электрооборудования и его безопасность для обслуживающего персонала. В большей степени этот параметр касается кабельных линий и соединительных проводов, которые при эксплуатации подвергаются различного рода воздействиям. Методика замеров сопротивления изоляции основывается на законе Ома для электрической цепи.

Согласно этому закону искомый показатель представляется как результат деления напряжения, приложенного к изоляционному покрытию, на величину тока, протекающего через него (Rиз = U/I). Диагностика электропроводки и силовых кабелей – обязательная составляющая профилактических мероприятий, позволяющих поддерживать их работоспособность на должном уровне. Проверка сопротивления изоляции электротехнических объектов проводится с учетом требований действующих нормативов (ПУЭ, в частности).

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Сопротивление изоляции: методы измерения и нормы

Нарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

Важно! При обнаружении явного повреждения оболочки кабеля организация и проведение испытаний теряет всякий смысл

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.

Сопротивление изоляции: методы измерения и нормы

Допустимые значения сопротивления изоляции

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Сопротивление изоляции: методы измерения и нормыЦифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).
мегаомметр М4100

Мегаомметр М4100

мегаомметр-Ф-4100

Мегаомметр-Ф-4100

мегаомметр-ЭС-02021Г

Мегаомметр-ЭС-02021Г

Цифровой прибор Fluke 1507

Цифровой измеритель Fluke 1507

Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Используемые методы испытаний

Еще до того, как проверить состояние изоляции – важно определиться с объектом, на котором требуется оценить ее качество. Это могут быть:

  1. Электрическая проводка.
  2. Силовые кабели высокого напряжения.
  3. Низковольтные линии электропередач.
  4. Контрольные провода.

Для каждой из этих электротехнических категорий выбираются индивидуальные методики измерения сопротивления изоляции. Рассмотрим все перечисленные варианты более подробно.

Электропроводка

Перед началом измерительных процедур электропроводка и распределительные коробки осматриваются на предмет отсутствия разрывов и явных разрушений. После этого обследуются места подсоединения проводов к типовым розеткам и выключателям.

Важно! Начинать замеры сопротивлений изоляции допускается лишь после того, как проводка полностью обесточена, а все потребители на объекте отключены от нее.

Сопротивление изоляции: методы измерения и нормы

Измерение сопротивления изоляции электропроводки с помощью цифрового прибора Fluke-1507

В однофазной сети для определения искомого параметра потребуется провести следующие операции:

  1. Сначала щупы мегаомметра подключаются между фазной и нулевой жилами проводки.
  2. Затем определяется сопротивление изоляции между фазной и центральной жилой защитного заземления.
  3. Количество проведенных измерений соответствует комплекту проводов в линии.

Если при снятии показаний мегаомметр показывает сопротивление менее 0,5 Мом – электрическую линию придется разбить на более короткие отрезки. По результатам последующих обследований каждого из них находится участок с неудовлетворительным качеством изоляции. Его в последствии нужно будет полностью заменить.

Высоковольтные силовые кабели (подготовка)

Перед измерением изоляции силового кабеля последний проверяется на отсутствие на нем опасных напряжений. Кроме того, для подготовки измерительной схемы потребуется проделать следующие операции:

  1. Прежде всего, с токоведущих жил посредством переносного заземления нужно снять остаточный заряд.
  2. Затем кабель полностью очищается от пыли и грязи, мешающих измерительному процессу.
  3. После этого потребуется ознакомиться с паспортными данными кабеля (там указывается искомый параметр, полученный по результатам заводских испытаний).
  4. Последняя операция необходима для того, что заранее определиться с рабочим пределом, выставляемом на приборе.

Подготовка кабеля к проведению измерений

Подготовка кабельной линии к проведению измерений сопротивления изоляции

Важно! Перед измерением сопротивления изоляции кабеля обязательно проведение контрольной проверки мегаомметра на исправность.

Эта операция состоит в контроле показаний по шкале прибора при замкнутых и разомкнутых измерительных концах. В первом случае стрелка смещается ближе к «нулю», а во втором – показывать «бесконечность».

Силовые кабели (измерения)

Измерение сопротивления изоляции мегаомметром начинается с контрольной проверки каждой из фаз по отношению к заземленной стальной оболочке. И лишь после этого проверяется сопротивление между отдельными жилами (фото слева). В процессе снятия показаний недопустимо чтобы измерительные концы соприкасались между собой, а также контачили с заземляющими конструкциями и стальной оболочкой.

Сопротивление изоляции: методы измерения и нормы

а) измеряется сопротивление изоляции между фазой и заземленной оболочкой кабеля, б) замер сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».

Если обнаружится, что сопротивление изоляции ниже допустимого уровня – в соответствие с требованиями ПУЭ проводится дополнительные замеры. Они предполагают проведение измерений изоляции всех фаз по отношению к земле и оценку величины проводимости между фазными проводниками.

Обратите внимание: Для повышения точности снятия показаний, указывающих на величину сопротивления изоляции проводов, делается несколько замеров.

Их общее число варьируется: для 3-х жильного кабеля в пределах 3-6 измерений, а для пятижильного может потребоваться 4, 8 или даже 10 подходов.

