Содержание:
Рассматривая произвольное действительное число
Таким образом, мы установим соответствие между множеством действительных чисел и множеством значений синусов углов. Каждому действительному числу соответствует единственное значение синуса. Такое соответствие определяет тригонометрическую функцию
Определение функция y=sin x
Определение:
Зависимость, при которой каждому действительному числу соответствует значение называется функцией
Рассмотрим свойства функции и построим ее график:
Область определения функции y=sin x
Областью определения функции является множество всех действительных чисел, так как для любого существует
Графически это означает, что для любой абсциссы найдется точка графика функции
Множеством значений функции y=sin x
Множеством значений функции является промежуток так как ординаты точек единичной окружности (значения синусов чисел) изменяются от -1 до 1.
Графически это означает, что график функции расположен в полосе между прямыми (рис. 74).
Периодичность функции y=sin x
Периодичность функции Точки единичной окружности совпадают для любого (рис. 75), значит, значения синусов этих углов также совпадают, т. е.
Говорят, что число является периодом функции
Определение:
Функция называется периодической функцией с периодом если для любого значения из области определения функции числа также принадлежат области определения и при этом верно равенство
Чтобы определить, является ли функция периодической с периодом необходимо проверить:
- принадлежат ли области определения функции числа если принадлежит области определения функции;
- выполняется ли равенство
Определим, верно ли, что число является периодом функции
- Числа принадлежат области определения функции, так как
- Проверим, выполняется ли равенство для всех
Пусть
Значит, число не является периодом функции
Периодом функции являются числа вида Число является наименьшим положительным периодом функции
Функция является периодической с наименьшим положительным периодом (рис. 76). Это означает, что ее график состоит из повторяющихся частей, поэтому достаточно его построить на отрезке длиной (например, а затем повторить построение на каждом следующем отрезке длиной
Четность (нечетность) функции y=sin x
Четность (нечетность) функции y=sin x — симметрична относительно нуля. Так как точки единичной окружности симметричны относительно оси абсцисс для любого то ординаты этих точек противоположны, т. е. (рис. 77). Значит, функция нечетная.
Для построения ее графика достаточно построить его часть для неотрицательных значений аргумента и отобразить эту часть симметрично относительно начала координат.
Нули функции y=sin x
Нули функции. Ординаты точек и равны нулю. Значит, в точка (рис. 78), т. е. график функции пересекает ось абсцисс в точках с абсциссами
Промежутки знакопостоянства функции y=sin x
На промежутках функция принимает положительные значения, так как ординаты точек единичной окружности положительны в первой и во второй четвертях (рис. 79, а).
На промежутках функция принимает отрицательные значения, так как ординаты точек единичной окружности отрицательны в третьей и четвертой четвертях (рис. 79, б).
Монотонность функции y=sin x
Монотонность функции. Так как ординаты точек единичной окружности увеличиваются от -1 до 1 при изменении угла от (рис. 80, а) и уменьшаются от 1 до -1 при изменении угла от (рис. 80, б), то с учетом периодичности определим промежутки возрастания функции и промежутки убывания функции
Функции возрастает на промежутках и убывает на промежутках
Наибольшее значение функции равно 1 и достигается в точках
Наименьшее значение функции равно и достигается в точках
На основании проведенного исследования построим график функции на отрезке от длина которого равна т. е. длине периода функции
На этом периоде функция
На рисунке 81 изображена часть графика функции на промежутке от
Перенесем эту часть на другие периоды и получим график функции (рис. 82). График функции называется синусоидой.
Примеры заданий и их решения
Пример №1
Определите, принадлежит ли графику функции точка:
Решение:
а) Подставим в формулу значение аргумента найдем соответствующее значение функции
Полученное значение функции равно ординате точки значит, точка принадлежит графику функции
б) При получим Точка не принадлежит графику функции
в) При получим Точка принадлежит графику функции
г) При получим Точка не принадлежит графику функции
Пример №2
Найдите область определения и множество значений функции:
Решение:
а) Так как область определения функции все действительные числа, т.е значит, Таким образом,
Множеством значений функции является отрезок значит, Тогда по свойству неравенств Таким образом,
б) Поскольку то по свойству неравенств
т.е.
Пример №3
Найдите наибольшее значение функции
Решение:
Так как значит, тогда Таким образом, имеем: Наибольшее значение функции равно 7.
