Как найти нормальное уравнение прямой

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

Скалярное произведение векторов n и имеет следующий вид:

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

Учитывая, что n={cosφ, sinφ}, , мы получим:

Тогда из уравнений (3), (5), (6) следует:

или

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой.

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

Подставляя вычисленные значения в (7) получим:

Ответ:

Приведение общего уравнения прямой на плоскости к нормальному виду

Пусть на плоскости задано уравнение прямой в общем виде:

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

Упростим выражение и найдем t:

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем.

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Пусть
на плоскости хОу дана прямая. Проведем
через начало координат перпендикуляр
к данной прямой и назовем его нормалью.
Обозначим через Р точку пересечения
нормали с данной прямой и установим
положительное направление нормали от
точки О к точке Р.

Если



полярный угол нормали, р — длина отрезка


(рис.),
то уравнение данной прямой может быть
записано в виде


;

уравнение
этого вида называется нормальным.

Пусть
дана какая-нибудь прямая и произвольная
точка

;
обозначим через d
расстояние от точки М* до данной прямой.
Отклонением

точки

от
прямой называется число +d,
если данная точка и начало координат
лежат по разные стороны от данной прямой,
и -d,
если данная точка и начало координат
расположены по одну сторону от данной
прямой. (Для точек, лежащих на самой
прямой,

=0).
Если даны координаты

,


точки

и
нормальное уравнение прямой

,
то отклонение

точки

от
этой прямой может быть вычислено по
формуле


.

Таким
образом, чтобы найти отклонение
какой-нибудь точки

от
данной прямой, нужно в левую часть
нормального уравнения этой прямой
вместо текущих координат подставить
координаты точки

.
Полученное число будет равно искомому
отклонению.

Чтобы
найти расстояние d
от точки до прямой, достаточно вычислить
отклонение и взять его модуль:

.

Если
дано общее уравнение прямой

,
то, чтобы привести его к нормальному
виду, нужно все члены этого уравнения
умножить на нормирующий множитель

,
определяемый формулой


.

Знак
нормирующего множителя выбирается
противоположным знаку свободного члена
нормируемого уравнения.

12 Вычисление угла между прямыми

Пусть
прямые

 и


 заданы
общими уравнениями


 и

Обозначим
через φ величину угла между прямыми

 и

(напомним,
что угол между прямыми измеряется от
0° до 90°), а через ψ – угол между нормальными
векторами

 и


 этих
прямых. Если ψ ≤ 90°, то φ = ψ.
Если же ψ > 90°, то φ = 180° – ψ.
В обоих случаях верно равенство

 Из
теоремы
11.10
следует, что

и,
следовательно,

Записав
через координаты, получим

Если
прямые

 и

 заданы
уравнениями с угловыми коэффициентами


 и


 и

то
нормальные векторы этих прямых могут
быть

 
 и
выражение для косинуса угла между этими
прямыми будет иметь вид:

Из
последнего выражения следует, что если


 то
cos φ = 1 и φ = 0, то есть прямые
параллельны или совпадают. С другой
стороны, если прямые параллельны, то
φ = 0 или cos φ = 1. Подставляя
в правую часть вместо cos φ его значение
1, умножая обе части на знаменатель и
возводя в квадрат, получим

Отсюда
получаем

Если


 то
cos φ = 0 и

 то
есть прямые перпендикулярны. Обратно,
если прямые перпендикулярны, то

  или
cos φ = 0. Отсюда следует с
необходимостью

Следовательно,
необходимые и достаточные условия
параллельности и перпендикулярности
двух прямых, заданных уравнениями с
угловыми коэффициентами

 и


 формулируются
следующим образом.

Т
еорема 11.13. 

Для
того чтобы прямые

 и


 были

  • параллельны,
    необходимо и достаточно, чтобы

     

  • перпендикулярны,
    необходимо и достаточно, чтобы

Пользуясь
знанием координат направляющего и
нормального векторов прямых, заданных
общими уравнениями, можно сформулировать
условия параллельности и перпендикулярности
прямых через коэффициенты общих уравнений
этих прямых.

Т
еорема 11.14. 