Сопротивление изоляции: методы измерения и нормы

Измерение сопротивления изоляции силового кабеля в частном доме

Поскольку для трехфазных цепей существует несколько схем измерений – по тому же паспорту следует ознакомиться с предлагаемым производителем вариантом. До момента индикации точных показаний на шкале мегаомметра согласно ГОСТ 3345 должно пройти не менее 60 секунд, но не более 5 минут (с момента подключения концов и подачи высокого напряжения). Если за это время из-за высокой влажности, например, определить показания не удалось (стрелка не отклонилась на расчетное значение) – операцию придется провести еще раз.

Сопротивление изоляции: методы измерения и нормы

Схема измерения сопротивления изоляции высоковольтного кабеля

Перед повторным испытанием следует снова снять остаточный заряд путем наложения заземления. Затем потребуется переключить прибор на нужный предел и повторить контрольные замеры. Согласно правилам ТБ эту операцию необходимо проводить в диэлектрических перчатках. рекомендуется следовать указаниям п.п. 1.7.81, 2.1.35 ПУЭ, в которых оговариваются условия безопасной работы. Основные из них приведены ниже.

  • у нулевых рабочих и защитных шин изоляция должна быть равноценна защитному покрытию фазных проводников;
  • со стороны источников питающего напряжения и его приемника нулевые проводники следует отсоединять от заземленных элементов цепи;
  • проведение замеров в силовых электропроводках проводится только при полностью снятом напряжении, выключенных вводных автоматах или рубильниках.

Последний пункт дополняется обязательным требованием вынуть предохранители, отключить все имеющиеся приемники и вывернуть электролампы. Предлагаемые в инструкции схемы замеров различаются только их количеством (4 и 8 вместо 3 и 6) и необходимостью использования защитной клеммы «Экран» на мегаомметре.

Низковольтные силовые кабели

При работе с низковольтными силовыми линиями они в первую очередь проверяются на предмет отсутствия на их элементах опасных напряжений. Подобно уже рассмотренным высоковольтным кабелям перед обследованием этих изделий потребуется проделать следующие операции:

  1. Сначала с токоведущих жил при помощи переносного заземления снимается опасный остаточный заряд.
  2. По завершении этой операции оболочка кабеля и его рабочие жилы полностью очищаются от пыли и грязи.
  3. Затем изучаются документы (паспорт, например), где указывается нормируемое сопротивление изоляции для испытуемого образца.
  4. Последняя операция проводится с целью примерной оценки измеряемой величины и выбора нужного предела измерения на приборе.

Для ее проведения берется мегаомметр, рассчитанный на напряжение генерации 1000 Вольт. По завершении всех подготовительных операций переходят непосредственно к измерениям. Их порядок может быть представлен в виде следующей последовательности действий:

  1. Сначала измеряется искомое сопротивления между фазными жилами испытуемой кабельной линии («А»-«В», «В»-«С» и «А»-«С»).
  2. Затем по очереди оценивается состояние изоляция каждой из фаз относительно нулевого провода (N).
  3. Далее следует последовательность измерений между каждой фазой и заземляющим проводом PE (проводится при проверке трехфазного пятижильного проводника).
  4. Для проведения последней операции нулевой провод отсоединяется от заземляющей шинки, после чего измеряются сопротивления между жилами N и PE.

По завершении каждого очередного действия необходимо «снимать» остаточный заряд уже описанным ранее способом.

Контрольные кабели (подготовка)

Проверить сопротивление в этом случае удастся только при выполнении следующих требований:

  1. Температура окружения должна укладываться в диапазон от –30 до +50 градусов (при влажности до 90%).
  2. Они влияют на допустимость работы с тем или иным образцом мегаомметра в конкретной ситуации.
  3. Условия измерения (протяженность контролируемого кабеля, в частности) и рабочее напряжение выбираются в зависимости от его марки.
  4. Если паспорт на кабельное изделие отсутствует – к нему согласно ПУЭ (табл. 1.8.39) прикладывается испытательное напряжение от 0,5 до 1 кВ.

Обратите внимание: Допускается проводить испытания вместе со всей подключенной к кабелю аппаратурой (магнитными пускателями и защитными реле, установленными в линии).

Перед проверкой сопротивления обязательно знакомство с безопасными приемами работы с кабелем. Они сводятся к соблюдению следующих правил:

  • к замерам под напряжениями до 1 кВ допускаются только специалисты с 3-й группой допуска или выше;
  • исследуемый кабель обязательно отсоединяется от электросети, после чего с него удаляется остаточный заряд;
  • перед началом измерительных операций необходимо побеспокоиться о том, чтобы поблизости от этого места не было посторонних лиц.

К токоведущим жилам напряжение прикладывается посредством щупов с изолированными ручками типа «держатели». Помимо этого в целях безопасности запрещено прикасаться к токопроводящим шинам, к которым подсоединен включенный мегаомметр. По завершении текущих испытаний с контрольной части кабеля обязательно снимается остаточный заряд. Для этого используются переносные заземления или активируется специальная функции измерительного прибора (она имеется в некоторых моделях).

Контрольные кабели (порядок работ)

Порядок испытания изоляционной защиты контрольных кабелей аналогичен положениям, разработанным для низковольтных линий проводки (до 1 кВ). Исключением является пункт об отключении токопроводящих жил от нагрузочного оборудования. Из-за малой величины передаваемого сигнала делать этого в данной ситуации не обязательно.

