Как найти нули функции косинус икс

Функция

y=cosx

 определена на всей числовой прямой, и множеством её значений является отрезок

−1;1

.

Поэтому её график не выходит за границы полосы между прямыми

y=−1

 и

y=1

.

Используя свойство периодичности функции

y=cosx

, можно построить её график на промежутке

−π≤x≤π

 длиной

 и повторить несколько периодов с такими же значениями.

Функция

y=cosx

 — чётная. Её график симметричен относительно оси (Oy).

Построим график функции на промежутке

−π≤x≤π

. Так как функция

y=cosx

 является чётной, можно построить график на промежутке 

0≤x≤π

, а потом симметрично отобразить относительно оси (Oy).

Значения функции в удобных точках на этом отрезке

0≤x≤π

 равны: 

cos0=1;cosπ6=32;cosπ4=22;cosπ3=12;cosπ2=0;cosπ=−1

.

Учитывая периодичность функции 

y=cosx

, нарисуем её график.

cosx1.png

1. Область определения — все действительные числа (множество

).

2. Множество значений — промежуток

−1;1

.

3. Функция

y=cosx

имеет период

.

4. Функция

y=cosx

 является чётной.

5. Нули функции:

x=π2+πn,n∈ℤ;

наибольшее значение равно (1) при

x=2πn,n∈ℤ

;

наименьшее значение равно (-1) при 

x=π+2πn,n∈ℤ

;

значения функции положительны на интервале

−π2;π2

, с учётом периодичности функции на интервалах

−π2+2πn;π2+2πn,n∈ℤ

;

значения функции отрицательны на интервале

π2;3π2

, с учётом периодичности функции на интервалах

π2+2πn;3π2+2πn,n∈ℤ

.

— возрастает на отрезке

π;2π

, с учётом периодичности функции на отрезках 

π+2πn;2π+2πn,n∈ℤ

;

— убывает на отрезке

0;π

, с учётом периодичности функции на отрезках

2πn;π+2πn,n∈ℤ

.

Преподаватель который помогает студентам и школьникам в учёбе.

Содержание:

Некоторые свойства функции Функция y=cos x и её свойства и график с примерами решения

Например, областью определения функции Функция y=cos x и её свойства и график с примерами решения является множество всех действительных чисел, множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения наименьший положительный период функции Функция y=cos x и её свойства и график с примерами решения равен Функция y=cos x и её свойства и график с примерами решения

Определение функции y=cos x

Определение:

Зависимость, при которой каждому действительному числу Функция y=cos x и её свойства и график с примерами решения соответствует значение Функция y=cos x и её свойства и график с примерами решения называется функцией Функция y=cos x и её свойства и график с примерами решения

Свойства функции y=cos x

Свойства функции Функция y=cos x и её свойства и график с примерами решения приведены в таблице.:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

График функции y=cos x

График функции Функция y=cos x и её свойства и график с примерами решения изображен на рисунке 83. Этот график может быть получен путем преобразования (сдвига) графика функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Пример №1

Определите, какие из данных точек принадлежат графику функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Подставим в формулу Функция y=cos x и её свойства и график с примерами решения значение аргумента Функция y=cos x и её свойства и график с примерами решения и найдем соответствующее значение функции Функция y=cos x и её свойства и график с примерами решенияПолученное значение функции равно ординате точки Функция y=cos x и её свойства и график с примерами решения значит, точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

б)    При Функция y=cos x и её свойства и график с примерами решения — получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

в)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения не принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

г)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

Пример №2

Найдите область определения и множество значений функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Областью определения функции является множество всех действительных чисел, т. е. Функция y=cos x и её свойства и график с примерами решения

Множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Тогда по свойству неравенств Функция y=cos x и её свойства и график с примерами решенияФункция y=cos x и её свойства и график с примерами решения Таким образом, Функция y=cos x и её свойства и график с примерами решения

Пример №3

Найдите наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения тогда Функция y=cos x и её свойства и график с примерами решения Наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения равно -6.

Пример №4

Используя свойство периодичности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как число Функция y=cos x и её свойства и график с примерами решения является наименьшим положительным периодом функции Функция y=cos x и её свойства и график с примерами решения Тогда:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

  • Заказать решение задач по высшей математике

Пример №5

Используя свойство четности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения четная, то Функция y=cos x и её свойства и график с примерами решения

Тогда:

Функция y=cos x и её свойства и график с примерами решения

Пример №6

Исследуйте функцию на четность (нечетность):

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Функция y=cos x и её свойства и график с примерами решения — область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является четной.

 Функция y=cos x и её свойства и график с примерами решения —  область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является нечетной.