Для
того чтобы прямые

 и


 были

  • параллельны,
    необходимо и достаточно, чтобы
    соответствующие коэффициенты их
    уравнений при одноименных неизвестных
    были пропорциональны, то есть

  • перпендикулярны,
    необходимо и достаточно, чтобы выполнялось
    равенство

Доказательство

  • Пусть


     
     –
    направляющие векторы прямых. Тогда
    необходимым и достаточным условием
    параллельности прямых является
    условие коллинеарности векторов

     и


     то
    есть

  • Так
    как при этом

     и


     то
    k ≠ 0.
    Поэтому, если один из коэффициентов
    равен нулю, например

     то
    с необходимостью

     При
    этом

     
     
    С учетом этого можно записать

  • откуда
    формально следует

  • Отметим
    при этом, что если одновременно

     то
    оба уравнения задают одну и ту же
    прямую и в этом случае прямые совпадают.
    Если же

     то
    прямые параллельны.

  • Неоходимым
    и достаточным условием перпендикулярности
    прямых является условие ортогональности
    их направляющих векторов

     и


     для
    чего, в свою очередь, необходимо и
    достаточно равенство нулю их скалярного
    произведения, то есть

  • что
    и требовалось доказать.

Пусть
задана прямая l
общим уравнением Ax + By + C = 0
и некоторая точка

 лежащая
вне прямой. Поставим задачу найти
расстояние

 от
этой точки до прямой l.
Опустим перпендикуляр

 из
точки

 на
прямую l
и обозначим

 
 радиус-векторы
точек

 и

 соответственно
(см. рис. 11.6.1). Очевидно,

1

Рисунок
11.6.1.

Пусть


 –
некоторая точка прямой l,
отличная от точки

 Тогда
уравнение прямой l
можно записать в нормальной векторной
форме:

где


 а


 –
вектор нормали к прямой l.
Или, в векторной форме,

Очевидно,
справедливо векторное равенство

 причем


  поэтому


  Умножив
обе части равенства скалярно на вектор


, получим

Так
как точка

  лежит
на прямой l,
то

  и,
следовательно,

 Подставляя
в исходное равенство, найдем

Отсюда

Переходя
к координатной форме записи и учитывая,
что

 
 имеем

Таким
образом верна теорема

Т
еорема 11.15. 

Растояние

от
точки

до
прямой l,
заданной уравнением Ax + By + C = 0
вычисляется по формуле

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как привести уравнение прямой к нормальному виду

Для того, чтобы найти нормальное уравнение прямой, заданной уравнением Ax+By+C=0, необходимо разделить данное уравнение на

при этом знак «минус» берётся, когда C>0, а знак «плюс» берётся, когда C<0. Если C=0, то можно взять любой знак. Тогда получим уравнение вида: 

Если учесть, что полярное расстояние определяется по формуле,

полярное расстояние формула

а полярный угол по формулам

полярный угол

Тогда уравнение примет вид

x cosα + y sinα − p = 0

Это и есть нормальное уравнение прямой

То же самое получим, если обе части уравнения Ах + By + С = 0 умножим на число

то есть:

x cosα + y sinα − p = 0

Графически это можно представить следующем образом

Рисунок нормальное уравнение прямой

Прямая AB с полярным расстоянием p (длина перпендикуляра, опущенного на прямую из начала координат OK) и полярным углом α (угол измеренный в положительном направлении между положительным направлением оси Ox и направлением этого перпендикуляра)     представляется уравнением:

x cosα + y sinα − p = 0

Если p=0, то прямая проходит через начало координат, а угол
фи плюс пи пополам
задаёт угол наклона прямой.


Пример 1
Привести уравнение 3x-4y+5=0 к нормальному виду. Здесь A=3, B=-4, C=5>0. Поэтому делим на
 получаем

$ — frac{3}{5}x + frac{4}{5}x — 1 = 0$

Это уравнение вида

x cosα + y sinα − p = 0

здесь

p=1,  $cos alpha  =  — frac{3}{5}$,  $sin alpha  =  frac{4}{5}$


Пример 2

Пусть прямая AB стоит от начала оси координат на расстоянии OK=$sqrt 2 $ и пусть луч OK составляет с лучом OX угол равный α=1350

Рисунок нормальное уравнение прямой

тогда нормальное уравнение прямой AB будет

Если умножить полученное уравнение на $-sqrt 2 $, получим уравнение прямой AB в виде

x-y+2 = 0, но это уравнение не является нормальным уравнением прямой.