Для проведения испытаний потребуется цифровой или аналоговый мегаомметр, по паспорту рассчитанный на рабочие напряжения от 0,5 до 2,5 кВ. Порядок проведения измерений выглядит в этом случае так: Сопротивление изоляции: методы измерения и нормы

  1. Сначала с проверяемой стороны кабеля выводы токопроводящих жил аккуратно разделываются и зачищаются, а затем разводятся одна от другой на некоторое удаление (порядка 5-10 см).
  2. Далее каждая жила поочередно подключается к «+» мегаомметра, а все остальные жилы скручиваются и подсоединяются к «земле».
  3. Туда же подключается второй вход («–») прибора (см. рисунок ниже).
  4. Затем на рабочий кабель подается испытательное напряжение.
  5. При использовании современных цифровых приборов потребуется внешний источник питания (электрическая сеть или аккумулятор).
  6. Испытания продолжаются не менее минуты, по истечении которой результат фиксируется по шкале, а затем заносится в учетный журнал.
  7. Далее все описанные операции проделываются с каждой сигнальной жилой отдельно (она подключается к прибору, а все другие скручиваются и соединяются со вторым контактом, который в свою очередь связан с землей.

По окончании измерений с рабочих жил снимают остаточный заряд, а мегаомметру дают «отстояться» до следующей серии испытаний. Длительность отводимой на это паузы зависит от конкретного типа и марки прибора. Следующие измерения проводятся с учетом периодичности проведения испытания изоляции.

Документирование результатов измерений

По итогам проведенных работ подготавливается отдельный документ, в котором фиксируются все необходимые данные.

Важно! Согласно ПУЭ в трехфазных сетях потребуется выполнить не менее 10 замеров, каждый из которых учитывается в протоколе измерения сопротивлений изоляции.

В бытовых однофазных цепях вполне достаточно будет провести три замера. В последних строчках заполняемого протокола обязательно должна присутствовать фраза о соответствии полученных результатов требованиям ПУЭ.

Кроме того, в них вносятся следующие данные:

  1. Дата и объем проведенных обследований.
  2. Сведения о составе рабочей бригады (из обслуживающего персонала).
  3. Используемые при проверке измерительные приборы.
  4. Схема их подключения, окружающая температура, а также условия проведения работ.

По завершении протоколирования измерений журнал с соответствующими записями убирается в надежное место, где он хранится до следующих испытаний. Сохраненные таким образом акты замеров в любой момент могут потребоваться для того, чтобы в аварийных ситуациях служить доказательством исправности поврежденного изделия.

Готовый протокол обязательно заверяется подписью производителя работ и проверяющего, назначенного из состава оперативного персонала. Для оформления актов замеров допускается использовать обычный блокнот, но более законным и надежным способом считается заполнение специального бланка (его образец приводится ниже).

Сопротивление изоляции: методы измерения и нормы

Образец протокола измерения сопротивления изоляции

Заранее подготовленная форма протокола содержит пункты, в которых указываются:

  1. Порядок проведения измерительных операций.
  2. Применяемые при этом средства измерения.
  3. Основные нормативы по контролируемому параметру.

Кроме того, форма актов измерения электропроводок содержит готовые таблицы, подготовленные к заполнению. В таком виде документ составляется на компьютере всего лишь один раз, после чего он распечатывается на принтере в нескольких экземплярах. Такой подход позволяет сэкономит время на подготовку документации и придает актам замеров законченный, официальный вид.

Периодичность замеров сопротивления изоляции

Требованиями ПУЭ предусмотрены определенные сроки, с учетом которых организуются и проводятся измерения сопротивления изоляции мегаомметром. Всем желающим поближе познакомиться с тем какова периодичность измерений сопротивления изоляции в осветительных сетях наружных установок, а также в их силовой части предлагаем изучить следующие разделы.

Когда и при каких условиях производятся замеры в наружных установках

Экспертиза электропроводки и других электротехнических объектов (измерение сопротивления защитной изоляции) проводится в следующих обязательных случаях:

  1. При изготовлении продукции на производящем ее предприятии.
  2. Непосредственно на электротехническом объекте перед началом монтажных работ.
  3. По их завершении перед запуском объекта в эксплуатацию (перед подачей напряжения на него).
  4. После серьезных аварий и выявления недопустимых дефектов.
  5. При проведении технического обслуживания в сроки, оговоренные в технической документации на конкретный вид оборудования.

При нарушении этих требований и несоблюдении установленных сроков проверок сопротивления изоляции увеличивается вероятность появления сбоев в работе электроустановок. Нарушителей могут ожидать предусмотренные законом санкции и штрафы. Поэтому лицами, ответственными за электрооборудование на предприятиях, своевременно подготавливаются планы проведения замеров изоляции.

Сроки проведения обследований

Частота проведения замеров сопротивления изоляции в электроустановках, кабельных линиях и электропроводках зависит от их типа, условий эксплуатации и общего состояния объекта.

Так, для проверки сопротивления кабелей, эксплуатируемых на улице и во взрывоопасных помещениях эти мероприятия организуются не реже одного раза в год. Для оборудования и кабельных линий, проложенных внутри помещений, и в ряде других случаев этот показатель измеряется не реже одного раза в течение 3-х лет.

Какова периодичность измерения сопротивления изоляции осветительных сетей наружных установок?

Обратите внимание: Согласно ПУЭ сопротивление изоляции кабелей, смонтированных в подъемных кранах и городских лифтах, должно проверяться ежегодно (посредством того же измерителя Fluke 1507, например).

Аналогичные временные периоды предусматриваются и для электрических плит бытового и промышленного назначения. Различных подходов к проведению испытаний сопротивления существует множество, а перечисленные выше варианты взяты только как частные примеры.

