Как найти нод или нок чисел

Онлайн калькулятор НОД и НОК двух чисел

Наибольший общий делитель (НОД)

Определение НОД

НОД двух или более целых чисел — это наибольшее целое число, которое является делителем каждого из этих чисел.

Если натуральное число a делится на натуральное число bb, то bb называют делителем числа aa, а число aa называют кратным числа bb. aa и bb являются натуральными числами. Число gg называют общим делителем и для aa и для bb. Множество общих делителей чисел aa и bb конечно, так как ни один из этих делителей не может быть больше, чем aa. Значит, среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел aa и bb и для его обозначения используют записи: НОД (a;b)(a;b) или D(a;b)(a;b)

Пример
Наибольший общий делитель (НОД) чисел 1818 и 2424 — это 66.

Как найти наибольший общий делитель (НОД)

Существует несколько способов нахождения наибольшего общего делителя (НОД) двух или более целых чисел:

  • Алгоритм Евклида: НОД(a,b)=(a, b) = НОД (b,a(b, a mod b)b), где «mod» — это операция взятия остатка от деления большего числа на меньшее. Этот алгоритм можно продолжать до тех пор, пока одно из чисел не станет равно нулю. В этом случае НОД равен ненулевому числу.

Пример
НОД(18,24)=НОД(24,18)=НОД(18,6)=НОД(6,0)=6НОД(18, 24) = НОД(24, 18) = НОД(18, 6) = НОД(6, 0) = 6

  • Разложение на простые множители: Найти все простые множители каждого из чисел и их степени. НОД будет равен произведению всех общих простых множителей в минимальной степени.

Пример
НОД(60,84)=22⋅31=12(60, 84) = 2^{2} cdot 3^{1} = 12, так как общие простые множители −2- 2 и 33, их минимальные степени −2- 2 и 11 соответственно.

  • Таблица делителей: Составить таблицы всех делителей каждого числа и найти наибольшее общее число, которое является делителем обоих чисел. Этот метод не рекомендуется для больших чисел, так как он требует много времени и усилий.

Наименьшее общее кратное (НОК)

Определение НОК

НОК двух или более целых чисел — это наименьшее число, которое делится на каждое из этих чисел без остатка.

Общими кратными чисел называются числа которые делятся на исходные без остатка. Например для чисел 2525 и 5050 общими кратными будут числа 50,100,150,20050,100,150,200 и т.д Наименьшее из общих кратных будет называться НОК и обозначается НОК(a;b)(a;b) или K(a;b).(a;b).

Пример
Наименьшее общее кратное чисел 88 и 1212 – это 2424. Т.е. НОК (8,12)=24(8, 12) = 24.

Как найти наименьшее общее кратное (НОК)

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители;
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого;
  3. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наименьшим общим кратным.

Пример
Рассмотрим два числа: 88 и 1212. Найдем их НОКНОК:

  • Разложим 88 и 1212 на простые множители: 8=23,12=22⋅38 = 2^3, 12 = 2^2 cdot 3.
  • Выпишем все простые множители: 23⋅32^3 cdot 3.
  • Для каждого простого множителя выберем наибольшую кратность: 232^3 и 33.
  • Умножим выбранные простые множители между собой: 23⋅3=242^3 cdot 3 = 24.

Таким образом, НОК чисел 88 и 1212 равен 2424.

Свойства НОД и НОК

  • Любое общее кратное чисел aa и bb делится на K(a;b)(a;b);
  • Если a⋮bavdots b , то К(a;b)=a(a;b)=a;
  • Если К(a;b)=k(a;b)=k и mm-натуральное число, то К(am;bm)=km(am;bm)=km. Если dd-общий делитель для aa и bb,то К(ad;bdfrac{a}{d};frac{b}{d})= kd frac{k}{d}
  • Если a⋮cavdots c и b⋮cbvdots c ,то abcfrac{ab}{c} — общее кратное чисел aa и bb;
  • Для любых натуральных чисел aa и bb выполняется равенство D(a;b)⋅К(a;b)=abD(a;b)cdot К(a;b)=ab;
  • Любой общий делитель чисел aa и bb является делителем числа D(a;b)D(a;b).

НОК и НОД

Рассмотрим выражение:

(45:9)

Можем сказать, что 45 – делимое, а 9 – делитель данного выражения.

Мы знаем, что 45 делится нацело на число 9. В таком случае, если мы захотим описать, чем эти числа являются друг другу, то мы скажем, что

9 – делитель числа 45

45 – кратно числу 9

Иногда при решении задач нужно находить общие кратные или общие делители двух чисел.

Наименьший делитель двух чисел – всегда единица. Такой делитель нет смысла искать, поэтому ищут наибольший общий делитель.

А кратных наоборот – бесконечно много, невозможно искать наибольшее из них, поэтому ищут, наименьшее общее кратное.

НОД:

Наибольший общий делитель (НОД) двух чисел – это наибольшее число, на которое каждое из этих чисел можно поделить без остатка.

Пример №1:

Рассмотрим числа 30 и 45.

  1. Найдем все их существующие делители, т.е. числа, на которые каждое из них поделится нацело:

  1. Мы видим, что у этих двух чисел есть несколько общих делителей. Наибольший из них – 15 – является самым большим. Это и есть НОД.

Значит и число 45 и число 30 можно нацело поделить на 15. Записывают это так:

(НОД (30;45) = 15)

Ответ: 15.

Пример №2:

Найдем (НОД (20;36):)

  1. Выпишем все делители этих чисел.

Так же делители можно сразу записывать парой. Если 20 нацело делится на 2, то

(20 : 2 = 10)

Значит 10 – тоже делитель числа 20. Запишем делители 2 и 10 парой:

  1. Выделим все общие делители и найдем наибольший из них. В данном случае

(НОД(20;35) = 4.)

Ответ: 4.

НОК:

Наименьшее общее кратное (НОК) двух чисел – это наименьшее число, которое можно поделить на каждое из этих чисел без остатка.

Пример №3:

Найдем (НОК (10;12).)

  1. Возьмем наименьшее число. В данном случае – 10.

