Как найти нули функции cosx

Функция

y=cosx

 определена на всей числовой прямой, и множеством её значений является отрезок

−1;1

.

Поэтому её график не выходит за границы полосы между прямыми

y=−1

 и

y=1

.

Используя свойство периодичности функции

y=cosx

, можно построить её график на промежутке

−π≤x≤π

 длиной

 и повторить несколько периодов с такими же значениями.

Функция

y=cosx

 — чётная. Её график симметричен относительно оси (Oy).

Построим график функции на промежутке

−π≤x≤π

. Так как функция

y=cosx

 является чётной, можно построить график на промежутке 

0≤x≤π

, а потом симметрично отобразить относительно оси (Oy).

Значения функции в удобных точках на этом отрезке

0≤x≤π

 равны: 

cos0=1;cosπ6=32;cosπ4=22;cosπ3=12;cosπ2=0;cosπ=−1

.

Учитывая периодичность функции 

y=cosx

, нарисуем её график.

cosx1.png

1. Область определения — все действительные числа (множество

).

2. Множество значений — промежуток

−1;1

.

3. Функция

y=cosx

имеет период

.

4. Функция

y=cosx

 является чётной.

5. Нули функции:

x=π2+πn,n∈ℤ;

наибольшее значение равно (1) при

x=2πn,n∈ℤ

;

наименьшее значение равно (-1) при 

x=π+2πn,n∈ℤ

;

значения функции положительны на интервале

−π2;π2

, с учётом периодичности функции на интервалах

−π2+2πn;π2+2πn,n∈ℤ

;

значения функции отрицательны на интервале

π2;3π2

, с учётом периодичности функции на интервалах

π2+2πn;3π2+2πn,n∈ℤ

.

— возрастает на отрезке

π;2π

, с учётом периодичности функции на отрезках 

π+2πn;2π+2πn,n∈ℤ

;

— убывает на отрезке

0;π

, с учётом периодичности функции на отрезках

2πn;π+2πn,n∈ℤ

.

Преподаватель который помогает студентам и школьникам в учёбе.

Содержание:

Некоторые свойства функции Функция y=cos x и её свойства и график с примерами решения

Например, областью определения функции Функция y=cos x и её свойства и график с примерами решения является множество всех действительных чисел, множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения наименьший положительный период функции Функция y=cos x и её свойства и график с примерами решения равен Функция y=cos x и её свойства и график с примерами решения

Определение функции y=cos x

Определение:

Зависимость, при которой каждому действительному числу Функция y=cos x и её свойства и график с примерами решения соответствует значение Функция y=cos x и её свойства и график с примерами решения называется функцией Функция y=cos x и её свойства и график с примерами решения

Свойства функции y=cos x

Свойства функции Функция y=cos x и её свойства и график с примерами решения приведены в таблице.:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

График функции y=cos x

График функции Функция y=cos x и её свойства и график с примерами решения изображен на рисунке 83. Этот график может быть получен путем преобразования (сдвига) графика функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Пример №1

Определите, какие из данных точек принадлежат графику функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Подставим в формулу Функция y=cos x и её свойства и график с примерами решения значение аргумента Функция y=cos x и её свойства и график с примерами решения и найдем соответствующее значение функции Функция y=cos x и её свойства и график с примерами решенияПолученное значение функции равно ординате точки Функция y=cos x и её свойства и график с примерами решения значит, точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

б)    При Функция y=cos x и её свойства и график с примерами решения — получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

в)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения не принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

г)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

Пример №2

Найдите область определения и множество значений функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Областью определения функции является множество всех действительных чисел, т. е. Функция y=cos x и её свойства и график с примерами решения

Множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Тогда по свойству неравенств Функция y=cos x и её свойства и график с примерами решенияФункция y=cos x и её свойства и график с примерами решения Таким образом, Функция y=cos x и её свойства и график с примерами решения

Пример №3

Найдите наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения тогда Функция y=cos x и её свойства и график с примерами решения Наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения равно -6.