2724


3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

Полярными параметрами прямой L будут полярное расстояние р (длина перпендикуляра, проведенного к данной прямой из начала координат) и полярный угол α (угол между осью абсцисс ОХ и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ах + Ву + С = 0: полярное расстояние

полярный угол α

причем при C > 0 берется верхний знак, при C < 0 — нижний знак, при С = 0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.

Нормальное уравнение прямой (уравнение в полярных параметрах) (cм. рис. 2): x cosα + y sinα — p = 0. Пусть прямая представлена уравнением вида Ах + Ву + С = 0. Чтобы данное уравнение привести к нормальному виду необходимо последнее разделить на выражение (знак берется в зависимости от знака С).

Рис. 2

После деления получается нормальное уравнение данной прямой:

Пусть имеется прямая L, которая пересекает оси координат. Тогда данная прямая может быть представлена уравнением в отрезках х / а + у / b = 1. Справедливо: если прямая представлена уравнением х / а + у / b = 1, то она отсекает на осях отрезки а, b.

Преобразование координат возможно путем переноса начала координат, или поворотом осей координат, или совместно переносом начала и поворотом осей.

При переносе начала координат справедливо следующее правило: старая координата точки равна новой, сложенной с координатой нового начала в старой системе. Например, если старые координаты точки М были х, у, а координаты нового начала в старой системе О*(х0, у0), то координаты точки М в новой системе координат с началом в точке О* будут равны х — х0, у — у0 т. е. справедливо следующее х = х* + х0, у = у* + у0 или х* = х — х0, у* = у — у0 (* новые координаты точки).

При повороте осей на некоторый угол φ справедливы следующие формулы (где х, у — старые координаты точки; х*, у* — новые координаты этой же точки):

x = x* cosα — y* sinα;

y = x* sinα + y* cosα

или

x* = x cosα + y sinα;

y* = — x sinα + y cosα.

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

, (4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

. (5)

Учитывая, что n=<cosφ, sinφ>, , мы получим:

. (6)

Тогда из уравнений (3), (5), (6) следует:

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

Подставляя вычисленные значения в (7) получим:

.

.

Приведение общего уравнения прямой на плоскости к нормальному виду

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

tAx=cosφ, tB=sinφ, tC=−r. (9)

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1. (10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1,

. (11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Нормальное (нормированное) уравнение прямой: описание, примеры, решение задач

В данной статье рассмотрим нормальное уравнение прямой на заданной плоскости. Получим нормальное уравнение, покажем не примере, дадим определение нормирующего множителя и разберем приведение общего уравнения к нормальному виду. Заключительной части посвятим основному приложению нормального уравнения прямой, то есть нахождение расстояние от точки до прямой на плоскости.

Нормальное уравнение прямой – описание и пример

Рассмотрим выведение нормального уравнения.

Фиксируем на плоскости систему координат О х у , где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение n → . Его начало обозначено точкой O . координатами являются cos α и cos β , углы которых расположены между вектором n → и положительными осями О x и O y . Это запишется так: n → = ( cos α , cos β ) . Прямая проходит через точку A с расстоянием равным p , где p ≥ 0 от начальной точки O при положительном направлении вектора n → . Если р = 0 , тогда A считается совпадающей с точкой координат. Отсюда имеем, что O A = p . Получаем уравнение, при помощи которого задается прямая.

Имеем, что точка с координатами M ( x , y ) расположена на прямой тогда и только тогда, когда числовая проекция вектора O M → по направлению вектора n → равняется p , значит при выполнении условия n p n → O M → = p .

O M → является радиус-вектором точки с координатами M ( x , y ) , значит O M → = ( x , y ) .

Применив определение скалярного произведения векторов, получим равенство вида: n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → = p

Тогда это же произведение будет иметь вид в координатной форме: n → , O M → = cos α · x + cos β · y

Отсюда cos α · x + cos β · y = p или cos α · x + cos β · y — p = 0 . Было выведено нормальное уравнение прямой.