Будем умножать его на натуральные числа по порядку, пока не получим число, кратное 12, то есть такое, на которое нацело поделится и 10, и 12. Оно и будет НОК этих двух чисел. Такой метод называется методом подбора.

(10 bullet 1 = 10; 10 НЕ кратно 12)

(10 bullet 2 = 20; 20 НЕ кратно 12)

(10 bullet 3 = 30; 30 НЕ кратно 12)

(10 bullet 4 = 40; 40 НЕ кратно 12)

(10 bullet 5 = 50; 50 НЕ кратно 12)

(10 bullet 6 = 60; 60 кратно 12)

  1. Первое число, которое будет кратно обоим числам и является их наименьшим общим кратным.

Общих кратный, в отличии от делителей, бесконечно много, поэтому обычно выбирают наименьший их них.

Ответ: 60.

Также можно находить НОК через разложение на множители:

Пример №4:

Найдём (НОК (6;8):)

  1. Разложим числа 6 и 8 на простейшие множители, т.е. представим каждое число как произведения простых чисел. Множители большего числа запишем сверху:

8: (1 bullet 2 bullet 2 bullet 2)

6: (1 bullet 2 bullet 3)

  1. Видим, что множители 1 и 2 повторяются у обоих чисел, поэтому для меньшего числа их уберем. Останется:

  1. Перемножим все оставшиеся числа. Их произведение и будет НОК:

(НОК (6; 8) = 1 bullet 2 bullet 2 bullet 2 bullet 3 = 24)

Ответ: 24.

Пример №5:

Найдем (НОК (10;12)) разложением на множители:

  1. Разложим оба числа на простые множители. Сверху запишем большее число:

12: 1, 2, 2, 3

10: 1, 2, 5

  1. Для меньшего числа зачеркнем те множители, которые уже есть у большего числа:

  1. Перемножим все оставшиеся числа:

(НОК (10; 12) = 1 bullet 2 bullet 2 bullet 3 bullet 5 = 60)

Наш ответ совпал с ответом, где мы использовали метод подбора.

Ответ: 60.

ВЗАИМОСВЯЗЬ НОК И НОД:

Произведение НОК и НОД некоторых чисел равно произведению самих этих чисел:

(НОК(a; b) bullet НОД(a; b) = a bullet b)

Докажем эту формулу на примере.

Пример №6:

Рассмотрим пару чисел 24 и 60.

  1. Найдем их НОД:

(НОД (24;60) = 12)

  1. Найдем их НОК:

(НОК (24; 60) = 1 bullet 2 bullet 2 bullet 2 bullet 3 bullet 5 = 120)

  1. Рассмотрим поближе НОК. Чтобы его получить, мы переменожили все простые множители чисел 60 и 24 за исключением множителей 1, 2, 2, 3. Найдем отдельно их произведение:

(1 bullet 2 bullet 2 bullet 3 = 12)

Если перемножить все простые множители числе 60 и 24 мы получим просто их произведение, при этом оно будет состоять из НОК и числа 12, которое в свою очередь равно НОД:

Нахождение НОК и НОД двух натуральных чисел

Содержание:

  • Что такое НОК и НОД двух натуральных чисел
  • Особенности вычисления, алгоритм Евклида
  • Правило нахождения наибольшего общего делителя (НОД)
  • Правило нахождения наименьшего общего кратного (НОК)

Что такое НОК и НОД двух натуральных чисел

Натуральными числами называют числа, которые используются при счете – 1, 2, 3, 16, 25, 101, 2560 и далее до бесконечности. Ноль, отрицательные и дробные или нецелые числа не относятся к натуральным.

Наименьшее общее кратное (НОК) двух натуральных чисел a и b – это наименьшее число, которое делится без остатка на каждое из рассматриваемых чисел.

Наибольший общий делитель (НОД) двух натуральных чисел a и b – это наибольшее число, на которое делится без остатка каждое рассматриваемое число.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Свойства НОК и НОД для натуральных чисел a и b

  • (НОД (a, b) = НОД (b, a);)
  • (НОК (a, b) = НОК (b, a);)
  • (НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.)

Особенности вычисления, алгоритм Евклида

Рассмотрим два способа определения НОД и НОК с помощью алгоритма Евклида:

  • Способ деления.

При делении целых чисел с остатком, где a — делимое, b – делитель (b не равно 0) находят целые числа q и r согласно равенству (a=btimes) q+r, в котором q – неполное частное, r – остаток при делении (не отрицательное, по модулю меньше делителя).

Чтобы вычислить НОД, первоначально нужно выбрать наибольшее из двух чисел и поделить его на меньшее. Пока остаток не станет равным нулю, повторяется цикл деления делителя на остаток от деления в соответствии с формулой.

Пример №1

Вычислим НОД для чисел 12 и 20. Делим 20 на 12 и получаем 1 и 8 в остатке. Запишем иначе:

(20=12times1+8), так как остаток не равняется нулю, продолжаем деление. Делим 12 на 8 и получаем 1 и 4 в остатке. Записываем: (12=8times1+4) и по аналогии делим 8 на 4 и получаем 2 и 0 в остатке. НОД равен остатку, предшествующему нулю.

НОД (12;20) = 4

НОК получаем согласно свойству (НОК (a, b) = НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.) Подставляем числовые значения:

НОК (12; 20) = (12times20div4=60)

НОК (12;20) = 60

  • Способ вычитания.

Здесь повторяется цикл вычитания из наибольшего числа меньшего числа до момента, пока разность не станет равна нулю. НОД равен предшествующей нулю разности.

Пример №2

Вычислим НОД для тех же чисел, 12 и 20.

20 – 12 = 8 (разность не равна нулю, продолжаем)

12 – 8 = 4

8 – 4 = 4

4 – 4 = 0

НОД (12;20) = 4

НОК находим также, как и при методе деления.

Правило нахождения наибольшего общего делителя (НОД)

Для нахождения наибольшего общего делителя воспользуемся пошаговым алгоритмом:

  1. Разложить числа на простые множители.
  2. Найти общий множитель одного и другого числа.
  3. Перемножить общие множители, если их несколько, и их произведение будет НОД.

Пример №3

Возьмем натуральные числа 24 и 36.