- Заказать решение задач по высшей математике
Пример №4
Найдите значение выражения, используя свойство периодичности функции
Решение:
Так как число является наименьшим положительным периодом функции Тогда:
Пример №5
Найдите значение выражения, используя свойство нечетности функции
Решение:
Так как функция нечетная, то
Тогда:
Пример №6
Исследуйте функцию на четность (нечетность):
Решение:
a) — область определения симметрична относительно нуля;
значит, функция является нечетной.
область определения симметрична относительно нуля;
значит, функция является четной.
Пример №7
Найдите нули функции:
Решение:
а) Пусть Нулями функции являются числа Тогда значит, Таким тобразом, числа являются нулями функции
б) Пусть Нулями функции являются числа Тогда значит,
Таким образом, числа являются нулями функции
Пример №8
Определите знак произведения
Решение:
Так как то т. е. угол 4 радиана принадлежит промежутку на котором функция принимает отрицательные значения, значит,
Углы 2 радиана и 1 радиан принадлежат промежутку на котором функция принимает положительные значения, т. е. Значит,
Пример №9
Что больше: или
Решение. Так как функция возрастает на промежутке то из того, что следует, что
Пример №10
Постройте график функции:
Решение:
а) График функции получаем из графика функции сдвигом его вдоль оси абсцисс на влево (рис. 84).
б) График функции получаем из графика функции сдвигом его вдоль оси ординат на 2 единицы вверх (рис. 85).
- Функция y=cos x и её свойства и график
- Функции y=tg x и y=ctg x — их свойства, графики
- Арксинус, арккосинус, арктангенс и арккотангенс числа
- Тригонометрические уравнения
- Единичная окружность — в тригонометрии
- Определение синуса и косинуса произвольного угла
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
Область определения: (D(x)=R).
(y(-x)=-y(x)) — нечётная.
Построение графика этой функции происходит таким же способом, как и графика функции
y=cosx
, начиная с построения, например, на отрезке
0;π
.
Но можно упростить, применив формулу
sinx=cosx−π2
, которая показывает, что график функции
y=sinx
можно получить путём сдвига графика функции
y=cosx
вдоль оси абсцисс вправо на
π2
.
Кривая, являющаяся графиком функции
y=sinx
, называется синусоидой.
1. Область определения — множество
ℝ
всех действительных чисел.
2. Множество значений — отрезок
−1;1
.
3. Функция
y=sinx
имеет период (T =)
2π
.
4. Функция
y=sinx
является нечётной.
5. Нули функции:
x=πn,n∈ℤ
;
наибольшее значение равно (1) при
x=π2+2πn,n∈ℤ
;
наименьшее значение равно (-1) при
x=−π2+2πn,n∈ℤ
;
значения функции положительны на интервале
0;π
, с учётом периодичности функции на интервалах
2πn;π+2πn,n∈ℤ
;
значения функции отрицательны на интервале
π;2π
, с учётом периодичности функции на интервалах
π+2πn;2π+2πn,n∈ℤ
.
— возрастает на отрезках
−π2;π2
, с учётом периодичности функции на отрезках
−π2+2πn;π2+2πn,n∈ℤ
;
— убывает на отрезке
π2;3π2
, с учётом периодичности функции на отрезках
π2+2πn;3π2+2πn,n∈ℤ
.
- Развертка ординаты движения точки по числовой окружности в функцию от угла
- Свойства функции y=sinx
- Примеры
п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла
При движении точки по числовой окружности её ордината является синусом соответствующего угла (см. §2 данного справочника).
Рассмотрим, как изменяется синус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=sinx на этом отрезке.
Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривая продолжится влево.
В результате получаем график y=sinx для любого (xinmathbb{R}).
График y=sinx называют синусоидой.
Часть синусоиды для 0≤x≤2π называют волной синусоиды.
Часть синусоиды для 0≤x≤π называют полуволной или аркой синусоиды.
п.2. Свойства функции y=sinx
1. Область определения (xinmathbb{R}) — множество действительных чисел.