В заключение отметим, что согласно действующим нормативам (смотрите ПУЭ и ПТЭЭП, в частности) периодичность проверок сопротивления определяется конкретными условиями эксплуатации кабельных изделий. В каждом частном случае испытания организуются и проводятся в соответствие с требованиями, приведенными в сопроводительной документации на них.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Содержание

  1. Определение места повреждения кабеля
  2. Причины и виды повреждений кабельных линий
  3. Кратко о ремонте кабельной линии
  4. Методики определения повреждения кабеля в земле
  5. Индукционный метод
  6. Импульсный метод
  7. Акустический метод
  8. Емкостной метод
  9. Метод колебательного разряда
  10. Метод петли
  11. Метод накладной рамки
  12. Как найти повреждение изоляции кабеля
  13. Повреждения изоляции кабельных линий.
  14. Изоляция экрана
  15. Поиск повреждений оболочки кабеля (изоляции экрана)

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.

Видео по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

Источник

Как найти повреждение изоляции кабеля

Термин «изоляция» в среде электриков и связистов часто применяется в значении «сопротивление изоляции». То есть элемент конструкции кабеля и сопротивление изоляции линии обозначаются одним и тем же словом, и понимаются по смыслу. Говорят: «померь изоляцию», «проверь изоляцию», но и «протри изоляцию»

В измерении сопротивления изоляции есть ещё одна тонкость. Электрическая изоляция проверяется не столько измерением сколько испытанием. Например, маленьким цифровым тестером можно померить сопротивление в 100 и даже 1000 Мегаом, но такое измерение не является правильным. Измерение должно проводится с подачей на испытуемый участок повышенного напряжения. Для связи это обычно 120 или 400 Вольт, для электриков 500, 1000, 2500 В. Эти напряжения, как правило образуются преобразователями специальных измерительных приборов — мегомметров. Функция мегомметра в связных приборах есть в составе комплексных кабельных измерителей, например, таких как ПКП или ИРК-ПРО

Изоляция — самый болезненный для связных линий параметр. Ибо даже небольшая с точки зрения обывателя царапина может отключить телефоны в небольшом микрорайоне. Легко мерится, но далеко не всегда легко находится. Нормы на этот параметр есть на странице → Справочные данные о кабелях связи ТПП и КСПП. Нормы на смонтированные линии связи

Повреждения изоляции кабельных линий.

В зависимости от того изоляция между какими жилами или элементами кабеля повреждена телефонисты различают три типа повреждений электрической изоляции: короткое замыкание, сообщение и земля.

Короткое это нарушение изоляции между двумя жилами одной пары. Короткое замыкание у телефонистов несколько отличается от аналогичного понятия в радиотехнике, так уменьшение изоляции между жилами в сотни мегом у связистов уже короткое. А короткое в 1 – 2 мегома уже делает абонентскую линию нерабочей.

Сообщение – нарушение изоляции между двумя жилами разных пар. В эксплуатации определяют тип повреждения ещё на кроссе, и сообщение определяют по наличию постороннего напряжения на паре. Один из нюансов заключается в том, что если на кроссе отключить пару, сообщающуюся с искомой, то станционный прибор или компьютер покажет что в линии всё нормально. Как правило, чистое сообщение в кабеле возникает при попадании воды в муфту или в кабель. Для абонентов это повреждение вызывает эффект «круглого стола» или «конференции». Слышны переговоры каких-то посторонних людей, которые, в свою очередь слышат вас и можно при этом лихо обложить кого-нибудь матом или самому услышать что-нибудь этакое. Следует различать сообщение с таким понятием, как прослушивание, или правильнее, пониженное переходное затухание, но об этом в разделе измерения переменным током.

Земля – нарушение изоляции по отношению к заземлению. Иногда на кроссе определяя повреждение, как землю, путают его с сообщением. Происходит это из-за того, что станционный прибор не видит постороннего напряжения на линии, а повреждённая жила сообщается с «+» другой пары. Для приборов типа ИРК-ПРО особой разницы нет, а вот более старым может мешать постороннее напряжение присутствующее на такой паре.


Повреждения изоляции линий связи

Как это всё ищут. Чем ниже изоляция, тем проще найти повреждение. А если в том же кабеле присутствуют целая жила с хорошей изоляцией, то всё довольно просто. Коротим на противоположном конце линии повреждённую жилу с чистой, со своей стороны включаем три провода прибора (ИРК-ПРО, ПКП, ПКМ или другой с мостовой схемой): два провода «А» и «В» идут на «чистую» и повреждённую жилу соответственно, «С» заземляется.


Мостовая схема сравнения плеч

На картинке урезанный вариант мостовой схемы измерения Муррея. Прибор сравнивает сопротивление между проводами «А» и «В» (жёлтая и красная стрелки). По полученному результату и судят о расстоянии до повреждения. В современных приборах это всё упрощено до безобразия. Вносим в прибор, длину или тип кабеля – получаем ответ в метрах или процентах от общей длины, если длину и тип кабеля не ввели.

При казалось бы простом принципе тестером эту операцию проделать невозможно. Причина в том, что Rповр. постоянно «плавает» и фокус именно в одновременном сравнении сопротивлений.

• Всё это хорошо работает при повреждении изоляции до 10 мегом. Если сопротивление больше, погрешность измерений резко возрастает. Так же сильно растёт погрешность, если чистую жилу найти не удаётся и приходится мерить с тем, что есть.