Уравнение вида cos α · x + cos β · y — p = 0 называется нормальным уравнением прямой или нормированным уравнением прямой. Иначе говоря, уравнение прямой в нормальном виде.

Понятно, что такое уравнение представляет собой общее уравнение прямой A x + B y + C = 0 , где A и B имеют значения, при которых длина вектора n → = ( A , B ) равна 1 , а C является неотрицательным числом.

Теперь рассмотрим его геометрический смысл. Нормальное уравнение прямой вида cos α · x + cos β · y — p = 0 задает в системе координат О х у на плоскости прямую с наличием нормального вектора единичной длины n → = ( cos α , cos β ) , которая располагается на расстоянии равном p от начала координат по положительному направлению вектора n → .

Если дано уравнение прямой вида — 1 2 · x + 3 2 · y — 3 = 0 , то на плоскости задается прямая, у которой нормальный вектор с координатами — 1 2 , 3 2 . Удаление прямой от начала координат идет по направлению, совпадающему с направлением нормального вектора n → = — 1 2 , 3 2 .

Приведение общего уравнения прямой к нормальному виду

Часто решение задач подразумевает использование нормального уравнения прямой, но само оно не дается в нормальном виде, поэтому необходимо для начала приводить к нормальному виду, после чего выполнять необходимые вычисления.

Нормальное уравнение получают из общего уравнения прямой. Когда на плоскости задается другим уравнением, то необходимо привести его к общему виду, после чего возможно приведение к нормальному. Если рассмотреть на примере, то это будет выглядеть так.

Для приведения общего уравнения прямой A x + B x + C = 0 к нормальному необходимо обе части умножить на нормирующий множитель, который имеет значение ± 1 A 2 + B 2 . Его знак определяется при помощи противоположности знака слагаемого C . При С = 0 знак выбирается произвольно.

Привести уравнение прямой 3 x — 4 y — 16 = 0 к нормальному виду.

Из общего уравнения видно, что А = 3 , В = — 4 , С = — 16 . Так как значение C отрицательное, необходимо брать положительный знак для формулы. Перейдем к вычислению нормирующего множителя:

1 A 2 + B 2 = 1 3 2 + ( — 4 ) 2 = 1 5

Теперь необходимо умножить обе части уравнения на одну пятую. Получим, что 1 5 · ( 3 x — 4 y — 16 ) = 0 ⇔ 3 5 · x — 4 5 · y — 16 5 = 0 .

Нормальное уравнение по заданной прямой найдено.

Ответ: 3 5 · x — 4 5 · y — 16 5 = 0 .

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Касательная, нормальная плоскость, соприкасающаяся плоскость, бинормаль, главная нормаль, репер Френе

Краткие теоретические сведения

Кривая в пространстве

Рассмотрим в пространстве гладкую кривую $gamma$.

Пусть точка $M$ принадлежит данной кривой и отвечает значению параметра $t=t_0$. Тогда радиус-вектор и координаты данной точки равны:

begin vec=vec(t_0), quad x_0=x(t_0),, y_0=y(t_0), , z_0=z(t_0). end

Пусть в точке $M$ $ vec(t_0)neqvec<0>$, то есть $M$ не является особой точкой.

Касательная к кривой

Касательная к кривой, проведенная в точке $M$, имеет направляющий вектор коллинеарный вектору $vec(t_0)$.

Пусть $vec$ — радиус-вектор произвольной точки касательной, тогда уравнение этой касательной имеет вид

Здесь $lambdain(-infty,+infty)$ — параметр, определяющий положение точки на касательной (то есть разным значениям $lambda$ будут соответствовать разные значения $vec$).

Если $vec=$, $M = (x(t_0), y(t_0), z(t_0))$, то можно записать уравнение касательной в каноническом виде:

Нормальная плоскость

Плоскость, проходящую через данную точку $M$ кривой $gamma$ перпендикулярно касательной в этой точке, называют нормальной плоскостью.