2. Функция ограничена сверху и снизу
$$ -1leq sinxleq 1 $$
Область значений (yin[-1;1])
3. Функция нечётная
$$ sin(-x)=-sinx $$
4. Функция периодическая с периодом 2π
$$ sin(x+2pi k)=sinx $$
5. Максимальные значения (y_{max}=1) достигаются в точках
$$ x=fracpi2+2pi k $$
Минимальные значения (y_{min}=-1) достигаются в точках
$$ x=-fracpi2+2pi k $$
Нули функции (y_{0}=sinx_0=0) достигаются в точках (x_0=pi k)
6. Функция возрастает на отрезках
$$ -fracpi2+2pi kleq xleqfracpi2+2pi k $$
Функция убывает на отрезках
$$ fracpi2+2pi kleq xleqfrac{3pi}{2}+2pi k $$
7. Функция непрерывна.
п.3. Примеры
Пример 1.Найдите наименьшее и наибольшее значение функции y=sinx на отрезке:
a) (left[fracpi6; frac{3pi}{4}right]) $$ y_{min}=sinleft(fracpi6right)=frac12, y_{max}=sinleft(fracpi2right)=1 $$ б) (left[frac{5pi}{6}; frac{5pi}{3}right]) $$ y_{min}=sinleft(frac{3pi}{2}right)=-1, y_{max}=sinleft(frac{5pi}{6}right)=frac12 $$
Пример 2. Решите уравнение графически:
a) (sinx=3x)
Один корень: x = 0
б) (sinx=2x-2pi)
Один корень: x = π
в) (sinx-sqrt{x-pi}=0)
(sinx=sqrt{x-pi})
Один корень: x = π
г*) (sinx=left(x-fracpi2right)^2-frac{pi^2}{4})
(y=left(x-fracpi2right)^2-frac{pi^2}{4}) – парабола ветками вверх, с осью симметрии (x_0=fracpi2) и вершиной (left(fracpi2; -frac{pi^2}{4}right)) (см. §29 справочника для 8 класса)
Два корня: (x_1=0, x_2=pi)
Пример 3. Постройте в одной системе координат графики функций $$ y=sinx, y=-sinx, y=2sinx, y=sinx+2 $$
(y=-sinx) – отражение исходной функции (y=sinx) относительно оси OX. Область значений (yin[-1;1]).
(y=2sinx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=sinx+2) — исходная функция поднимается вверх на 2. Область значений (yin[1;3]).
Пример 4. Постройте в одной системе координат графики функций $$ y=sinx, y=sin2x, y=sinfrac{x}{2} $$
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под синусом изменяет период колебаний.
(y=sin2x) — период уменьшается в 2 раза, полная волна укладывается в отрезок (0leq xleq pi).
(y=sinfrac{x}{2}) — период увеличивается в 2 раза, полная волна укладывается в отрезок (0leq xleq 4pi).
Функция y = sin x – одна из самых распространенных функций в алгебре и математическом анализе. На этом занятии рассмотрим ее свойства и построим график.
Функция y = sin x – это тригонометрическая функция, которая относится к группе основных тригонометрических функций. Она определяется как отношение противолежащего катета и гипотенузы значений прямоугольного треугольника.
Функция sinx – это также функция одной переменной, где аргументом является угол x (в радианах), а значение функции y представляет собой соответствующее значение синуса угла x, выраженного в радианах.
Свойства
Рассмотрим основные свойства функции y = sinx:
- Ограниченность. Функция sinx ограничена сверху и снизу значениями 1 и -1 соответственно. То есть все значения функции находятся в диапазоне от -1 до 1.
- Периодичность. Функция sinx обладает периодичностью, т.е. ее график повторяется через определенные промежутки. Период функции sinx равен 2π, что означает, что значение функции через каждые 2π равняется значению функции в начальной точке.
- Нечетность. Функция sinx является нечетной функцией, т.е. для любого значения x выполняется равенство sin(-x)=-sin(x).
- Максимумы и минимумы. Максимум функции sinx равен 1 и достигается при x=π/2, а минимум функции -1 и достигается при x=3π/2. Промежутки между максимальными/минимальными значениями функции называются амплитудой.
- Нули функции. Нули функции sinx располагаются в точках x=kπ, где k принимает любое целое значение.
- Симметрия. График функции sinx симметричен относительно оси x=π/2, что означает, что при взаимной замене x на π-x функция сохраняется.
- Монотонность. Функция sinx является монотонно возрастающей на интервале от 0 до π/2 и монотонно убывающей на интервале от π/2 до π.