• Если все жилы «землят» одинаково применение мостовых методов бессмысленно. Причём ИРК-ПРО, например, всё равно выдаёт какой-то результат, не верьте — обманывает.

• Если сопротивление изоляции этих жил отличается более чем в 3 раза, имеет смысл померить с использованием коэффициента К, но в этом случае рекомендуют провести измерения несколько раз и с обеих сторон линии. Как правило, разброс показаний очень большой и судить о месте повреждения можно лишь ориентировочно.

• Если «земля» на всех жилах менее 10 кОм имеет смысл использовать рефлектометр.

Особенности включения прибора при разных типах повреждения изоляции кабеля.

Сообщение в кабеле с включенным питанием остальных пар ищется так же, как и земля. Современным приборам всё равно куда пойдёт ток утечки, пройдя через Rповр., они мерят соотношение плеч. Если же кабельная линия полностью отключена, то такой номер не пройдёт. Придётся искать, какая жила, с какой сообщается. Далее на найденную жилу подключают к проводу «С» прибора или заземляют.


Сообщение

Короткое мерится похожим образом. Только шнур «С» подключается к жиле этой же пары, провод «А» включается уже в жилу другой пары и коротятся на другом конце уже другие жилы.


Короткое

Обладатели ПКП могут посетить страничку методикой работы ПКП-5 или конкретно методы Муррея, и Купфмюллера.

Изоляция экрана

Норма 5 Мом/км прописана в документах очень давно, как обязательная изоляция защитной оболочки кабеля. Относится также к броне оптоволоконного кабеля. Норма в некоторых документах имеет оговорку, при невозможности найти повреждение допускается изоляция 1 Мом/км. Не влияет на другие параметры, но, тем не менее является доказательством герметичности оболочки. В реальности в новом кабеле изоляция экрана от 40 до 30000 Мом. И раньше и сейчас измерение этого параметра часто игнорировалось при приёмо-сдаточных измерениях, а зря.

Несколько лет назад кабель выпускался без наполнителя, без буквы «З» в маркировке. Негерметичность оболочки проявлялась очень быстро либо падением изоляции жил, либо сильным расходом воздуха при установке магистрали под избыточное давление (установки КСУ и аналогичные). То есть все «дырки вылазили» почти сразу. С появлением кабелей с гидрофобным наполнителем ситуация изменилась, а эксплуатирующие организации частенько не обращают внимание на то, что строители сдают им кабеля с «задранной» оболочкой. Кабель с гидрофобом несмотря на довольно большую дыру очень долго сохраняет изоляцию жил, даже если кабель лежит во влажном грунте. То есть, по привычке померили изоляцию, ёмкость, шлейф, иногда переходное затухание: остались довольны и всё. Если вам сдают кабель с гидрофобом, проверяйте экран обязательно. Мне приходилось находить повреждения при изоляции экрана в 1,2 Мом, при этом дырка оказалась 7 мм в диаметре. Естественно, что обещанных кабельным заводом 25 лет безоблачной эксплуатации вы с такой «дыркой» не дождётесь.

Поиск повреждений оболочки кабеля (изоляции экрана)

Если кабель проложен в грунте, проще всего искать комплектом генератор-кабелеискатель-штыри описанным на соответствующих страницах.

Если кабель разветвлён, то есть сначала 100х2, перчатка, 50х2 + 30х2 + 20х2, то муфту-перчатку лучше вскрыть. Здесь вообще метод деления на части часто оказывается самым эффективным.

Можно воспользоваться мостовыми схемами измерения в случаях, если смонтированный кабель не имеет муфт или состоит из одинаковых и по парной ёмкости и произведённых одним кабельным заводом длин кабеля.

Объяснюсь. Сопротивление цепи экрана ни где не нормируется, то есть в 1км ТППэпЗ 50х2х0.5 экран может иметь сопротивление от 6 до 20 Ом и зависит от толщины алюминиевого покрытия. То есть один завод делает кабель с экраном в 8 Ом/км, другой 14. Естественно, о какой-то точности при таком разбросе говорить не приходится.

И, всё таки, если вы имеете однородный кабель мостовой схемой воспользоваться можно.

Если у вас есть ИРК-ПРО можно воспользоваться возможностью прибора измерять несимметричный кабель или искать повреждение по вспомогательным жилам. Вместо вспомогательных жил используется одна пара кабеля. Если экран кабеля однороден, получается достаточно точно. В ИРК-ПРО-Альфа на экране даже схема соответствующая рисуется. Измерение проводится в два этапа, на индикаторе появляются соответствующие подсказки и если предварительно ввести длину кабеля, то результат высветится в метрах.

Метод может быть использован для поиска повреждений оболочки оптоволоконного кабеля, но для этого уже нужно разматывать вспомогательный кабель поверх трассы, потому, что в современных оптических кабелях не закладывается дополнительных жил, необходимых для измерения мостовыми методами.

Поиск повреждений экрана кабеля связи методом Муррея

Кто больше привык доверять методу Муррея может попробовать ещё один способ:

1. Мерим шлейф пары. Сразу можно вычислить длину, если она неизвестна. Предположим 344.8 (Ом), длина 2км.

2. Мерим шлейф цепи жила-экран. Получается почти в 2 раза меньше 183.7 (Ом).

3. Вычисляем сопротивление 1 жилы. Оно равно в нашем случае 344.8/2=172.2 (Ом).

