Как найти ноль в 380 вольт

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Содержание

  • 1 Понятия ноля и фазы
  • 2 Как определить фазу и ноль индикаторной отверткой
  • 3 Как определить фазу и ноль мультиметром
  • 4 Как определить фазу и ноль без приборов

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как определить фазу и ноль мультиметром

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:

  1. Контур заземления громоотвода часто ведут по наружной стене здания, полоса стали задевает торец балкона. Идет вертикально вниз. Заземлена, годится избранной цели с двумя оговорками: слой ржавчины сточите напильником, работы выполняйте, когда небо безоблачное (опасайтесь молнии).
  2. Простейшим выходом станет водопроводный кран ванной. Трубы сейчас пластиковые. Но внутри находится отличный электролит – вода с растворенными солями жесткости. Коснитесь черным щупом тестера рукава крана, выполняйте измерения относительно точки опоры. Применяйте боковины фитингов медных, латунных, алюминиевых. Была бы вода.

Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый – на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное – нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две – каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная – поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль – линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Источник

Как проверить напряжение между фазами 380 мультиметром

Напряжение, или вольтаж, — это один из параметров электрического тока, показывающий разницу потенциалов на участке цепи. Он равнозначен электродвижущей силе, и фактически является одним из самых важных факторов для работы любых электроприборов.

Проверка напряжения — едва ли не самая частая операция, которую приходится выполнять в работе с электротехникой, вне зависимости от того, обслуживание это промышленной или бытовой (домашней) электросети. От его величины, а также от самого факта наличия, зависит, будет ли работать электроприбор, а также может ли он выйти из строя. В настоящее время для измерения напряжения используется аппарат под названием мультиметр.

Общее назначение

Это многофункциональное устройство, предназначенное для измерения целого ряда параметров электрического тока. Современный мультиметр, даже полупрофессиональный, предназначенный для бытовых нужд, способен измерять:

  • переменное и постоянное напряжение;
  • переменный и постоянный ток (силу тока);
  • сопротивление.

Это минимальный перечень функций, которыми обладает даже самое простое устройство. Более сложные имеют функции прозвонки диодов и транзисторов, проверки целостности кабелей и т.п. Есть модели, которые позволяют мерить даже температуру.

Обычный бытовой прибор используется в сетях, напряжение которых не выше 1000 вольт постоянного или 750 вольт переменного тока. Чтобы измерить высокое напряжение, применяется только профессиональный высоковольтный мультиметр.

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Устройство

Мы будем рассматривать цифровые мультиметры (они же — тестеры), поскольку. аналоговые (снабженные стрелкой и полем со шкалой значений) в настоящее время уже почти вышли из обихода.

На рынке существует большое разнообразие мультиметров, но у всех из них есть следующие элементы:

  • цифровой дисплей;
  • переключатель для выставления параметров;
  • 2-4 гнезда для подключения контактных щупов;
  • два контактных щупа.

Работает прибор от батарейки. Мы будем рассматривать самое простой мультиметр для домашнего использования, измеряющий три основных параметра — напряжение, силу тока и сопротивление электрического проводника. Подавляющее большинство других функций в быту не нужны, за исключением функции прозвонки. Но прежде чем переходить к измерению напряжения, разберемся, какое оно бывает.

Разница между переменным и постоянным напряжением

Правильнее будет говорить о разнице между постоянным и переменным током. Различные электроприборы работают либо от постоянного тока, либо от переменного.

Переменный означает, что направление движения электронов в проводнике меняется от плюса к минусу с заданной частотой, то есть меняется полярность тока. В бытовой розетке по стандарту действующее напряжение 220 В, (амплитудное 311 В) а частота изменения тока 50 Гц. От такого напряжения работают все включающиеся в розетку приборы.

А вот аккумуляторы и батарейки — это источники постоянного тока. Они всегда имеют фиксированные плюс и минус (полярность). Частота у постоянного тока, естественно, отсутствует.