(24=2times2times2times3)

(36=2times2times3times3)

Правильно записать следующим образом:

(НОД (24;36)=2times3=6)

Примечание

В случае, когда одно или оба числа относятся к простым, т.е. делятся только на единицу и на само себя, то их НОД равняется 1.

Правило нахождения наименьшего общего кратного (НОК)

Для нахождения наименьшего общего кратного воспользуемся подробным алгоритмом:

  1. Наибольшее из чисел, а затем остальные разложить на простые множители.
  2. Выделить те множители, которые отсутствуют у наибольшего.
  3. Перемножить множители п. 2 и множители наибольшего числа, получить НОК.

Пример №4

Возьмем натуральные числа 9 и 12.

(12=2times2times3)

(9=3times3) (видим, что у числа 12 отсутствует одна тройка)

Правильно записать следующим образом:

(НОК (9;12)=2times2times3times3=36)

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 4)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Сайт переезжает. Большинство статей уже перенесено на новую версию.
Скоро добавим автоматические переходы, но пока обновленную версию этой статьи можно найти там.

Теория чисел

  • Простые числа
  • Разложение на простые множители
  • Решето Эратосфена
  • Линейное решето Эратосфена*
  • НОД и НОК
  • Алгоритм Евклида
  • Расширенный алгоритм Евклида*
  • Операции по модулю
  • Быстрое возведение в степень
  • Деление по простому модулю*

Простые числа

Простым называется натуральное число, которое делится только на единицу и на себя. Единица при этом простым числом не считается. Составным числом называют непростое число, которое еще и не единица.

Примеры простых чисел: (2), (3), (5), (179), (10^9+7), (10^9+9).

Примеры составных чисел: (4), (15), (2^{30}).

Еще одно определение простого числа: (N) — простое, если у (N) ровно два делителя. Эти делители при этом равны (1) и (N).

Проверка на простоту за линию

С точки зрения программирования интересно научиться проверять, является ли число (N) простым. Это очень легко сделать за (O(N)) — нужно просто проверить, делится ли оно хотя бы на одно из чисел (2, 3, 4, ldots, N-1) . (N > 1) является простым только в случае, если оно не делится на на одно из этих чисел.

def is_prime(n):
    if n == 1:
        return False
    for i in range(2, n): # начинаем с 2, так как на 1 все делится; n не включается
        if n % i == 0:
            return False
    return True

for i in range(1, 10):
    print(i, is_prime(i))
(1, False)
(2, True)
(3, True)
(4, False)
(5, True)
(6, False)
(7, True)
(8, False)
(9, False)

Проверка на простоту за корень

Алгоритм можно ускорить с (O(N)) до (O(sqrt{N})).

Пусть (N = a times b), причем (a leq b). Тогда заметим, что (a leq sqrt N leq b).

Почему? Потому что если (a leq b < sqrt{N}), то (ab leq b^2 < N), но (ab = N). А если (sqrt{N} < a leq b), то (N < a^2 leq ab), но (ab = N).

Иными словами, если число (N) равно произведению двух других, то одно из них не больше корня из (N), а другое не меньше корня из (N).

Из этого следует, что если число (N) не делится ни на одно из чисел (2, 3, 4, ldots, lfloorsqrt{N}rfloor), то оно не делится и ни на одно из чисел (lceilsqrt{N}rceil + 1, ldots, N-2, N-1), так как если есть делитель больше корня (не равный (N)), то есть делитель и меньше корня (не равный 1). Поэтому в цикле for достаточно проверять числа не до (N), а до корня.

def is_prime(n):
    if n == 1:
        return False
    # Удобно вместо for i in range(2, n ** 0.5) писать так:
    i = 2
    while i * i <= n:
        if n % i == 0:
            return False
        i += 1
    return True

for i in [1, 2, 3, 10, 11, 12, 10**9+6, 10**9+7]:
    print(i, is_prime(i))
(1, False)
(2, True)
(3, True)
(10, False)
(11, True)
(12, False)
(1000000006, False)
(1000000007, True)

Разложение на простые множители

Любое натуральное число можно разложить на произведение простых, и с такой записью очень легко работать при решении задач. Разложение на простые множители еще называют факторизацией.

[11 = 11 = 11^1] [100 = 2 times 2 times 5 times 5 = 2^2 times 5^2] [126 = 2 times 3 times 3 times 7 = 2^1 times 3^2 times 7^1]

Рассмотрим, например, такую задачу:

Условие: Нужно разбить (N) людей на группы равного размера. Нам интересно, какие размеры это могут быть.

Решение: По сути нас просят найти число делителей (N). Нужно посмотреть на разложение числа (N) на простые множители, в общем виде оно выглядит так:

[N= p_1^{a_1} times p_2^{a_2} times ldots times p_k^{a_k}]

Теперь подумаем над этим выражением с точки зрения комбинаторики. Чтобы «сгенерировать» какой-нибудь делитель, нужно подставить в степень (i)-го простого число от 0 до (a_i) (то есть (a_i+1) различное значение), и так для каждого. То есть делитель (N) выглядит ровно так: [M= p_1^{b_1} times p_2^{b_2} times ldots times p_k^{b_k}, 0 leq b_i leq a_i] Значит, ответом будет произведение ((a_1+1) times (a_2+1) times ldots times (a_k + 1)).

Алгоритм разложения на простые множители

Применяя алгоритм проверки числа на простоту, мы умеем легко находить минимальный простой делитель числа N. Ясно, что как только мы нашли простой делитель числа (N), мы можем число (N) на него поделить и продолжить искать новый минимальный простой делитель.

Будем перебирать простой делитель от (2) до корня из (N) (как и раньше), но в случае, если (N) делится на этот делитель, будем просто на него делить. Причем, возможно, нам понадобится делить несколько раз ((N) может делиться на большую степень этого простого делителя). Так мы будем набирать простые делители и остановимся в тот момент, когда (N) стало либо (1), либо простым (и мы остановились, так как дошли до корня из него). Во втором случае надо еще само (N) добавить в ответ.