Пример №4

Используя свойство периодичности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как число Функция y=cos x и её свойства и график с примерами решения является наименьшим положительным периодом функции Функция y=cos x и её свойства и график с примерами решения Тогда:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

  • Заказать решение задач по высшей математике

Пример №5

Используя свойство четности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения четная, то Функция y=cos x и её свойства и график с примерами решения

Тогда:

Функция y=cos x и её свойства и график с примерами решения

Пример №6

Исследуйте функцию на четность (нечетность):

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Функция y=cos x и её свойства и график с примерами решения — область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является четной.

 Функция y=cos x и её свойства и график с примерами решения —  область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является нечетной.

Пример №7

Найдите нули функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения

б)    Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения

Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения 

Пример №8

Определите знак произведения Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения  т. е. углы

4,5 радиана и 2 радиана принадлежат промежутку Функция y=cos x и её свойства и график с примерами решения на котором функция Функция y=cos x и её свойства и график с примерами решения принимает отрицательные значения, значит, Функция y=cos x и её свойства и график с примерами решения

Угол 7 радиан принадлежит промежутку, на котором функция Функция y=cos x и её свойства и график с примерами решения принимает положительные значения, т. е. Функция y=cos x и её свойства и график с примерами решения Значит, Функция y=cos x и её свойства и график с примерами решения

Пример №9

Что больше: Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения убывает на промежутке Функция y=cos x и её свойства и график с примерами решения то из того, что Функция y=cos x и её свойства и график с примерами решения следует, что Функция y=cos x и её свойства и график с примерами решения

Пример №10

Постройте график функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси абсцисс на Функция y=cos x и её свойства и график с примерами решения влево (рис. 86).

б)    График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси ординат на 2 единицы вниз (рис. 87).

Функция y=cos x и её свойства и график с примерами решения

  • Функции y=tg x и y=ctg x — их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа
  • Тригонометрические уравнения
  • Тригонометрические неравенства
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график
  1. Развертка абсциссы движения точки по числовой окружности в функцию от угла
  2. Свойства функции y=cos⁡x
  3. Примеры

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

Развертка абсциссы движения точки по числовой окружности в функцию от угла (см. §2 данного справочника).

Рассмотрим, как изменяется косинус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=cosx на этом отрезке.

Развертка ординаты движения точки по числовой окружности в функцию от угла

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривая продолжится влево.

В результате получаем график y=cosx для любого (xinmathbb{R}).
Косинусоида

График y=cosx называют косинусоидой.
Часть косинусоиды для –π≤x≤π называют волной косинусоиды.
Часть косинусоиды для (-fracpi2leq xleqfracpi2) называют полуволной или аркой косинусоиды.

Заметим, что термин «косинусоида» используется достаточно редко. Обычно, и в случае косинуса, говорят о «синусоиде».

п.2. Свойства функции y=cosx

1. Область определения (xinmathbb{R}) — множество действительных чисел.

2. Функция ограничена сверху и снизу $$ -1leq cosxleq 1 $$ Область значений (yin[-1;1])

3. Функция чётная $$ cos(-x)=cosx $$

4. Функция периодическая с периодом 2π $$ cos(x+2pi k)=cosx $$

5. Максимальные значения (y_{max}=1) достигаются в точках $$ x=2pi k $$ Минимальные значения (y_{min}=-1) достигаются в точках $$ x=pi+2pi k $$ Нули функции (y_{0}=cosx_0=0) достигаются в точках (x=fracpi2 +pi k)

6. Функция возрастает на отрезках $$ -pi+2pi kleq xleq 2pi k $$ Функция убывает на отрезках $$ 2pi kleq xleqpi+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1.Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:
Пример 1
a) (left[fracpi6; frac{3pi}{4}right]) $$ y_{min}=cosleft(frac{3pi}{4}right)=-frac{sqrt{2}}{2}, y_{max}=cosleft(fracpi6right)=frac{sqrt{3}}{2} $$ б) (left[frac{5pi}{6}; frac{5pi}{3}right]) $$ y_{min}=cos(pi)=-1, y_{max}=cosleft(frac{5pi}{3}right)=frac12 $$

Пример 2. Решите уравнение графически:
a) (cosx=fracpi2-x)
Пример 2a
Один корень: (x=fracpi2)