Подключение штекеров

Перед тем, как измерять напряжение, мультиметр надо выставить в соответствующий режим. Для маркировки напряжения используются либо аббревиатуры ACV — переменное, и DCV — постоянное, либо пиктограммы, дополняющие обозначение V — вольтаж. Так, V

— это переменное напряжение. V с горизонтальной длинной чертой, под которой три коротких — это постоянное.

Обратите внимание! Если на вашем приборе есть только обозначение V, значит, он способен автоматически определять, переменное оно или постоянное. Кроме пиктограмм, обозначающих тип напряжения, на корпус мультиметра нанесены диапазоны величин. Большинство бытовых приборов имеют границы измерения до 750 В переменного и до 1000 В постоянного напряжения.

Перед тем, как замерить напряжение в розетке, на аккумуляторе или другом приборе, подключите к мультиметру щупы. Их два — черный и красный. А вот гнезд может быть и два, и три, и четыре — в зависимости от класса прибора.

Черный щуп — это либо минус, либо «ноль». Он всегда устанавливается в гнездо мультиметра, обозначенное COM. Красный щуп — либо плюс, либо «фаза». Для его подключения выбирается гнездо, снабженное соответствующей маркировкой. Если гнезд только 2 — вопрос снят, если больше — выбирайте то, около которого есть символ V.

Другие гнезда могут быть маркированы либо 10-20А, либо mA — соответственно для измерения силы тока (сверхбольшой или сверхмалой), либо иметь другие обозначения и соответственно предназначения. Гнездо для вольтажа всегда одно.

Тестирование двухфазной модели

Статор и многие другие конструктивные элементы двухфазного электрического двигателя имеют свои отличительные признаки, которые и определяют особенности проверки.
К особенностям проверки двухфазного электрического двигателя отнесем следующие моменты:

  1. В этом случае обязательно проверяется сопротивление на корпусе. Слишком низкий показатель указывает на то, что нужно выполнить перемотку статора.
  2. Для получения более точных показателей рекомендуется использовать мегомметр, однако подобный измерительный инструмент встречается дома крайне редко.

Перед тестированием электрического двигателя следует провести визуальный осмотр. Механические повреждения могут привести к серьезным проблемам с работой.

Установка режима измерения

После установки щупов переведите переключатель мультиметра на подходящий диапазон. Если измеряется напряжение в розетке, выбирайте пороговое значение в 750 ACV, если, к примеру, автомобильного аккумулятора — 20 или 200 DCV.

Обратите внимание! Всегда необходимо устанавливать предел измерения выше предполагаемого напряжения на источнике питания. Иначе вы рискуете сжечь прибор.

Есть правило: вольтаж измеряется путем параллельного подключения мультиметра, (тогда как сила тока — последовательно с нагрузкой). На практике это значит, что для того, чтобы померить напряжение в розетке, необходимо просто вставить в нее оба щупа мультиметра, каждый в свое гнездо. Где ноль, где фаза — не имеет значения.

Прибор показывает напряжение в тех пределах, на которые он отрегулирован. Таким образом, если выставить верхний порог в 750 В — увидите на экране значение в диапазоне 210-230 В. Или меньше, или больше, если скачок напряжения очень велик, но выше 750 В он подняться не может. Но если выставить порог в 200 В, то при фактической величине напряжения выше этой границы на экране появится цифра 1.

Учтите, что ровно 220 В в бытовой розетке бывает не всегда. Допустимы отклонения плюс-минус 10-15 В.

Проверка трехфазной линии осуществляется контактом двух щупов мультиметра с двумя шинами. Между ними должно быть 380 В, между одной шиной и землей будет 220 В (плюс-минус 15).

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм. Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).

Низкое сопротивление между обмоткой и корпусом говорит о замыкании, требуется перемотка статора.