- Дифференцируемость. Функция sinx дифференцируема на всей числовой прямой и ее производная равна функции cosx.
- Интегрируемость. Функция sinx интегрируема на всей числовой прямой. Ее первообразной является функция -cosx.
Построение графика функции
Для построения графика функции y = sin x необходимо точно определить ее значения на некоторых интервалах, а также на разметке осей координат.
- Определение периода функции. Функция y = sin x имеет период 2π, это означает, что график функции повторяется каждые 2π единиц. Для построения графика функции достаточно определить значения функции на интервале от -π до π.
- Определение осей координат. Построить ось абсцисс (ось x) и ось ординат (ось y) перпендикулярно друг к другу и провести через их пересечение начало координат.
- Определение точек пересечения оси x. Функция y = sin x имеет точки пересечения с осью x при x = kπ, где k – целое число. Сложив или вычтя значение π к кратному периода 2π, находим значения x, при которых синус равен 0.
- Определение максимальных и минимальных значений. Максимальное значение функции y = sin x равно 1 и достигается при x = π/2, 5π/2, …, а минимальное значение равно -1 и достигается при x = 3π/2, 7π/2, ….
- Построение на графике точек пересечения с осью x, максимумов и минимумов.
Наносим на график все найденные значения x, при которых функция достигает значения 0.
Они представлены в таблице:
| k | x |
|—|—|
| 0 | 0 |
| 1 | π |
| 2 | 2π |
| 3 | 3π |
На графике отмечаем точки максимума и минимума функции.
- Определение знака функции. Отмечаем на графике интервалы, на которых функция y = sin x положительна, т.е. больше нуля, и интервалы, на которых функция отрицательна, т.е. меньше нуля. Знак синуса меняется при пересечении его периодической оси.
- Построение графика. С помощью табличных значений x и y, с учетом знака функции проводим непрерывную линию через точки и получаем график функции y = sin x.
Поделиться статьей в соцсетях
Остались вопросы?
Наши репетиторы помогут
-
Подготовиться к поступлению в любой ВУЗ страны
-
Подготовится к ЕГЭ, ГИА и другим экзаменам
-
Повысить успеваемость по предметам
Остались вопросы?
Свойства функций синуса, косинуса, тангенса и котангенса и их графики
Свойства функций синуса, косинуса, тангенса и котангенса и их графики
Свойства функции y=sin(x) и ее график.
График функции (синусоида)
Свойства функции
- Область определения: R (x — любое действительное число) т.е.
- Область значений:
-
Функция нечетная:
(график симметричен относительно начала координат).
- Функция периодическая с периодом
- Точки пересечения с осями координат:
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания; наибольшее и наименьшее значения функции.
Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.
Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).
Рис.1.
Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции — все действительные числа. Это можно записать так:
Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси ординат, и получить точку окружности, которая имеет рассматриваемую ординату. Таким образом, для функции область значений: . Это можно записать так:.Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при Наименьшее значение функции равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при.
Синус — нечетная функция: , поэтому ее график симметричен относительно начала координат.
Синус — периодическая функция с наименьшим положительным периодом : , таким образом, через промежутки длиной вид графика функции повторяется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной , а потом полученную линию параллельно перенести вправо и влево вдоль оси Ox на расстояние , где k — любое натуральное число.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение , то есть график функции проходит через начало координат.
На оси значение . Поэтому необходимо найти такие значения , при которых , то есть ордината соответствующей точки единичной окружности, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при (см. рис. 1).
Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, при всех , а также, учитывая период, при всех .
Значения функции синус отрицательны (то есть ордината соответствующей точки единичной окружности отрицательна) в III и IV четвертях, поэтому при .
Промежутки возрастания и убывания. Учитывая периодичность функции с периодом , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 3, а), то при увеличении аргумента ордината соответствующей точки единичной окружности увеличивается (то есть , следовательно, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она также возрастает на каждом из промежутков
Рис.2 Рис.3
Если (рис.3,б), то при увеличении аргумента ордината соответствующей точки единичной окружности уменьшается (то есть ), таким образом, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков
Проведенное исследование позволяет обоснованно построить график функции . Учитывая периодичность этой функции (с периодом ), достаточно сначала построить график на любом промежутке длиной , например на промежутке . Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 4 показано построение графика функции на промежутке . Учитывая нечетность функции (ее график симметричен относительно начала координат), для построения графика на промежутке отображаем полученную кривую симметрично относительно начала координат (рис. 5).