Напишем алгоритм факторизации:

def factorize(n):
    factors = []
    i = 2
    while i * i <= n: # перебираем простой делитель
        while n % i == 0: # пока N на него делится
            n //= i # делим N на этот делитель
            factors.append(i)
        i += 1
    # возможно, в конце N стало большим простым числом,
    # у которого мы дошли до корня и поняли, что оно простое
    # его тоже нужно добавить в разложение
    if n > 1:
        factors.append(n)
    return factors

for i in [1, 2, 3, 10, 11, 12, 10**9+6, 10**9+7]:
    print(i, '=', ' x '.join(str(x) for x in factorize(i)))
1 = 
2 = 2
3 = 3
10 = 2 x 5
11 = 11
12 = 2 x 2 x 3
1000000006 = 2 x 500000003
1000000007 = 1000000007

Задание

За сколько работает этот алгоритм?

.

.

.

.

Решение

За те же самые (O(sqrt{N})). Итераций цикла while с перебором делителя будет не больше, чем (sqrt{N}). Причем ровно (sqrt{N}) операций будет только в том случае, если (N) — простое.

А итераций деления (N) на делители будет столько, сколько всего простых чисел в факторизации числа (N). Понятно, что это не больше, чем (O(log{N})).

Задание

Докажите, что число (N) имеет не больше, чем (O(log{N})) простых множителей в факторизации.

Разные свойства простых чисел*

Вообще, про простые числа известно много свойств, но почти все из них очень трудно доказать. Вот еще некоторые из них:

  • Простых чисел, меньших (N), примерно (frac{N}{ln N}).
  • N-ое простое число равно примерно (Nln N).
  • Простые числа распределены более-менее равномерно. Например, если вам нужно найти какое-то простое число в промежутке, то можно их просто перебрать и проверить — через несколько сотен какое-нибудь найдется.
  • Для любого (N ge 2) на интервале ((N, 2N)) всегда найдется простое число (Постулат Бертрана)
  • Впрочем, существуют сколь угодно длинные отрезки, на которых простых чисел нет. Самый простой способ такой построить — это начать с (N! + 2).
  • Есть алгоритмы, проверяющие число на простоту намного быстрее, чем за корень.
  • Максимальное число делителей равно примерно (O(sqrt[3]{n})). Это не математический результат, а чисто эмпирический — не пишите его в асимптотиках.
  • Максимальное число делителей у числа на отрезке ([1, 10^5]) — 128
  • Максимальное число делителей у числа на отрекзке ([1, 10^9]) — 1344
  • Максимальное число делителей у числа на отрезке ([1, 10^{18}]) — 103680
  • Наука умеет факторизовать числа за (O(sqrt[4]{n})), но об этом как-нибудь в другой раз.
  • Любое число больше трёх можно представить в виде суммы двух простых (гипотеза Гольдбаха), но это не доказано.

Решето Эратосфена

Часто нужно не проверять на простоту одно число, а найти все простые числа до (N). В этом случае наивный алгоритм будет работать за (O(Nsqrt N)), так как нужно проверить на простоту каждое число от 1 до (N).

Но древний грек Эратосфен предложил делать так:

Запишем ряд чисел от 1 до (N) и будем вычеркивать числа: * делящиеся на 2, кроме самого числа 2 * затем деляющиеся на 3, кроме самого числа 3 * затем на 5, затем на 7, и так далее и все остальные простые до n. Таким образом, все незачеркнутые числа будут простыми — «решето» оставит только их.

Красивая визуализация

Задание

Найдите этим способом на бумажке все простые числа до 50, потом проверьте с программой:

N = 50
prime = [1] * (N + 1)
prime[0], prime[1] = 0, 0
for i in range(2, N + 1): # можно и до sqrt(N)
    if prime[i]:
        for j in range(2 * i, N + 1, i): # идем с шагом i, можно начиная с i * i
            prime[j] = 0
for i in range(1, N + 1):
    if prime[i]:
        print(i)
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

У этого алгоритма можно сразу заметить несколько ускорений.

Во-первых, число (i) имеет смысл перебирать только до корня из (N), потому что при зачеркивании составных чисел, делящихся на простое (i > sqrt N), мы ничего не зачеркнем. Почему? Пусть существует составное (M leq N), которое делится на %i%, и мы его не зачеркнули. Но тогда (i > sqrt N geq sqrt M), а значит по ранее нами доказанному утверждению (M) должно делиться и на простое число, которое меньше корня. Но это значит, что мы его уже вычеркнули.

Во-вторых, по этой же самое причине (j) имеет смысл перебирать только начиная с (i^2). Зачем вычеркивать (2i), (3i), (4i), …, ((i-1)i), если они все уже вычеркнуты, так как мы уже вычеркивали всё, что делится на (2), (3), (4), …, ((i-1)).

Асимптотика

Такой код будет работать за (O(N log log N)) по причинам, которые мы пока не хотим объяснять формально.

Гармонический ряд

Научимся оценивать асимптотику величины (1 + frac{1}{2} + ldots + frac{1}{N}), которая нередко встречается в задачах, где фигурирует делимость.

Возьмем (N) равное (2^i — 1) и запишем нашу сумму следующим образом: [left(frac{1}{1}right) + left(frac{1}{2} + frac{1}{3}right) + left(frac{1}{4} + ldots + frac{1}{7}right) + ldots + left(frac{1}{2^{i — 1}} + ldots + frac{1}{2^i — 1}right)]

Каждое из этих слагаемых имеет вид [frac{1}{2^j} + ldots + frac{1}{2^{j + 1} — 1} le frac{1}{2^j} + ldots + frac{1}{2^j} = 2^j frac{1}{2^j} = 1]

Таким образом, наша сумма не превосходит (1 + 1 + ldots + 1 = i le 2log_2(2^i — 1)). Тем самым, взяв любое (N) и дополнив до степени двойки, мы получили асимптотику (O(log N)).

Оценку снизу можно получить аналогичным образом, оценив каждое такое слагаемое снизу значением (frac{1}{2}).