  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Проверка батарейки

Как измерить напряжение на батарейке? Необходимо черный щуп законтачить с ее минусом, красный — с плюсом, и выставить границу на 20 DCV. Для любых домашних батарей и аккумуляторов этого достаточно. Для сравнения: аккумулятор легкового автомобиля выдает 13-14 В. Только мощные аккумуляторы грузовиков предназначены для напряжения 24 В и выше.

Мультиметр покажет сохранившийся заряд батареи. Если вы перепутали полярность — ничего страшного, просто на экранчике появится знак «-». Проверяя батарейку, учтите, что «свежая» батарейка должна выдавать значение вольтажа немного больше, чем указано на ее корпусе.

Прижимая щупы к контактам батарейки или аккумулятора, удара током бояться не стоит: порог чувствительности человеческой кожи — 36 В. Даже 20 В вы не почувствуете. Но проверяя ток во вскрытом электроприборе или розетке, нужно быть осторожным. Нельзя использовать щупы с поврежденной изоляцией.

Возможные неисправности

Если мультиметр перестал измерять напряжение или неправильно его показывает, проверьте другим тестером батарейку, размещенную внутри корпуса, или просто замените ее. Проверьте также, соответствует ли выставленный порог измерения напряжению, которое должно быть у объекта, который вы проверяете. Проверьте, верно ли установлен характер вольтажа — батарея не проверяется в режиме переменного, а розетка — постоянного напряжения.

Если не определяется параметр в одной розетке, проверьте его в другой. Если проблема возникла при проверке маленькой батареи — возможно, дело в плохом контакте щупа и клеммы.

Протестируйте устройство на различных объектах, априори работоспособных. Если мультиметр в принципе перестал измерять вольтаж, то либо иссяк его встроенный источник тока, либо повреждена плата управления, либо — наиболее частый случай — поврежден кабель одного из щупов. Следует осмотреть кабели на предмет разрыва, убедиться в хорошем контакте с гнездом. Если разрыв обнаружен — замените или почините провод, восстановив его целостность.

Если же никаких видимых причин потери работоспособности не обнаружено, то, скорее всего, мультиметр сгорел. Это могло произойти из-за попытки измерить завышенное напряжение, либо мощного сетевого скачка или других причин.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя

, определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Испытание изоляции обмоток

Эксплуатационная надежность электродвигателя обусловлена состоянием изоляции. Вибрация работающего двигателя, тепловые, химические процессы ухудшают электроизолирующие свойства. Поэтому при диагностике после ремонта нужно испытать в электротехнической лаборатории изоляцию.

Есть испытательный трансформатор, вторичное повышенное напряжение которого подается между одной из обмоток и остальными катушками, соединенными с корпусом электромотора. Величины испытательных напряжений:

Мощность электродвигателя, кВт Испытательное напряжение, В
До 1 500+2Uноминальное
От 1, для номинального напряжения 100 вольт 1000+2Uн, но не менее 1,5 кВ

Если ремонт выполнялся своими руками и нельзя проверить стендом, нужно испытать изоляцию мотора мегомметром. Он подает высокое напряжение, какого нет в мультиметре.

Проверяя электродвигатель мультиметром на 380 вольт, нужно учесть, что работы проводятся при отключенной сети. Работа с электричеством требует собранности, внимания, чтобы не получить удара током. Соблюдая меры безопасности, проверить исправность агрегата достаточно просто.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • ⚡жалом отвертки прикасаетесь к контакту
  • ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
  • ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Как проверить мультиметром напряжение в розетке 220в

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

Источник

Как найти фазу и ноль индикатором и без приборов

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

Цветовая маркировка проводов нуля и фазы однофазной сети

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

Цветовая маркировка проводов нуля и фазы трехфазной сети

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желтозеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желтозеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Промышленный индикатор на неоновой лампочке

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Промышленный индикатор на светодиоде

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Поиск фазы в электропроводке индикатором на светодиоде

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник
для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Самодельный индикатор-пробник

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Схема самодельного индикатора на неоновой лампочке

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск фазы самодельным пробником на неоновой лампочке

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится
при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Контролька электрика на лампочке накаливания

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема контрольки электрика на светодиоде

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Контролька электрика на светодиоде

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

Поиск фазы контролькой электрика

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться
экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Поиск фазы с помощью картошки

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.