б) (cosx-x=1)
(cosx=x+1)
Пример 2б
Один корень: x = 0

в) (cosx-x^2=1)
(cosx=x^2+1)
Пример 2в
Один корень: x = 0

г*) (cosx-x^2+frac{pi^2}{4}=0)
(cosx=x^2-frac{pi^2}{4})
(y=x^2-frac{pi^2}{4}) – парабола ветками вверх, с осью симметрии (x_0=0) (ось OY) и вершиной (left(0; -frac{pi^2}{4}right)) (см. §29 справочника для 8 класса)
Пример 2г
Два корня: (x_{1,2}=pmfracpi2)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx, y=-cosx, y=2cosx, y=cosx-2 $$
Пример 3
(y=-cosx) – отражение исходной функции (y=cosx) относительно оси OX. Область значений (yin[-1;1]).
(y=2cosx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=cosx-2) — исходная функция опускается вниз на 2. Область значений (yin[-3;-1]).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx, y=cos2x, y=cosfrac{x}{2} $$
Пример 4
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под косинусом изменяет период колебаний.
(y=cosx) – главная арка косинуса соответствует отрезку (-fracpi2leq xleqfracpi2)
(y=cos2x) — период уменьшается в 2 раза, главная арка укладывается в отрезок (-fracpi4leq xleqfracpi4).
(y=cosfrac{x}{2}) — период увеличивается в 2 раза, главная арка растягивается в отрезок (-pi leq xleq pi).

14. Свойства функций синуса, косинуса, тангенса

и котангенса и их графики

14.1. СВОЙСТВА ФУНКЦИИ y = sin x И ЕЕ ГРАФИК

Т а б л и ц а 21

График функции y = sin x (синусоида)

Свойства функции y = sin x

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики:

1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями

координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания * ;8) наибольшее и наименьшее

значения функции.

З а м е ч а н и е. Абсциссы точек пересечения графика функции с осью Ох

(то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордина-

та соответствующей точки единичной окружности

(рис. 79). Поскольку ординату можно найти для

любой точки единичной окружности (в силу того,

что через любую точку окружности всегда можно

провести единственную прямую, перпендикуляр-

ную оси ординат), то область определения функции

y = sin x — все действительные числа. Это можно за-

писать так: D (sin x) = R.

Для точек единичной окружности ординаты нахо-

дятся в промежутке [–1; 1] и принимают все значения

от –1 до 1, поскольку через любую точку отрезка [–1; 1]      

                                                                                                                                                                       Рис. 79

оси ординат (который является диаметром единичной

окружности) всегда можно провести прямую, перпендикулярную оси орди-

нат, и получить точку окружности, которая имеет рассматриваемую орди-

нату. Таким образом, для функции y = sin x область значений: y ∈ [–1; 1].

Это можно записать так: E (sin x) = [–1; 1].

Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окружности является точка A, то есть при

Наименьшее значение функции sin x равно минус единице. Это значение

достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть

при 

Как было показано в § 13, синус — нечетная функция: sin(-x)= — sin x,

поэтому ее график симметричен относительно начала координат.

В § 13 было обосновано также, что синус — периодическая функция с наименьшим положительным периодом

T = 2π: sin (x + 2π) = sin x, таким образом, через промежутки длиной вид графика функции sin x повторя-

ется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной 2π, а

потом полученную линию параллельно перенести вправо и влево вдоль оси Ox на расстояние kT = 2πk, где

k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат,

напомним, что на оси Oy значение x = 0. Тогда соответствующее значение

y = sin 0 = 0, то есть график функции y = sin x проходит через начало координат.

На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при

которых sin x, то есть ордината соответствующей точки единичной окруж­

ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж-

ности будут выбраны точки C или D, то есть при x = πk, k ∈ Z (см. рис. 79).

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции синус положительны (то есть ордината соответствующей точки

единичной окружности положительна) в I и II четвертях (рис. 80). Таким

образом, sin x > 0 при всех x ∈ (0; π), а также, учитывая период, при всех

x ∈ (2πk; π + 2πk), k ∈ Z.

Значения функции синус отрицательны (то есть ордината соответствую-

щей точки единичной окружности отрицательна) в III и IV четвертях, поэто-

му sin x < 0 при x ∈ (π + 2πk; 2π + 2πk), k ∈ Z.