Пусть $vec$ — радиус-вектор произвольной точки нормальной плоскости, тогда ее уравнение можно записать в векторном виде через скалярное произведение векторов $vec-vec(t_0)$ и $vec(t_0)$:

Если расписать покоординатно, то получим следующее уравнение:

begin x'(t_0)cdot(X-x(t_0))+y'(t_0)cdot(Y-y(t_0))+z'(t_0)cdot(Z-z(t_0))=0. end

Соприкасающаяся плоскость

Плоскость, проходящую через заданную точку $M$ кривой $gamma$ параллельно векторам $vec(t_0)$, $vec(t_0)$, когда они неколлинеарны, называют соприкасающейся плоскостью кривой.

Если $vec$ — радиус-вектор произвольной точки соприкасающейся плоскости, то ее уравнение можно записать через смешанной произведение трех компланарных векторов $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)$:

Зная координаты точки и векторов, определяющих плоскость, запишем смешанное произведение через определитель. Получим следующее уравнение соприкасающейся плоскости:

begin left| begin X-x(t_0) & Y-y(t_0) & Z-z(t_0) \ x'(t_0) & y'(t_0) & z'(t_0)\ x»(t_0) & y»(t_0) & z»(t_0) \ end right|=0 end

Бинормаль и главная нормаль

Прямая, проходящая через точку $M$ кривой $gamma$ перпендикулярно касательной к кривой в этой точке, называется нормалью.

Таких кривых можно провести бесконечно много, все они образуют нормальную плоскость. Мы выделим среди нормалей две — бинормаль и главную нормаль.

Нормаль, перпендикулярную соприкасающейся плоскости, называют бинормалью.

Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью.

Из определения бинормали (перпендикулярна касательной и перпендикулярна соприкасающейся плоскости) следует, что в качестве ее направляющего вектора мы можем взять векторное произведение $ vec(t_0)timesvec(t_0)$, тогда ее уравнение можно записать в виде:

Как и раньше, $vec$ — радиус-вектор произвольной точки бинормали. Каноническое уравнение прямой:

Из определения главной нормали (перпендикулярна касательной и перпендикулярна бинормали) следует, что в качестве ее направляющего вектора можно взять векторное произведение $vec(t_0) timesleft[vec(t_0),vec(t_0)right]$:

Уравнение в каноническом виде распишите самостоятельно.

Спрямляющая плоскость

Плоскость, проходящую через заданную точку $M$ кривой $gamma$ перпендикулярно главной нормали, называют спрямляющей плоскостью.

Другое определение: Плоскость, определяемую касательной к кривой и бинормалью в той же точке, называют спрямляющей плоскостью.

Второе определение позволяет записать уравнение спрямляющей плоскости через смешанное произведение трех компланарных векторов, определяющих эту плоскость $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)timesvec(t_0)$: begin left(vec-vec(t_0),, vec(t_0),, vec(t_0)timesvec(t_0)right)=0. end Зная координаты соответствующих векторов, можно легко записать это смешанное произведение через определитель, раскрыв который, вы получите общее уравнение спрямляющей плоскости.

Репер Френе

Орт (то есть единичный вектор) касательной обозначим: $$ vec<tau>=frac<vec(t_0)><|vec(t_0)|>. $$ Орт бинормали: $$ vec<beta>=frac<vec(t_0)timesvec(t_0)><|vec(t_0)timesvec(t_0)|>. $$ Орт главной нормали: $$ vec<nu>=frac<vec(t_0) times[vec(t_0),,vec(t_0)]><|vec(t_0) times [vec(t_0),,vec(t_0)]|>. $$

Правая тройка векторов $vec<tau>$, $vec<nu>$, $vec<beta>$ называется репером Френе.

Решение задач

Задача 1

Кривая $gamma$ задана параметрически:

Точка $M$, принадлежащая кривой, соответствует значению параметра $t=0$. Записать уравнения касательной, бинормали, главной нормали, нормальной плоскости, соприкасающейся плоскости и спрямляющей плоскости, проведенных к данной кривой в точке $M$. Записать векторы репера Френе.

Решение задачи 1

Задачу можно решать разными способами, точнее в разном порядке находить уравнения прямых и плоскостей.