3. Далее находим сопротивление экрана. Отнимаем от сопротивления жила-экран сопротивление жилы. 183.7-172.2=11.5 (Ом).

Следующим шагом является «создание» жилы с сопротивлением равным сопротивлению экрана.

4. Для этого десяток (иногда требуется 2) кабеля закорачиваем между собой и с экраном кабеля.

5. На другом конце мерим шлейф и изменяем количество запараллеленных жил. Добиться в данном случае надо шлейфа ровно в два раза большего, чем сопротивление экрана. В нашем случае: 11.5х2=23.0 (Ом). Например закоротили все 20 жил: получили шлейф 18.7 (Ом) — мало, откидываем 1 жилу: 19.2 — опять мало. Иногда участвующих в измерении жил может быть 10, иногда 15. (количество требуемых жил можно вычислить, но проще распараллеливать по одной).

6. Далее, добившись нужного шлейфа производим измерение методом Муррея или, для ИРК-ПРО, режим «утечка». В данном случае экран — это повреждённая жила. Предположим результат 75% или коэффициент 0.75

7. Полученный результат умножаем на известную длину кабеля: 2000х0.75=1500 (метров).

Иногда не удаётся добиться жилами сопротивления равного сопротивлению экрана. Это может получиться при измерении КСПП, жил всего 4. Мерим сначала с 3-мя, затем с 4-мя жилами результат усредняем. (погрешность будет больше).

Источник

Для многих знакомая проблема, когда после сильного дождя по ночам в порту или даже на ходу выходит аларм “220V Insulation Low” или что-то в подобном духе.

Давайте разберемся, что же такое низкое сопротивление изоляции и почему этот аларм выходит простым языком, без терминов.

Какие же должны быть уставки на аларм? Я несколько раз разбирался в этом вопросе и задавал вопрос инспекторам – никто не может сослаться на какой-то документ до регламентации этого аларма. Поэтому чаще всего компании устанавливают свои нормы. У меня, к примеру, минимум 1 MOhm на 440 Вольт и 0.5 MOhm на 220 вольт секции – это только для аларма.

С точки зрения безопасности всегда советую держать минимум 5 MOhm на 440 вольт и 1.5-2 MOhm на секции 220 вольт. И помните, если Аларм поставить выше нормы, Вам не сделают замечание и вы раньше узнаете о проблеме и начнете ее решать.

Коротко хочу рассказать, как я занимаюсь поиском пробоя изоляции. Сразу нужно поделить на 2 части:

СЕКЦИЯ 220 ВОЛЬТ и СЕКЦИЯ 440 вольт

Самая распространенная проблема – это именно 220 вольт.
Давайте с него и начнем.

Несколько раз в неделю я занимаюсь такой работой, пошагово, что делать.

При Аларме на секции 220 вольт, я в первую очередь делаю лист со всеми автоматами(или уже использую заготовленный) и начинаю отключать по одному. Сперва не критическое оборудование, к примеру:

  1. Освещение в машинном отделении и трюмах
  2. Освещение на палубе
  3. Разного рода доп оборудование, как MGPS, Shaft grounding device

ВАЖНО: Автомат, который вы отключаете, не нужно сразу включать, по причине того, что низкую изоляцию может давать сразу несколько линий потребителей.
После отключения одного из автоматов, у вас стрелка вернется в норму и тогда нужно передвигаться к Щиту, давайте для примера возьмем щит оcвещенния машинного отделения LD-3.


Панель LD-3

Существует два вариант поиска потребителя, первое – меггер тест при отключенном питании всех выключателей внутри и второй – работа с напарником.

Один человек находится в ЦПУ и смотрит на Мегометр, второй у панели и при включенном питании с ГРЩ – отключать по одному выключатель. Принцип схож как и на ГРЩ. Отключив по одному автоматы вы найдете на какой линии низкая изоляция. Так как в машинном отделении часто Люминесцентные лампы, в них выгорает балласт и дает низкую изоляцию, я просто наблюдаю какие лампы по машине у меня моргают или не светят, так же могут светить уже очень тускло и начинаю скрывать по одной, едкий запах горелого пластика при открытии плафона сразу вам подскажет, что проблема именно тут.

New Ballast 20W.                                                                         Burned Ballast 40W

Что касается 440 вольт, то принцип такой же, только нужно отключать оборудование очень внимательно.

Начните с камбуза, хитеров ДГ, оборудования Воркшопа, чаще всего проблема именно в этих отделах. Так еще еще замечу, что тут важна логика, стоит обратить внимание, когда появилась проблема, что включали До проблемы, возможно переводили насосы с Группы No.1 на группу No.2 и один из электродвигателей насосов дает низкую изоляцию. В случае насосов, рекомендую сразу начать переключать ЭД насосов на первую группу по одному и смотреть, как поменяется сопротивление изоляции на щитовом Меггометре.
Но не стоит сразу выбрасывать ЭД в случае низкой изоляции, нужно сделать меггер тест при помощи переносного меггометра, в таком случае вы исключите проблемы перетертого кабеля, как это делать мы еще обязательно обсудим на курсах. Обычно – монотонная работа с планом, не всегда легкая, но очень важная.

Переносной меггометр
Очень советую пересмотреть правила компании на этот счет и не пренебрегать поиском низкого сопротивления изоляции. Это может привести к пожару или отказу критически важного оборудования, к примеру Alarm monitoring system, при пробое сопротивления изоляции. А так же может выдавать ложные алармы.