Попытка объяснения асимптотики** (для старших классов)

Мы знаем, что гармонический ряд (1 + frac{1}{2} + frac{1}{3} + ldots + frac{1}{N}) это примерно (log N), а значит [N + frac{N}{2} + frac{N}{3} + ldots + frac{N}{N} sim N log N]

А что такое асимптотика решета Эратосфена? Мы как раз ровно (frac{N}{p}) раз зачеркиваем числа делящиеся на простое число (p). Если бы все числа были простыми, то мы бы как раз получили (N log N) из формули выше. Но у нас будут не все слагаемые оттуда, только с простым (p), поэтому посмотрим чуть более точно.

Известно, что простых чисел до (N) примерно (frac{N}{log N}), а значит допустим, что k-ое простое число примерно равно (k ln k). Тогда

[sum_{substack{2 leq p leq N \ text{p is prime}}} frac{N}{p} sim frac{1}{2} + sum_{k = 2}^{frac{N}{ln N}} frac{N}{k ln k} sim int_{2}^{frac{N}{ln N}} frac{N}{k ln k} dk =N(lnlnfrac{N}{ln N} — lnln 2) sim N(lnln N — lnlnln N) sim N lnln N]

Но вообще-то решето можно сделать и линейным.

Задание

Решите 5 первых задач из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Линейное решето Эратосфена*

Наша цель — для каждого числа до (N) посчитать его минимальный простой делитель. Будем хранить его в массиве min_d. Параллельно будем хранить и список всех найденных простых чисел primes — это ровно те числа (x), у которых (min_d[x] = x).

Основное утверждение такое:

Пусть у числа (M) минимальный делитель равен (a). Тогда, если (M) составное, мы хотим вычеркнуть его ровно один раз при обработке числа (frac{M}{a}).

Мы также перебираем число (i) от (2) до (N). Если (min_d[i]) равно 0 (то есть мы не нашли ни один делитель у этого числа еще), значит оно простое — добавим в primes и сделаем (min_d[i] = i).

Далее мы хотим вычеркнуть все числа (i times k) такие, что (k) — это минимальный простой делитель этого числа. Из этого следует, что необходимо и достаточно перебрать (k) в массиве primes, и только до тех пор, пока (k < min_d[i]). Ну и перестать перебирать, если (i times k > N).

Алгоритм пометит все числа по одному разу, поэтому он корректен и работает за (O(N)).

N = 30
primes = []
min_d = [0] * (N + 1)

for i in range(2, N + 1):
    if min_d[i] == 0:
        min_d[i] = i
        primes.append(i)
    for p in primes:
        if p > min_d[i] or i * p > N:
            break
        min_d[i * p] = p
    print(i, min_d)
print(min_d)
print(primes)
2 [0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3 [0, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4 [0, 0, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
5 [0, 0, 2, 3, 2, 5, 2, 0, 2, 3, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0]
6 [0, 0, 2, 3, 2, 5, 2, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0]
7 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0]
8 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0]
9 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0]
10 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0]
11 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 0, 5, 0, 3, 0, 0, 0]
12 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 0, 3, 0, 0, 0]
13 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 0, 0, 0]
14 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 0]
15 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
16 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
17 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
18 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
19 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
20 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
21 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
22 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
23 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
24 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
25 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
26 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
27 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
28 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
29 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
30 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
[0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Этот алгоритм работает асимптотически быстрее, чем обычное решето. Но на практике, если писать обычное решето Эратсфена с оптимизациями, то оно оказывается быстрее линейнего. Также линейное решето занимает гораздо больше памяти — ведь в обычном решете можно хранить просто (N) бит, а здесь нам нужно (N) чисел и еще массив primes.

Зато один из «побочных эффектов» алгоритма — он неявно вычисляет факторизацию всех чисел от (1) до (N). Ведь зная минимальный простой делитель любого числа от (1) до (N) можно легко поделить на это число, посмотреть на новый минимальный простой делитель и так далее.

НОД и НОК

Введем два определения.

Наибольший общий делитель (НОД) чисел (a_1, a_2, ldots, a_n) — это максимальное такое число (x), что все (a_i) делятся на (x).

Наименьшее общее кратное (НОК) чисел (a_1, a_2, ldots, a_n) — это минимальное такое число (x), что (x) делится на все (a_i).

Например, * НОД(18, 30) = 6 * НОД(60, 180, 315) = 15 * НОД(1, N) = 1 * НОК(12, 30) = 6 * НОК(1, 2, 3, 4) = 12 * НОК(1, (N)) = (N)

Зачем они нужны? Например, они часто возникают в задачах.

Условие: Есть (N) шестеренок, каждая (i)-ая зацеплена с ((i-1))-ой. (i)-ая шестеренка имеет (a_i) зубчиков. Сколько раз нужно повернуть полносьтю первую шестеренку, чтобы все остальные шестеренки тоже вернулись на изначальное место?

Решение: Когда одна шестеренка крутится на 1 зубчик, все остальные тоже крутятся на один зубчик. Нужно найти минимальное такое число зубчиков (x), что при повороте на него все шестеренки вернутся в изначальное положение, то есть (x) делится на все (a_i), то есть это НОК((a_1, a_2, ldots, a_N)). Ответом будет (frac{x}{a_1}).

Еще пример задачи на применение НОД и НОК:

Условие: Город — это прямоугольник (n) на (m), разделенный на квадраты единичного размера. Вертолет летит из нижнего левого угла в верхний правый по прямой. Вертолет будит людей в квартале, когда он пролетает строго над его внутренностью (границы не считаются). Сколько кварталов разбудит вертолёт?

Решение: Вертолет пересечет по вертикали ((m-1)) границу. С этим ничего не поделать — каждое считается как новое посещение какого-то квартала. По горизонтали то же самое — ((n-1)) переход в новую ячейку будет сделан.

Однако еще есть случай, когда он пересекает одновременно обе границы (то есть пролетает над каким-нибудь углом) — ровно тот случай, когда нового посещения квартала не происходит. Сколько таких будет? Ровно столько, сколько есть целых решений уравнения (frac{n}{m} = frac{x}{y}). Мы как бы составили уравнение движения вертолёта и ищем, в скольки целых точках оно выполняется.

Пусть (t = НОД(n, m)), тогда (n = at, m = bt).