Пример №7

Найдите нули функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения

б)    Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения

Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения 

Пример №8

Определите знак произведения Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения  т. е. углы

4,5 радиана и 2 радиана принадлежат промежутку Функция y=cos x и её свойства и график с примерами решения на котором функция Функция y=cos x и её свойства и график с примерами решения принимает отрицательные значения, значит, Функция y=cos x и её свойства и график с примерами решения

Угол 7 радиан принадлежит промежутку, на котором функция Функция y=cos x и её свойства и график с примерами решения принимает положительные значения, т. е. Функция y=cos x и её свойства и график с примерами решения Значит, Функция y=cos x и её свойства и график с примерами решения

Пример №9

Что больше: Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения убывает на промежутке Функция y=cos x и её свойства и график с примерами решения то из того, что Функция y=cos x и её свойства и график с примерами решения следует, что Функция y=cos x и её свойства и график с примерами решения

Пример №10

Постройте график функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси абсцисс на Функция y=cos x и её свойства и график с примерами решения влево (рис. 86).

б)    График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси ординат на 2 единицы вниз (рис. 87).

Функция y=cos x и её свойства и график с примерами решения

  • Функции y=tg x и y=ctg x — их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа
  • Тригонометрические уравнения
  • Тригонометрические неравенства
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график

Определения

Синусом острого угла прямоугольного треугольника называется отношение противолежащего к этому углу катета к гипотенузе.

Синус угла А обозначается sin A.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

Косинус угла А обозначается cos A.

Наглядно это видно на следующем рисунке:

Функция косинуса: свойства и значения функции косинус

Определение

Функцией косинуса называют элементарную тригонометрическую функцию, выражающую зависимость угла при вершине треугольника от отношения прилежащей его стороны к гипотенузе.

  • Основные свойства функции косинус следующие:
    1. Область определения функции косинуса (значений, которые может принимать аргумент x) – множество всех действительных чисел;
    2. Значения функции косинус – это (+1) и (-1) и множество действительных чисел между ними.
    3. Наименьшее значение функции косинус равно 1, а наибольшее – (-1);
    4. Функция чётная, т. е. cos(-x) = cos(x);
    5. Функция периодическая. Её период равен ;
    6. Наибольшего своего значения функция косинус x достигает в точках x=2πk;
    7. Наименьшее значение функции косинус x будет в точках x= π/2+2πk;
    8. Область возрастания функции cos(x): -π+2πk<=x<=2πk;
    9. Область убывания функции cos(x): 2πk<= π+2πk;
    10. Функция не имеет разрывов, т. е. непрерывна.

График функции косинус

Графиком функции является косинусоида. Он получается из графика синуса с помощью параллельного переноса на расстояние [frac{pi}{2}] влево. Он выглядит следующим образом:

Как построить график функции косинус икс

График функции косинуса можно построить следующим образом:

Используем данные единичной окружности, приведённой на рисунке выше.

Из рисунка единичной окружности видно, что в точке ноль ордината функции равна единице. В точке π/2 по оси X значение Y равно 0. В точке π по оси X ордината равна (-1). В точке 3π/2 значение функции снова равно 0, а в точке значение по оси X равно 1. Отметим все названные точки.

Соединим их плавной линией

Т. к. наша функция чётная (свойство №4), её график симметричен оси Y. Зеркально отразим его. Помимо этого нам известно, что период функции равен . Из данного свойства следует неограниченная повторяемость кусочка функции между 0 и в обе стороны вдоль оси X. График функции косинус x построен.

Нет времени решать самому?

Наши эксперты помогут!

Как найти значение функции косинуса при x равном 45 градусам

Построим прямоугольный треугольник с катетами, равняющимися единице. Сумма углов любого треугольника, как известно, равна 180 градусам. Если вычтем из них прямой угол, получим сумму двух оставшихся углов. Это углы при вершинах A и B. Так как катеты равны, то и выше названные углы равны и каждый из них составляет (180 – 90)/2 = 45 градусов.

По теореме Пифагора гипотенуза его в этом случае будет равна [c=sqrt{a^{2}+a^{2}}=sqrt{1+1}=sqrt{2}]

Из определения косинуса находим [cos (a)=1 / sqrt{2}]

После вычисления и округления числа получим 0,7071. Это и есть косинус 45 градусов.

Как найти нули тригонометрической функции по уравнению

Ключевые слова: тригонометрия, функция, синус, косинус, тангенс, котангенс, область определения, множество значений

D(tg) = R, $$x ne frac<pi><2>+pi n$$

Нули функции

Что такое нули функции? Как определить нули функции аналитически и по графику?

Нули функции — это значения аргумента, при которых функция равна нулю.

Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.

Если уравнение не имеет корней, нулей у функции нет.

1) Найти нули линейной функции y=3x+15.

Чтобы найти нули функции, решим уравнение 3x+15 =0.

Таким образом, нуль функции y=3x+15 — x= -5 .

2) Найти нули квадратичной функции f(x)=x²-7x+12.

Для нахождения нулей функции решим квадратное уравнение

Его корни x1=3 и x2=4 являются нулями данной функции.

3)Найти нули функции

Дробь имеет смысл, если знаменатель отличен от нуля. Следовательно, x²-1≠0, x² ≠ 1,x ≠±1. То есть область определения данной функции (ОДЗ)

Из корней уравнения x²+5x+4=0 x1=-1 x2=-4 в область определения входит только x=-4.