Человек Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр Николаевич Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Необходимость разобраться, где расположен фазный провод, а где — нулевой может возникнуть у любого хозяина дома или квартиры. Это бывает нужно при проведении простейших электромонтажных работ, например, установке выключателей и розеток, замене светильников. Бывает это важно при проведении диагностики неисправностей домашней электросети, выполнении профилактических или ремонтных мероприятий. Да и некоторые приборы, например, терморегуляторы, при подключении к сети питания требуют четкого соблюдения расположения проводов «L» и «N» в клеммной колодке. В противном случае ничто не гарантирует ни их долговечность, ни корректность в работе.

Как определить фазу и ноль без приборов

Как определить фазу и ноль без приборов

Значит, необходимо научиться самостоятельно определять фазный и нулевой провод. Дело это не столь сложное – существуют проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи, непонятно по каким причинам, задают в поисковиках вопрос: как определить фазу и ноль без приборов? Ну что ж, давайте обсудим эту проблему.

Несколько слов об устройстве домашней электросети

В подавляющем большинстве случаев в квартирах практикуется прокладка однофазной сети питания 220 В/50 Гц. К многоэтажному дому подводится трехфазная мощная линия, но затем в распределительных щитах осуществляется коммутация на потребителей (квартиру) по одной фазе и нулевому проводу. Распределение стараются выполнить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

В домах современной постройки практикуется прокладка и контура защитного заземления – современная мощная бытовая техника в своем большинстве требует такого подключения для обеспечения безопасности эксплуатации. Таким образом, к розеткам или, например, ко многим осветительным приборам подходят три провода – фаза L (от английского Lead), ноль N (Null) и защитное заземление PE (Protective Earth).

В зданиях старой постройки заземляющего защитного контура зачастую нет. Значит, внутренняя проводка ограничивается только двумя проводами – нулем и фазой. Проще, но уровень безопасности эксплуатации электрических приборов — не на высоте. Поэтому при проведении капитальных ремонтов жилищного фонда нередко включаются и мероприятия по усовершенствованию внутренних электросетей – добавляется контур РЕ.

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

В частных домах может практиковаться ввод и трехфазной линии. И даже некоторые точки потребления нередко организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощное технологическое станочное оборудование в домашней мастерской. Но внутренняя «бытовая» сеть все равно делается однофазной – просто три фазы равномерно распределяются по разным линиям, чтобы не допускать перекоса. И в любой обычной розетке мы все равно увидим те же три провода – фазу, ноль и заземление.

Про заземление, кстати, говорится в данном случае однозначно. И это по той причине, что хозяин частного дома ничем не связан и просто обязан его организовать, если такого контура не было, скажем, при приобретении ранее построенного зданий.

Заземление в частном доме – как можно сделать самостоятельно?

Иметь в своих жилых владениях контур защитного заземления – это значит существенно повысить уровень безопасности эксплуатации электроприборов. А по большому счету – и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовывать заземление в доме своими руками. В помощь – статья нашего портала, к которой ведет рекомендованная ссылка.

Существуют ли в принципе способы определения фазы и нуля без приборов?

Прежде всего, давайте сразу «возьмем быка за рога» и ответим на это важный вопрос.

Такой способ представлен в единственном числе, да и то в определённой степени может считаться условным. Речь идет о цветовой маркировке проводов проложенных силовых кабелей и проводов.

Действительно, существует международный стандарт IEC 60446-2004 г. Его должны придерживаться и производители кабельной продукции, и специалисты, осуществляющие электротехнический монтаж проводки.