Тогда (frac{n}{m} = frac{a}{b} = frac{x}{y}). Любая дробь с натуральными числителем и знаменателем имеет ровно одно представление в виде несократимой дроби, так что (x) должно делиться на (a), а (y) должно делиться на (b). А значит, как ответ подходят ((a, b), (2a, 2b), (3a, 3b), cdots, ((t-1)a, (t-1)b)). Таких ответов ровно (t = НОД(n, m))

Значит, итоговый ответ: ((n-1) + (m-1) — (t-1)).

Кстати, когда (НОД(a, b) = 1), говорят, что (a) и (b) взаимно просты.

Алгоритм Евклида

Осталось придумать, как искать НОД и НОК. Понятно, что их можно искать перебором, но мы хотим хороший быстрый способ.

Давайте для начала научимся искать (НОД(a, b)).

Мы можем воспользоваться следующим равенством: [НОД(a, b) = НОД(a, b — a), b > a]

Оно доказывается очень просто: надо заметить, что множества общих делителей у пар ((a, b)) и ((a, b — a)) совпадают. Почему? Потому что если (a) и (b) делятся на (x), то и (b-a) делится на (x). И наоборот, если (a) и (b-a) делятся на (x), то и (b) делится на (x). Раз множства общих делитей совпадают, то и максимальный делитель совпадает.

Из этого равенства сразу следует следующее равенство: [НОД(a, b) = НОД(a, b operatorname{%} a), b > a]

(так как (НОД(a, b) = НОД(a, b — a) = НОД(a, b — 2a) = НОД(a, b — 3a) = ldots = НОД(a, b operatorname{%} a)))

Это равенство дает идею следующего рекурсивного алгоритма:

[НОД(a, b) = НОД(b operatorname{%} a, a) = НОД(a operatorname{%} , (b operatorname{%} a), b operatorname{%} a) = ldots]

Например: [НОД(93, 36) = ] [= НОД(36, 93spaceoperatorname{%}36) = НОД(36, 21) = ] [= НОД(21, 15) = ] [= НОД(15, 6) = ] [= НОД(6, 3) = ] [= НОД(3, 0) = 3]

Задание:

Примените алгоритм Евклида и найдите НОД чисел: * 1 и 500000 * 10, 20 * 18, 60 * 55, 34 * 100, 250

По-английски наибольший общий делительgreatest common divisor. Поэтому вместо НОД будем в коде писать gcd.

def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)

print(gcd(1, 500000))
print(gcd(10, 20))
print(gcd(18, 60))
print(gcd(55, 34))
print(gcd(100, 250))
print(gcd(2465473782, 12542367456))
1
10
6
1
50
6

Вообще, в C++ такая функция уже есть в компиляторе g++ — называется __gcd. Если у вас не Visual Studio, то, скорее всего, у вас g++. Вообще, там много всего интересного.

А за сколько оно вообще работает?

Задание

Докажите, что алгоритм Евклида для чисел (N), (M) работает за (O(log(N+M))).

Кстати, интересный факт: самыми плохими входными данными для алгоритма Евклида являются числа Фибоначчи. Именно там и достигается логарифм.

Как выразить НОК через НОД

(НОК(a, b) = frac{ab}{НОД(a, b)})

По этой формуле можно легко найти НОК двух чисел через их произведение и НОД. Почему она верна?

Посмотрим на разложения на простые множители чисел a, b, НОК(a, b), НОД(a, b).

[ a = p_1^{a_1}times p_2^{a_2}timesldotstimes p_n^{a_n} ] [ b = p_1^{b_1}times p_2^{b_2}timesldotstimes p_n^{b_n} ] [ ab = p_1^{a_1+b_1}times p_2^{a_2+b_2}timesldotstimes p_n^{a_n+b_n} ]

Из определений НОД и НОК следует, что их факторизации выглядят так: [ НОД(a, b) = p_1^{min(a_1, b_1)}times p_2^{min(a_2, b_2)}timesldotstimes p_n^{min(a_n, b_n)} ] [ НОК(a, b) = p_1^{max(a_1, b_1)}times p_2^{max(a_2, b_2)}timesldotstimes p_n^{max(a_n, b_n)} ]

Тогда посчитаем (НОД(a, b) times НОК(a, b)): [ НОД(a, b)НОК(a, b) = p_1^{min(a_1, b_1)+max(a_1, b_1)}times p_2^{min(a_2, b_2)+max(a_2, b_2)}timesldotstimes p_n^{min(a_n, b_n)+max(a_n, b_n)} =] [ = p_1^{a_1+b_1}times p_2^{a_2+b_2}timesldotstimes p_n^{a_n+b_n} = ab]

Формула доказана.

Как посчитать НОД/НОК от более чем 2 чисел

Для того, чтобы искать НОД или НОК у более чем двух чисел, достаточно считать их по цепочке:

(НОД(a, b, c, d, ldots) = НОД(НОД(a, b), c, d, ldots))

(НОК(a, b, c, d, ldots) = НОК(НОК(a, b), c, d, ldots))

Почему это верно?

Ну просто множество общих делителей (a) и (b) совпадает с множеством делителей (НОД(a, b)). Из этого следует, что и множество общих делителей (a), (b) и еще каких-то чисел совпадает с множеством общих делителей (НОД(a, b)) и этих же чисел. И раз совпадают множества общих делителей, то и наибольший из них совпадает.

С НОК то же самое, только фразу “множество общих делителей” надо заменить на “множество общих кратных”.

Задание

Решите задачи F, G, H, I из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Расширенный алгоритм Евклида*

Очень важным для математики свойством наибольшего общего делителя является следующий факт:

Для любых целых (a, b) найдутся такие целые (x, y), что (ax + by = d), где (d = gcd(a, b)).

Из этого следует, что существует решение в целых числах, например, у таких уравнений: * (8x + 6y = 2) * (4x — 5y = 1) * (116x + 44y = 4) * (3x + 11y = -1)

Мы сейчас не только докажем, что решения у таких уравнений существуют, но и приведем быстрый алгоритм нахождения этих решений. Здесь нам вновь пригодится алгоритм Евклида.

Рассмотрим один шаг алгоритма Евклида, преобразующий пару ((a, b)) в пару ((b, a operatorname{%} b)). Обозначим (r = a operatorname{%} b), то есть запишем деление с остатком в виде (a = bq + r).