Чтобы найти нули функции, заданной графически, надо найти точки пересечения графика функции с осью абсцисс.

Если график не пересекает ось Ox, функция не имеет нулей.

функция, график которой изображен на рисунке,имеет четыре нуля —

В алгебре задача нахождения нулей функции встречается как в виде самостоятельного задания, так и при решения других задач, например, при исследовании функции, решении неравенств и т.д.

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

Свойства y = sin x
y = cos x y = tg x y = ctg x
D(f) — область определения функции D(sin) = R — множество всех действительных чисел D(cos) = R — множество всех действительных чисел 0 ° 30 ° 45 ° 60 ° 90 °
sin α 0 1 2 2 2 3 2 1
cos α 1 3 2 2 2 1 2 0
tg α 0 3 3 1 3 нет
ctg α нет 3 1 3 3 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

  1. Развертка абсциссы движения точки по числовой окружности в функцию от угла
  2. Свойства функции y=cos⁡x
  3. Примеры

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

Развертка абсциссы движения точки по числовой окружности в функцию от угла (см. §2 данного справочника).

Рассмотрим, как изменяется косинус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=cosx на этом отрезке.

Развертка ординаты движения точки по числовой окружности в функцию от угла

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривая продолжится влево.

В результате получаем график y=cosx для любого (xinmathbb{R}).
Косинусоида

График y=cosx называют косинусоидой.
Часть косинусоиды для –π≤x≤π называют волной косинусоиды.
Часть косинусоиды для (-fracpi2leq xleqfracpi2) называют полуволной или аркой косинусоиды.

Заметим, что термин «косинусоида» используется достаточно редко. Обычно, и в случае косинуса, говорят о «синусоиде».

п.2. Свойства функции y=cosx

1. Область определения (xinmathbb{R}) — множество действительных чисел.

2. Функция ограничена сверху и снизу $$ -1leq cosxleq 1 $$ Область значений (yin[-1;1])

3. Функция чётная $$ cos(-x)=cosx $$

4. Функция периодическая с периодом 2π $$ cos(x+2pi k)=cosx $$

5. Максимальные значения (y_{max}=1) достигаются в точках $$ x=2pi k $$ Минимальные значения (y_{min}=-1) достигаются в точках $$ x=pi+2pi k $$ Нули функции (y_{0}=cosx_0=0) достигаются в точках (x=fracpi2 +pi k)

6. Функция возрастает на отрезках $$ -pi+2pi kleq xleq 2pi k $$ Функция убывает на отрезках $$ 2pi kleq xleqpi+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1.Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:
Пример 1
a) (left[fracpi6; frac{3pi}{4}right]) $$ y_{min}=cosleft(frac{3pi}{4}right)=-frac{sqrt{2}}{2}, y_{max}=cosleft(fracpi6right)=frac{sqrt{3}}{2} $$ б) (left[frac{5pi}{6}; frac{5pi}{3}right]) $$ y_{min}=cos(pi)=-1, y_{max}=cosleft(frac{5pi}{3}right)=frac12 $$

Пример 2. Решите уравнение графически:
a) (cosx=fracpi2-x)
Пример 2a
Один корень: (x=fracpi2)

б) (cosx-x=1)
(cosx=x+1)
Пример 2б
Один корень: x = 0

в) (cosx-x^2=1)
(cosx=x^2+1)
Пример 2в
Один корень: x = 0

г*) (cosx-x^2+frac{pi^2}{4}=0)
(cosx=x^2-frac{pi^2}{4})
(y=x^2-frac{pi^2}{4}) – парабола ветками вверх, с осью симметрии (x_0=0) (ось OY) и вершиной (left(0; -frac{pi^2}{4}right)) (см. §29 справочника для 8 класса)
Пример 2г
Два корня: (x_{1,2}=pmfracpi2)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx, y=-cosx, y=2cosx, y=cosx-2 $$
Пример 3
(y=-cosx) – отражение исходной функции (y=cosx) относительно оси OX. Область значений (yin[-1;1]).
(y=2cosx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=cosx-2) — исходная функция опускается вниз на 2. Область значений (yin[-3;-1]).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx, y=cos2x, y=cosfrac{x}{2} $$
Пример 4
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под косинусом изменяет период колебаний.
(y=cosx) – главная арка косинуса соответствует отрезку (-fracpi2leq xleqfracpi2)
(y=cos2x) — период уменьшается в 2 раза, главная арка укладывается в отрезок (-fracpi4leq xleqfracpi4).
(y=cosfrac{x}{2}) — период увеличивается в 2 раза, главная арка растягивается в отрезок (-pi leq xleq pi).

Понравилась статья? Поделить с друзьями:
  • Как найти высоты параллелограмма построенного на векторах
  • Как исправить дефект на одежде
  • Как найти изменение себестоимости продукции
  • Как найти объем куба если известна площадь
  • Поврежден лицевой нерв как исправить