Раз речь идет об однофазной сети, то здесь вообще все должно быть просто. Изоляция проводника рабочего нуля должна быть синей или голубой. Защитное заземление чаще всего отличается зелено-желтой полосатой расцветкой. И изоляция фазного провода – каким-либо другим цветом, например, коричневым, как показано на иллюстрации.

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Следует правильно понимать, что коричневый цвет для фазы – это вовсе не догма. Очень часто встречаются и иные расцветки – в широком диапазоне от белой до черной. Но в любом случае – она будет отличаться и от нулевого провода, и от защитного заземления.

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

Казалось бы – все очень просто и наглядно. Не ошибешься. Так почему же этот единственный способ распознания проводов без приборов все же считается условным?

Все дело лишь в том, что такой цветовой «распиновки» придерживаются, увы, далеко не везде и не всегда. Про дома старой постройки – и говорить не приходится. Там преимущественно проводка выполнена проводами в совершенно одинаковой белой изоляции, понятно, ничего никому не говорящей.

Да и в том случае, когда проложены кабели с проводами в изоляции разной расцветки, нужно быть совершенно уверенным, что проводящие электромонтажные работы специалисты строго следовали правилам. Нередко вызываемые «мастера», приглашенные со стороны, в этих вопросах проявляют вольности. Значит, уверенным можно быть, если работа контролировалась, выполнялась действительно профессиональным электриком с безупречной репутацией. Или если в ходе эксплуатации у хозяев уже была возможность убедиться, что «цветовая схема» соблюдена. Ну и, наконец, если всю прокладку проводки хозяин жилья проводил самостоятельно, строго руководствуясь рекомендуемым стандартом.

Кроме того, бывает, что для проводки используется кабель, расцветка изоляции проводников которого весьма далека от стандартного «набора» — синий, зелено-желтый и фазный какого-либо другого оттенка. Если нет схемы с описанием, то цвет проводов ничего определенного при таком раскладе не скажет.

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

Значит, придётся искать фазу и ноль другими способами, с использованием приборов.

Если читатель ждет сейчас разъяснений про другие способы определения нуля и фазы, с помощью каких-то «экзотических» приспособлений вроде сырой картошки, то совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, и другим никогда и ни при каких обстоятельствах не станет рекомендовать.

Не будем даже касаться достоверности подобных проверок. Главное не в этом. Такие «опыты» — чрезвычайно опасны. Особенно для неопытного в электрическом хозяйстве человека. (А опытный, поверьте, всегда лучше воспользуется действительно достоверной и безопасной методикой). Кроме того, на грех такие манипуляции могут увидеть малолетние дети. Не тревожно ли будет потом, зная о присущем малышне стремлении во многом подражать родителям?

Да и, по большому счету, вряд ли получится представить себе ситуацию, в которой обстоятельства настолько припекли, что приходится прибегать к таким «языческим» методикам? Сложно сходить в ближайший магазин и приобрести за 30÷35 рублей простейшую индикаторную отвертку и забыть о проблеме? Если вечер, то нет никакой возможности потерпеть до утра с проведением диагностики? Да, в конце концов, нельзя попросить индикатор у соседа на несколько минут?

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Кстати, картошка – это еще что… Находятся «специалисты», которые на полном серьезе рекомендует проверять наличие фазы легким касанием пальца к проводнику. Мол, если в сухом помещении, да в обуви на диэлектрической подошве – то ничего страшного не случится. Таких «советчиков» хочется спросить – а уверены ли они, что все те, кто внял их рекомендациям, живы и здоровы? Что не случилось «чрезвычайщины», когда человек, пробующий фазу «на ощупь», случайно коснулся телом заземленного предмета или другого оголённого проводника?

Чтобы понять степень опасности таких «проверок», рекомендуем ознакомиться с информацией о том, какие угрозы представляет жизни и здоровью этот «безобидный» электрический ток в сети 220 вольт. Возможно, после этого многие вопросы снимутся сами по себе.