Предположим, что у нас есть решение данного уравнения для чисел (b) и (r) (их наибольший общий делитель, как известно, тоже равен (d)): [bx_0 + ry_0 = d]

Теперь сделаем в этом выражении замену (r = a — bq):

[bx_0 + ry_0 = bx_0 + (a — bq)y_0 = ay_0 + b(x_0 — qy_0)]

Tаким образом, можно взять (x = y_0), а (y = (x_0 — qy_0) = (x_0 — (a operatorname{/} b)y_0)) (здесь (/) обозначает целочисленное деление).

В конце алгоритма Евклида мы всегда получаем пару ((d, 0)). Для нее решение требуемого уравнения легко подбирается — (d * 1 + 0 * 0 = d). Теперь, используя вышесказанное, мы можем идти обратно, при вычислении заменяя пару ((x, y)) (решение для чисел (b) и (a operatorname{%} b)) на пару ((y, x — (a / b)y)) (решение для чисел (a) и (b)).

Это удобно реализовывать рекурсивно:

def extended_gcd(a, b):
    if b == 0:
        return a, 1, 0
    d, x, y = extended_gcd(b, a % b)
    return d, y, x - (a // b) * y

a, b = 3, 5
res = extended_gcd(a, b)
print("{3} * {1} + {4} * {2} = {0}".format(res[0], res[1], res[2], a, b))
3 * 2 + 5 * -1 = 1

Но также полезно и посмотреть, как будет работать расширенный алгоритм Евклида и на каком-нибудь конкретном примере. Пусть мы, например, хотим найти целочисленное решение такого уравнения: [116x + 44y = 4] [(2times44+28)x + 44y = 4] [44(2x+y) + 28x = 4] [44x_0 + 28y_0 = 4] Следовательно, [x = y_0, y = x_0 — 2y_0] Будем повторять такой шаг несколько раз, получим такие уравнения: [116x + 44y = 4] [44x_0 + 28y_0 = 4, x = y_0, y = x_0 — 2y_0] [28x_1 + 16y_1 = 4, x_0 = y_1, y_0 = x_1 — y_1] [16x_2 + 12y_2 = 4, x_1 = y_2, y_1 = x_2 — y_2] [12x_3 + 4y_3 = 4, x_2 = y_3, y_2 = x_3 — y_3] [4x_4 + 0y_4 = 4, x_3 = y_4, y_3 = x_4 — 3 y_4] А теперь свернем обратно: [x_4 = 1, y_4 = 0] [x_3 = 0, y_3 =1] [x_2 = 1, y_2 =-1] [x_1 = -1, y_1 =2] [x_0 = 2, y_0 =-3] [x = -3, y =8]

Действительно, (116times(-3) + 44times8 = 4)

Задание

Решите задачу J из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34273

Операции по модулю

Выражение (a equiv b pmod m) означает, что остатки от деления (a) на (m) и (b) на (m) равны. Это выражение читается как «(a) сравнимо (b) по модулю (m)».

Еще это можно опрделить так: (a) сравнимо c (b) по модулю (m), если ((a — b)) делится на (m).

Все целые числа можно разделить на классы эквивалентности — два числа лежат в одном классе, если они сравнимы по модулю (m). Говорят, что мы работаем в «кольце остатков по модулю (m)», и в нем ровно (m) элементов: (0, 1, 2, cdots, m-1).

Сложение, вычитение и умножение по модулю определяются довольно интуитивно — нужно выполнить соответствующую операцию и взять остаток от деления.

С делением намного сложнее — поделить и взять по модулю не работает. Об этом подробнее поговорим чуть дальше.

a = 30
b = 50
mod = 71

print('{} + {} = {} (mod {})'.format(a, b, (a + b) % mod, mod))
print('{} - {} = {} (mod {})'.format(a, b, (a - b) % mod, mod)) # на C++ это может не работать, так как модуль от отрицательного числа берется странно
print('{} - {} = {} (mod {})'.format(a, b, (a - b + mod) % mod, mod)) # на C++ надо писать так, чтобы брать модулю от гарантированно неотрицательного числа
print('{} * {} = {} (mod {})'.format(a, b, (a * b) % mod, mod))
# print((a / b) % mod) # а как писать это, пока неясно
30 + 50 = 9 (mod 71)
30 - 50 = 51 (mod 71)
30 - 50 = 51 (mod 71)
30 * 50 = 9 (mod 71)

Задание

Посчитайте: * (2 + 3 pmod 5) * (2 * 3 pmod 5) * (2 ^ 3 pmod 5) * (2 — 4 pmod 5) * (5 + 5 pmod 6) * (2 * 3 pmod 6) * (3 * 3 pmod 6)

Для умножения (в C++) нужно ещё учитывать следующий факт: при переполнении типа всё ломается (разве что если вы используете в качестве модуля степень двойки).

  • int вмещает до (2^{31} — 1 approx 2 cdot 10^9).
  • long long вмещает до (2^{63} — 1 approx 8 cdot 10^{18}).
  • long long long в плюсах нет, при попытке заиспользовать выдает ошибку long long long is too long.
  • Под некоторыми компиляторами и архитектурами доступен int128, но не везде и не все функции его поддерживают (например, его нельзя вывести обычными методами).

Зачем нужно считать ответ по модулю

Очень часто в задаче нужно научиться считать число, которое в худшем случае гораздо больше, чем (10^{18}). Тогда, чтобы не заставлять вас писать длинную арифметику, автор задачи часто просит найти ответ по модулю большого числа, обычно (10^9 + 7)

Кстати, вместо того, чтобы писать (1000000007) удобно просто написать (1e9 + 7). (1e9) означает (1 times 10^9)

int mod = 1e9 + 7; # В C++
cout << mod;
1000000007
N = 1e9 + 7 # В питоне такое число становится float
print(N)
print(int(N))
1000000007.0
1000000007

Быстрое возведение в степень

Задача: > Даны натуральные числа (a, b, c < 10^9). Найдите (a^b) (mod (c)).