Рис.4
Рис.5
Поскольку мы построили график на промежутке длиной , то, учитывая периодичность синуса (с периодом ), повторяем вид графика на каждом промежутке длиной (то есть переносим параллельно график вдоль оси на , где k — целое число). Получаем график, который называется синусоидой .(Рис.6)
Рис.6
Замечание. Тригонометрические функции широко применяются в математике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой . Такие процессы называют гармоническими колебаниями.
График функции можно получить из синусоиды сжатием или растяжением ее вдоль координатных осей и параллельным переносом вдоль оси . Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой , где А — амплитуда
колебания, — частота, — начальная фаза, — период колебания.
СВОЙСТВА ФУНКЦИИ И ЕЕ ГРАФИК
График функции (косинусоида).
Свойства функции
- Область определения: R (x — любое действительное число).
- Область значений:
-
Функция четная:
(график симметричен относительно оси ).
- Функция периодическая с периодом :
- Точки пересечения с осями координат
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Напомним, что значение косинуса — это абсцисса соответствующей точки единичной окружности (рис.7). Поскольку абсциссу можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности, всегда можно провести единственную прямую, перпендикулярную оси абсцисс), то область определения функции — все действительные числа. Это можно записать так:
.
Рис.7
Для точек единичной окружности абсциссы находятся в промежутке и принимают все значения от -1 до 1, поскольку через любую точку отрезка оси абсцисс (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси абсцисс, и получить
точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции . Это можно записать так: .
Как видим, наибольшее значение функции равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при .
Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при .
Косинус — четная функция: , поэтому ее график симметричен относительно оси .
Косинус — периодическая функция с наименьшим положительным периодом : . Таким образом, через промежутки длиной вид графика функции повторяется.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение . На оси значение . Поэтому необходимо найти такие значения , при которых , то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при .
Промежутки знакопостоянства. Значения функции косинус положительны (то есть абсцисса соответствующей точки единичной окружности положительна) в I и IV четвертях (рис. 8). Следовательно, 0 при , а также, учитывая период, при всех .
Значения функции косинус отрицательны (то есть абсцисса соответствующей точки единичной окружности отрицательна) во II и III четвертях, поэтому при
Промежутки возрастания и убывания. Учитывая периодичность функции , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 9, а), то при увеличении аргумента абсцисса соответствующей точки единичной окружности уменьшается (то есть ), следовательно, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков .
Если (рис. 9, б), то при увеличении аргумента абсцисса соответствующей точки единичной окружности увеличивается (то есть ), таким образом, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она возрастает также на каждом из промежутков .
Рис.8 Рис.9
Проведенное исследование позволяет построить график функции аналогично тому, как был построен график функции . Но график функции можно также получить с помощью геометрических преобразований графика функции , используя формулу
Рис.10
Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 10), отметим на ней точки а также
абсциссы и ординаты этих точек. Так как , то при повороте
прямоугольника около точки на угол — против часовой стрелки он перейдет в прямоугольник . Но тогда . Следовательно, 00.
Укажем также формулы, которые нам понадобятся далее:.
Тогда,
Таким образом, .
Учитывая, что , график функции можно получить из графика функции его параллельным переносом вдоль оси на (рис. 11). Полученный график называется косинусоидой (рис. 12).
Рис.11
Рис.12
СВОЙСТВА ФУНКЦИИ И ЕЕ ГРАФИК
График функции (тангенсоида)
Свойства функции :
1. Область определения:
2. Область значений:
3. Функция нечетная:
4. Функция периодическая с периодом
5. Точки пересечения с осями координат:
6. Промежутки знакопостоянства:
7. Промежутки возрастания и убывания:
8. Наибольшего и наименьшего значений функция не имеет.
СВОЙСТВО ФУНКЦИИ И ЕЕ ГРАФИК
График функции (котангенсоида)
Свойства функции :
1. Область определения:
2. Область значений:
3. Функция нечетная:
4. Функция переодическая с периодом
5. Точки пересечения с осями координат:
6. Промежутки знакопостоянства:
7. Промежутки возрастания и убывания:
8. Наибольшего и наименьшего значений функция не имеет.