«Бытовое» переменное напряжение 220 вольт может представлять смертельную опасность!

Жизнь современного человека невозможно представить без электричества. Но оно не всегда выступает только в роли «друга и помощника». При пренебрежении правилами эксплуатации приборов, при халатности, неаккуратности, и тем более – явно наплевательском отношении к соблюдению требований безопасности, оно способно покарать мгновенно и крайне жестоко. Об опасности электрического тока для человеческого организма подробно рассказывает отдельная публикация нашего портала.

И потому – резюмируем. Никаких способов, кроме одного упомянутого, самостоятельно опередить расположение нуля и фазы без приборов – не существует.

А вот теперь давайте пройдемся по возможным методикам такой проверки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Устройство простейшей индикаторной отвертки

Устройство простейшей индикаторной отвертки

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки  пробника касаются пальцем.

Проверка показывает, что индикаторная отвертка коснулась фазы

Проверка показывает, что индикаторная отвертка коснулась фазы

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием мультиметра.

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является мультиметр. Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

Правильное положение измерительных проводов и переключателя режимов работы мультитестера

Правильное положение измерительных проводов и переключателя режимов работы мультитестера
  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения — УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И — наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико — измеряемое единицами вольт.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

А вот такие показания дают ясно понять, что отыскана фаза

А вот такие показания дают ясно понять, что отыскана фаза

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения.  И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Шина заземления в распределительном щите

Шина заземления в распределительном щите

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, как пользоваться мегаомметром, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

*  *  *  *  *  *  *

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» — лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Видео: Как можно определить расположение фазы и нуля

Как определить фазу и ноль разными способами

Содержание

  • 1 Определение рабочей фазы и нуля с помощью приборов
    • 1.1 С использованием индикаторной отвертки
    • 1.2 Определение фазы и ноля мультиметром
  • 2 Как определить ноль и фазу без приборов
  • 3 Использование самодельной «контрольки»
  • 4 Видео по теме

В домашнем хозяйстве возникают проблемы при монтаже розеток и выключателей, подключении систем освещения, бытовых электрических приборов и других подобных устройств. Обычно они питаются от однофазных источников, провода которых состоят из двух проводников — фазного и нулевого. В более безопасном варианте к ним добавляется третий провод — земля или заземление.

провод

Большинство бытовой электрической техники нормально функционируют при строго определенном, согласно рабочей схеме, подключении проводников. Основой для успешного решения вопроса будут навыки определения, где фаза, а где ноль. Выполнить эту достаточно несложную работу можно самостоятельно, без привлечения электриков, а значит с экономией на финансовых затратах.

Способы, как найти фазу и ноль, имеют место, как с использованием приборов, так и без них.

Определение рабочей фазы и нуля с помощью приборов

Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

С использованием индикаторной отвертки

Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

Принципиальная схема

Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

определить фазу и ноль индикаторной отверткой

Важно: при выполнении работ с помощью индикаторной отвертки с целью предотвращения получения электрической травмы запрещается касаться руками рабочего токопроводящего стержня.

Определение фазы и ноля мультиметром

В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

  • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой. мультиметр
  • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
  • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

Как определить ноль и фазу без приборов

Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

  • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
  • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
  • земля находится в изоляции желто — зеленого цвета в полоску.

Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

  • L — этой латинской буквой обозначается фаза;
  • N — по этому знаку находят нулевой провод;
  • PE — этим сочетанием букв всегда обозначалась земля.

обозначения фазы, ноля и земли

Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

Использование самодельной «контрольки»

Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.

Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).

контролька

Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.

Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.

Видео по теме



Понравилась статья? Поделить с друзьями:
  • Как найти контакт актеров
  • Как пишется не где не нашли
  • Как найти режим энергосбережения в телефоне
  • Как составить договор долевого участия в строительстве объекта
  • Как найти точку максимума если 1 корень