Мы хотим научиться возводить число в большую степень быстро, не просто умножая (a) на себя (b) раз. Требование на модуль здесь дано только для того, чтобы иметь возможность проверить правильность алгоритма для чисел, которые не влезают в int и long long.

Сам алгоритм довольно простой и рекурсивный, постарайтесь его придумать, решая вот такие примеры (прямо решать необязательно, но можно придумать, как посчитать значение этих чисел очень быстро):

  • (3^2)
  • (3^4)
  • (3^8)
  • (3^{16})
  • (3^{32})
  • (3^{33})
  • (3^{66})
  • (3^{132})
  • (3^{133})
  • (3^{266})
  • (3^{532})
  • (3^{533})
  • (3^{1066})

Да, здесь специально приведена такая последовательность, в которой каждое следующее число легко считается через предыдущее: его либо нужно умножить на (a=3), либо возвести в квадрат. Так и получается рекурсивный алгоритм:

  • (a^0 = 1)
  • (a^{2k}=(a^{k})^2)
  • (a^{2k+1}=a^{2k}times a)

Нужно только после каждой операции делать mod: * (a^0 pmod c = 1) * (a^{2k} pmod c = (a^{k} pmod c)^2 pmod c) * (a^{2k+1} pmod c = ((a^{2k}pmod c) times a) pmod c)

Этот алгоритм называется быстрое возведение в степень. Он имеет много применений: * в криптографии очень часто надо возводить число в большую степень по модулю * используется для деления по простому модулю (см. далее) * можно быстро перемножать не только числа, но еще и матрицы (используется для динамики, например)

Асимптотика этого алгоритма, очевидно, (O(log c)) — за каждые две итерации число уменьшается хотя бы в 2 раза.

Задание

Решите задачу K из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Задание

Решите как можно больше задач из практического контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34273

Деление по модулю*

Давайте все-таки научимся не только умножать, но и делить по простому модулю. Вот только что это значит?

(a / b) = (a times b^{-1}), где (b^{-1}) — это обратный элемент к (b).

Определение: (b^{-1}) — это такое число, что (bb^{-1} = 1)

Утверждение: в кольце остатков по простому модулю (p) у каждого остатка (кроме 0) существует ровно один обратный элемент.

Например, обратный к (2) по модулю (5) это (3) ((2 times 3 = 1 pmod 5)))

Задание

Найдите обратный элемент к: * числу (3) по модулю (5) * числу (3) по модулю (7) * числу (1) по модулю (7) * числу (2) по модулю (3) * числу (9) по модулю (31)

Давайте докажем это утверждение: надо заметить, что если каждый ненулевой остаток (1, 2, ldots, (p-1)) умножить на ненулевой остаток (a), то получатся числа (a, 2a, ldots, (p-1)a) — и они все разные! Они разные, потому что если (xa = ya), то ((x-y)a = 0), а значит ((x — y) a) делится на (p), (a) — ненулевой остаток, а значит (x = y), и это не разные числа. И из того, что все числа получились разными, это все ненулевые, и их столько же, следует, что это ровно тот же набор чисел, просто в другом порядке!

Из этого следует, что среди этих чисел есть (1), причем ровно один раз. А значит существует ровно один обратный элемент (a^{-1}). Доказательство закончено.

Это здорово, но этот обратный элемент еще хочется быстро находить. Быстрее, чем за (O(p)).

Есть несколько способов это сделать.

Через малую теорему Ферма

Малая теорема Ферма: > (a^{p-1} = 1 pmod p), если (p) — простое, (a neq 0 pmod p)).

Доказательство: В предыдущем пункте мы выяснили, что множества чисел (1, 2, ldots, (p-1)) и (a, 2a, ldots, (p-1)a) совпадают. Из этого следует, что их произведения тоже совпадают по модулю: ((p-1)! = a^{p-1} (p-1)! pmod p).

((p-1)!neq 0 pmod p) а значит на него можно поделить (это мы кстати только в предыдущем пункте доказали, поделить на число — значит умножить на обратный к нему, который существует).

А значит, (a^{p — 1} = 1 pmod p).

Как это применить Осталось заметить, что из малой теоремы Ферма сразу следует, что (a^{p-2}) — это обратный элемент к (a), а значит мы свели задачу к возведению (a) в степень (p-2), что благодаря быстрому возведению в степень мы умеем делать за (O(log p)).

Обобщение У малой теоремы Ферма есть обобщение для составных (p):

Теорема Эйлера: > (a^{varphi(p)} = 1 pmod p), (a) — взаимно просто с (p), а (varphi(p)) — это функция Эйлера (количество чисел, меньших (p) и взаимно простых с (p)).

Доказывается теорема очень похоже, только вместо ненулевых остатков (1, 2, ldots, p-1) нужно брать остатки, взаимно простые с (p). Их как раз не (p-1), а (varphi(p)).

Для нахождения обратного по этой теореме достаточно посчитать функцию Эйлера (varphi(p)) и найти (a^{-1} = a^{varphi(p) — 1}).

Но с этим возникают большие проблемы: посчитать функцию Эйлера сложно. Более того, на предполагаемой невозможности быстро ее посчитать построены некоторые криптографические алгоритм типа RSA. Поэтому быстро делить по составному модулю этим способом не получится.

Через расширенный алгоритм Евклида

Этим способом легко получится делить по любому модулю! Рекомендую.

Пусть мы хотим найти (a^{-1} pmod p), (a) и (p) взаимно простые (а иначе обратного и не будет существовать).

Давайте найдем корни уравнения

[ax + py = 1]

Они есть и находятся расширенным алгоритмом Евклида за (O(log p)), так как (НОД(a, p) = 1), ведь они взаимно простые.

Тогда если взять остаток по модулю (p):

[ax = 1 pmod p]

А значит, найденный (x) и будет обратным элементом к (a).

То есть надо просто найти (x) из решения того уравнения по модулю (p). Можно брать по модулю прямо походу решения уравнения, чтобы случайно не переполниться.

Понравилась статья? Поделить с друзьями:
  • Как найти самородок меди
  • Как найти мангу без цензуры
  • Как найти свой macbook
  • Как можно найти источник видео
  • Как составить резюме без фото