👉 Еще больше полезных материалов об электротехнике рассматриваем на курсе “Electrical Equipment for Engineers incl. Dry Dock”

Использование: относится к измерительной технике, в частности к способам определения участка с пониженным сопротивлением изоляции в линейном тракте, и может найти применение для определения местоположения участков с пониженным электрическим сопротивлением изоляции жил в линейном тракте системы передачи. Сущность изобретения заключается в том, что в способе определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи производят поочередное заземление точек вдоль петли дистанционного питания с измерением при каждом измерении разностного тока по резистивным цепям с выходов источника дистанционного питания на землю, а нахождение участка с пониженным сопротивлением изоляции осуществляют по точке заземления с минимальным отклонением этого разностного тока от его первоначально достигнутого значения. 1 ил.

Изобретение относится к измерительной технике, в частности к способам определения участка с пониженным сопротивлением изоляции в линейном тракте, и может найти применение для определения местоположения участков с пониженным электрическим сопротивлением изоляции жил в линейном тракте системы передачи.

Известен способ определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи, включающий изменение напряжения между каждым внутренним проводником и землей при замкнутых накоротко внутренних проводниках и при разомкнутых внутренних проводниках и нахождение участка с пониженным сопротивлением изоляции математической обработкой результатов измерения [1]. Недостаток подобного способа определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи состоит в значительной сложности процесса определения участка с пониженным сопротивлением изоляции.

Наиболее близким по своей технической сущности к предлагаемому способу является способ определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи, включающий изменение соотношения сопротивлений резистивных цепей между выходами источника дистанционного питания и землей до достижения минимального значения разностного тока на землю и нахождение участка с пониженным сопротивлением [2]. Недостаток подобного способа определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи состоит в малой точности результата определения участка с пониженным сопротивлением изоляции. Известный способ не позволяет также обеспечить достаточно малую длительность процесса определения участка с пониженным сопротивлением изоляции. Кроме того известный способ не позволяет обеспечить достаточно малую трудоемкость процесса определения участка с пониженным сопротивлением изоляции.

Целью изобретения является повышение точности результата определения участка с пониженным сопротивлением изоляции.

С этой целью в способе определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи, включающем изменение соотношения сопротивлений резистивных цепей между выходами источника дистанционного питания и землей до достижения минимального значения разностного тока через них на землю и нахождение участка с пониженным сопротивлением изоляции, производят поочередное заземление точек вдоль петли дистанционного питания с измерением при каждом измерении разностного тока по резистивным цепям с выходов источника дистанционного питания на землю, а нахождение участка с пониженным сопротивлением изоляции осуществляют по точке заземления с минимальным отклонением этого разностного тока от его первоначально достигнутого значения.

Сопоставительный анализ совокупности существенных признаков, характеризующей заявляемое техническое решение, и прототипа показал, что заявляемое техническое решение соответствует критерию «новизна».

Сравнение заявляемого технического решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленное техническое решение от прототипа, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «существенные отличия».

На чертеже изображен один из возможных вариантов устройства для осуществления предлагаемого способа определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи.

Определение участка с пониженным сопротивлением изоляции в линейном тракте системы передачи согласно предлагаемому способу происходит следующим образом.

В линейном тракте системы передачи производят изменение соотношения сопротивлений резистивных цепей между выходами источника тока дистанционного питания. При этом изменение соотношения сопротивлений резистивных цепей и землей осуществляют до достижения минимального значения разностного тока через них на землю. После получения первоначально достигнутого минимального значения разностного тока производят поочередное заземление точек вдоль петли дистанционного питания. При этом в процессе каждого заземления точек вдоль петли дистанционного питания производят измерение разностного тока на землю между выходами источника дистанционного питания. По окончании заземления точек вдоль петли дистанционного питания производят нахождение участка с пониженным сопротивлением изоляции. При этом нахождение участка с пониженным сопротивлением изоляции осуществляют по точке заземления с минимальным отклонением разностного тока на землю через резистивные цепи на землю между выходами источника дистанционного питания от первоначального достигнутого минимального значения разностного тока на землю через них.

На чертеже изображен вариант устройства для осуществления предлагаемого способа определения участка с пониженным сопротивлением изоляции в линейном тракте системы передачи.

Он содержит резистивные цепи 1 и 2, выполненные, например, в виде магазинов сопротивлений, и измеритель 3 разностного тока, выполненный в виде миллиамперметра. Резистивная цепь 1 включена между положительной выходной шиной 4 источника 5 тока дистанционного питания и первым выводом измерителя 3 разностного тока. Резистивная цепь 2 включена между отрицательной выходной шиной 6 источника 5 тока дистанционного питания и первым выводом измерителя 3 разностного тока, второй вывод которого подключен к шине 7 заземления. При этом положительная и отрицательная выходные шины 4 и 6 источника 5 тока дистанционного питания соединены одна с другой через коаксиальные кабели усилительных участков 8 и усилители 9 необслуживаемых усилительных пунктов 10. В варианте устройства, изображенном на чертеже, определение участка с пониженным сопротивлением изоляции производится в системе передачи, содержащей необслуживаемые усилительные пункты 10 с усилителями 9 и коаксиальные кабели в усилительных участках 8, хотя в других случаях определение участка с пониженным сопротивлением изоляции можно производить в системе передачи, содержащей вместо них регенераторы в необслуживаемых регенерационных пунктах и симметричные кабели в усилительных или регенерационных участках.