Начнем с производных.

begin 1cdot X+0cdot Y+1cdot (Z-1)=0,, Rightarrow ,, X+Z=1. end

begin left| begin X-0 & Y-0 & Z-1 \ 1 & 0 & 1\ 0 & 2 & 1 \ end right|=0 end Раскрываем определитель, получаем уравнение: begin -2X-Y+2Z-2=0 end

begin 1cdot X-4cdot Y-1cdot (Z-1)=0,, Rightarrow ,, X-4Y-Z+1=0. end

Поскольку направляющий вектор главной нормали у нас был найден как векторное произведение направляющих векторов касательной и бинормали, тройка $vec<tau>$, $vec<nu>$, $vec<beta>$ не будет правой (по определению векторного произведения вектор $vec<tau>timesvec<beta>$ направлен так, что тройка векторов $vec<tau>$, $vec<beta>$, $vec<nu>=vec<tau>timesvec<beta>$

— правая). Изменим направление одного из векторов. Например, пусть

Теперь тройка $vec<tau>$, $vec<nu>$, $vec<tilde<beta>>$ образует репер Френе для кривой $gamma$ в точке $M$.

Задача 2

Написать уравнение соприкасающейся плоскости к кривой $$ x=t,,, y=frac<2>,,, z=frac<3>, $$ проходящей через точку $N(0,0,9)$.

Решение задачи 2

Нетрудно заметить, что точка $N$ не принадлежит заданной кривой $gamma$. Следовательно соприкасающаяся плоскость проведена в какой-то точке $M(t=t_0)ingamma$, но при этом плоскость проходит через заданную точку $N(0,0,9)$.

Найдем значение параметра $t_0$.

Для этого запишем уравнение соприкасающейся плоскости, проведенной в произвольной точке $M(t=t_0)$. И учтем, что координаты $N$ должны удовлетворять полученному уравнению.

Соприкасающаяся плоскость определяется векторами $vec(t_0)$, $vec(t_0)$, поэтому записываем определитель begin left| begin X-t_0 & Y-t_0^2/2 & Z-t_0^3/3 \ &&\ 1 & t_0 & t^2_0 \ &&\ 0 & 1 & 2t_0 end right|=0 quad Rightarrow end

begin (X-t_0)cdot t_0^2 — (Y-t_0^2/2)cdot 2t_0 + (Z-t_0^3/3)=0. end Подставляем вместо $X$, $Y$, $Z$ координаты точки $N$: $X=0$, $Y=0$, $Z=9$, упрощаем и получаем уравнение относительно $t_0$: begin 9-t_0^3/3=0 quad Rightarrow quad t_0=3. end Подставив найденное $t_0$ в записанное ранее уравнение, запишем искомое уравнение соприкасающейся плоскости: $$ 9X-6Y+Z-9=0. $$

Задача 3

Через точку $Pleft(-frac45,1,2right)$ провести плоскость, являющуюся спрямляющей для кривой: $$ x=t^2,,, y=1+t,,, z=2t. $$

Решение задачи 3

Как и в предыдущей задаче нам неизвестны координаты точки, в которой проведена спрямляющая плоскость к заданной кривой. Найдем их.

Спрямляющая плоскость определяется касательной и бинормалью, то есть векторами $vec(t_0)$ и $vec(t_0)timesvec(t_0)$.

Записываем уравнение спрямляющей плоскости: begin left| begin X-t_0^2 & Y-1-t_0 & Z-2t_0 \ 2t_0 & 1 & 2\ 0 & 4 & -2 end right|= 0 end

Раскрываем определитель. Подставляем в уравнение координаты точки $P$: $X=-4/5$, $Y=1$, $Z=2$. Упрощаем и получаем уравнение для нахождения $t_0$: begin 5t_0^2-8t_0-4=0 ,, Rightarrow ,, t_<01>=2,, t_<02>=-frac25. end

Уравнения соприкасающихся плоскостей к заданной кривой, проходящих через $P$, принимают вид: begin & 5X-4Y-8Z+24=0,\ & 25X+4Y+8Z=0. end

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnoe-normirovannoe-uravnenie-prjamoj/

http://vmath.ru/vf5/diffgeom/seminar1

Понравилась статья? Поделить с друзьями:
  • Кинетическая скорость формула как найти массу
  • Как найти мекку по компасу
  • Как по коду найти страницу в одноклассниках
  • Как найти собственника коммерческой недвижимости
  • Как найти карту hots