Промежутки возрастания и убывания

Доказательство теоремы

Учитывая периодичность функции sin x с периодом T = 2π, достаточно

исследовать ее на возрастание и убывание на любом промежутке длиной

2π, например на промежутке

то при увеличении аргумента x (x2> x1) ордината соответствующей точки единичной окружности увеличивается (то есть

sin x 2 > sin x 1 ), следовательно, на этом промежутке функция sin x возрастает. Учитывая периодичность функции sin x,

делаем вывод, что она также возрастает на каждом из промежутков

Если x ∈ (рис. 81, б), то при увеличении аргумента x (x 2 > x 1 ) ордината соответствующей точки единичной

окружности уменьшается (то есть sin x 2 < sin x 1 ), таким образом, на этом промежутке функция sin x убывает. Учитывая

периодичность функции sin x, делаем вывод, что она также убывает на каждом из промежутков

Проведенное исследование позволяет обоснованно построить график функции y = sin x. Учитывая периодичность этой

функции (с периодом 2π), достаточно сначала построить график на любом промежутке длиной 2π, например на

промежутке [–π; π]. Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината

соответствующей точки единичной окружности. На рисунке 82 показано построение графика функции y = sin x на

промежутке [0; π]. Учитывая нечетность функции sin x (ее график симметричен относительно начала координат), для

построения графика на промежутке [–π; 0] отображаем полученную кривую симметрично относительно начала координат

(рис. 83).

Поскольку мы построили график на

промежутке длиной 2π, то, учитывая

периодичность синуса (с периодом 2π),

повторяем вид графика на каждом про-

межутке длиной 2π (то есть переносим па-

раллельно график вдоль оси Ох на 2πk,

где k — целое число).

Получаем график, который называется

синусоидой (рис. 84).

З а м е ч а н и е. Тригонометрические функции широко применяются в математике, физике и технике. Например,

множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п.,

описываются функцией, которая задается формулой y = A sin (ωх + φ). Такие процессы называют гармоническими

колебаниями. График функции y = A sin (ωx + φ) можно получить из синусоиды y = sin х сжатием или растяжением ее вдоль

координатных осей и параллельным переносом вдоль оси Ох. Чаще всего гармоническое колебание является функцией

времени t. Тогда оно задается формулой y = A sin (ωt + φ), где А — амплитуда колебания, ω — частота, φ — начальная

фаза,

14.2. СВОЙСТВА ФУНКЦИИ y = cos x И ЕЕ ГРАФИК

Объяснение и обоснование

Напомним, что значение косинуса — это абсцис-

са соответствующей точки единичной окружности

(рис. 85). Поскольку абсциссу можно найти для лю-

бой точки единичной окружности (в силу того, что

через любую точку окружности, всегда можно про-

вести единственную прямую, перпендикулярную оси

абсцисс), то область определения функции y = cos x —

все действительные числа. Это можно записать так:

D (cos x) = R.

Для точек единичной окружности абсциссы нахо-

дятся в промежутке [–1; 1] и принимают все значе-

ния от –1 до 1, поскольку через любую точку отрезка [–1; 1] оси абсцисс (который является диаметром единичной

окружности)

всегда можно провести прямую, перпендикулярную оси абсцисс, и получить

точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции y = cos x:

y ∈ [–1; 1]. Это можно записать так: E (cos x) = [–1; 1]. Как видим, наибольшее значение функции cos x равно единице. Это

значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при

x = 2πk, k ∈ Z. Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окружности является точка B, то есть при x = π + 2πk, k ∈ Z.

Как было показано в § 13, косинус — четная функция: cos (–x) = cos x, поэтому ее график симметричен относительно оси

Оу. В § 13 было обосновано также, что косинус — периодическая функция с наименьшим положительным периодом

T = 2π: cos (x + 2π) = cos x. Таким образом, через промежутки длиной 2π вид графика функции cos x повторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Oy значение x = 0. Тогда 

соответствующее значение y = cos 0 = 1. На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при 

которых cos x, то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только

тогда, когда на единичной окружности будут выбраны точки C или D, то есть при

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции косинус положительны (то есть абсцисса соответствующей точки

единичной окружности положительна) в I и IV четвертях (рис. 86). Следова-

тельно, cos x > 0 при x ∈ (-П/2; П/2) а также, учитывая период, при всех

Значения функции косинус отрицательны (то есть абсцисса соответству-

ющей точки единичной окружности отрицательна) во ІІ и ІІІ четвертях,

поэтому cos x < 0 при x ∈

Промежутки возрастания и убывания

Учитывая периодичность функции cos x (T = 2π), достаточно исследовать

ее на возрастание и убывание на любом промежутке длиной 2π, например

на промежутке [0; 2π].