В устройстве, изображенном на участке, сопротивление резистивных цепей 1 и 2 во много раз (на два-три порядка) меньше сопротивления между жилами коаксиальных кабелей всех усилительных участков 8 и шиной 7 заземления. Благодаря этому при неповрежденных коаксиальных кабелях усилительных участков 8 и при равенстве сопротивлений резистивных цепей 1 и 2 разностный ток через измеритель 3 разностного тока практически отсутствует, так как токи через резистивные цепи 1 и 2 практически равны.

При образовании в линейном тракте системы передачи участка 11 с пониженным сопротивлением изоляции в ней может сформироваться неуравновешенный электрический мост. Плечами этого электрического моста являются резистивные цепи 1 и 2 и части линейного тракта между участком 11 с пониженным сопротивлением изоляции и положительной и отрицательной выходными шинами 4 и 6 источника 5 тока питания. Формирование электрического моста приводит к появлению паразитных токов в резистивных цепях 1 и 2 и в частях линейного тракта между участком 11 с пониженным сопротивлением изоляции и положительной и отрицательной выходными шинами 4 и 6 источника 5 тока дистанционного питания. Формирование неуравновешенного электрического моста не происходит только в случае равенства электрических сопротивлений частей линейного тракта между участком 11 с пониженным электрическим сопротивлением и положительной и отрицательной выходных шин 4 и 6 источника 5 тока дистанционного питания. При этом равенстве электрических сопротивлений не происходит образование электрических токов в резистивных цепях 1 и 2 и в частях линейного тракта между участком 11 с пониженным электрическим сопротивлением изоляции и положительной и отрицательной выходными шинами 4 и 6 источника 5 тока дистанционного питания. При равенстве электрических сопротивлений частей линейного тракта между участком 11 с пониженным электрическим сопротивлением изоляции и положительной и отрицательной выходными шинами 4 и 6 источника 5 дистанционного питания паразитные токи в этих частях не появляются и при отсутствии резистивных цепей 1 и 2, т.е. не в режиме измерения, а в режиме эксплуатации.

Для определения участка 11 с пониженным сопротивлением изоляции производят изменение сопротивлений резистивных цепей 1 и 2 до достижения минимального значения разностного тока через них на шину 7 заземления в измерителе 3 разностного тока. При этом разбалансировка электрического моста сводится к минимуму. Затем производят поочередное замыкание центральных жил коаксиальных кабелей всех усилительных участков 2 во всех необслуживаемых усилительных пунктах 10 на входах и выходах усилителей 9. При каждом заземлении конца центральной жилы коаксиального кабеля на входе или выходе усилителя 9 производят измерение разностного тока по резистивным цепям 1 и 2 через измеритель 3 разностного тока и запоминают результат этого измерения. По окончании поочередного заземления всех концов центральных жил коаксиальных кабелей в необслуживаемых усилительных пунктах 10 производят сравнение результатов сопутствующих измерений значений разностного тока через резистивные цепи 1 и 2 с первоначально достигнутым значением разностного тока, измеренным по появлении участка 11 с пониженным значением электрического сопротивления. После этого находят участок 11 с пониженным сопротивлением изоляции. Нахождение участка 11 с пониженным сопротивлением изоляции осуществляют по точке заземления с минимальным отклонением результата сопутствующего измерения разностного тока от его первоначально достигнутого значения. При этом считают что участок 11 с пониженным сопротивлением изоляции находится на усилительном усилителе 8, лежащем между необслуживаемыми усилительными пунктами 10, в которых заземление концов одной и той же центральной жилы коаксиального кабеля приводит к минимальному отклонению значения разностного тока в резистивных цепях 1 и 2 от его первоначально достигнутого значения.

Технико-экономическая эффективность предлагаемого способа связана с повышением точности результата определения участка с пониженным сопротивлением изоляции. Последнее при прочих равных условиях приводит к значительному снижению стоимости процесса определения участка с пониженным сопротивлением изоляции. Однако определить в настоящее время точное значение стоимости определения участка с пониженным сопротивлением изоляции не представляется возможным из-за сложности проведения соответствующих расчетов.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ УЧАСТКА С ПОНИЖЕННЫМ СОПРОТИВЛЕНИЕМ ИЗОЛЯЦИИ В ЛИНЕЙНОМ ТРАКТЕ СИСТЕМЫ ПЕРЕДАЧИ, включающий изменение соотношения сопротивления резистивных цепей между выходными шинами источника тока дистанционного питания и землей до достижения минимального значения разностного тока через них на землю и нахождение участка с пониженным сопротивлением изоляции, отличающийся тем, что, с целью повышения точности результата определения участка с пониженным сопротивлением изоляции, производят поочередное заземление точек вдоль петли дистанционного питания с измерением при каждом заземлении разностного тока по резистивным цепям с выходных шин источника тока дистанционного питания на землю, а нахождение участка с пониженным сопротивлением изоляции осуществляют по точке заземления с минимальным отклонением сопутствующего заземлению разностного тока от его первоначального достигнутого значения.

РИСУНКИ

Рисунок 1

Понравилась статья? Поделить с друзьями:
  • Как найти свою прошивку
  • Как найти фазу на проводе дома
  • Как найти каналы на телеграм канале
  • Как найти номер телефона хозяина участка
  • Как найти кюар код телефона