Если x ∈ [0; π] (рис. 87, а), то при увеличении аргумента x (x 2 > x 1 ) абсцисса соответствующей точки единичной

окружности уменьшается (то есть cos x 2<cos x 1 ), следовательно, на этом промежутке функция cos x убывает. Учитывая

периодичность функции cos x, делаем вывод, что она также убывает на каждом из промежутков [2πk; π + 2πk], k ∈ Z.

Если x ∈ [π; 2π] (рис. 87, б), то при увеличении аргумента x (x 2 > x 1 ) аб-

сцисса соответствующей точки единичной окружности увеличивается (то

есть cos x 2 >cos x 1 ), таким образом, на этом промежутке функция cos x

возрастает. Учитывая периодичность функции cos x, делаем вывод, что

она возрастает также на каждом из промежутков [π + 2πk; 2π + 2πk], k ∈ Z.

Проведенное исследование позволяет построить график функции y = cos x

аналогично тому, как был построен график функ-

ции y = sin x. Но график функции у = cos x можно

также получить с помощью геометрических преоб-

разований графика функции у = sin х, используя

формулу

Эту формулу можно обосновать, например, так.

Рассмотрим единичную окружность (рис. 88), отметим на ней точки

 Задвижки, фильтры, кланы, клапаны, виброкомпенсаторы ABRA

Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблицы DPVA.ru — Инженерный Справочник

Free counters!


Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества.  / / Синус и косинус — тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки, формулы приведения

Синус (sin) и косинус (cos) — тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки по четвертям, формулы приведения.

Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения:

Тригонометрический единичный круг, тригонометрическая окружность, введение синуса и косинуса.

Синус (sin) и косинус (cos) - тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки по четвертям, формулы приведения

Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения:

  • Функция:
Функции y=sin (x) и y=cos(x)
  • Область определения D(y):
Функции y=sin (x) и y=cos(x) Область определения D(y)
  • Область значений E(x):
Функции y=sin (x) и y=cos(x) Область значений E(x)
  • Четность:
Функции y=sin (x) и y=cos(x) Четность
  • Наименьший положительный период:
Функции y=sin (x) и y=cos(x) Наименьший положительный период:
  • Координаты точек пересечения графика функции с осью:
  • Ox
Функции y=sin (x) и y=cos(x) Координаты точек пересечения графика функции с осью Ox
  • Oy
Функции y=sin (x) и y=cos(x) Координаты точек пересечения графика функции с осью Oy
  • Промежутки знакопостоянства —  на которых функция принимает:
  • Положительные значения:
  • Отрицптельные значения:
Функции y=sin (x) и y=cos(x) Промежутки знакопостоянства -  на которых функция принимает только положительные или только отрицательные значения
  • Промежутки возрастания:
  • Промежутки убывания:
Функции y=sin (x) и y=cos(x) Промежутки возрастания, Промежутки убывания
  • Точки минимума:
Функции y=sin (x) и y=cos(x) Точки минимума
  • Мнимумы функции:
Функции y=sin (x) и y=cos(x) Мнимумы функции
  • Точки максимума:
Функции y=sin (x) и y=cos(x) Точки максимума
  • Максимумы функции:
Функции y=sin (x) и y=cos(x) Максимумы функции
Действительные числа: натуральные числа, целые числа, рациональные числа, иррациональные числа. Понятия и обозначения

Перевод градусной меры угла в радианную и обратно подробнее:

Перевод градусной меры угла в радианную и обратно

Значения тригонометрических функций некоторых углов:

Значения тригонометрических функций некоторых углов

Знаки значений тригонометрических функций:

Знаки значений тригонометрических функций по четвертям

Формулы приведения тригонометрических функций подробнее:

Формулы приведения тригонометрических функций

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

www.dpva.ru Инженерный справочник.

Понравилась статья? Поделить с друзьями:
  • Арканум как найти темных эльфов
  • Как найти сериал по саундтреку
  • Как найти друга переписки вконтакте
  • Список желаний как правильно составить на год пример заполнения
  • Как найти волейбольную площадку