Конспект урока: Вычисление объёмов тел с помощью определённого интеграла
Объем
Вычисление объёмов тел с помощью определённого интеграла
План урока
- Вычисление объёмов тел с помощью определённого интеграла.
Цели урока
- Знать и уметь выводить основную (общую) формулу для вычисления объёмов тел;
- Уметь использовать интеграл для вычисления объёмов различных тел.
Разминка
- Чему равен объём прямоугольного параллелепипеда, прямой призмы, цилиндра?
- Как с помощью интеграла вычислить площадь криволинейной трапеции?
Вычисление объёмов тел с помощью определённого интеграла
Рис. 1.
Одним из приложений определённого интеграла, который вы изучали в курсе алгебры, является вычисление объёмов тел. Пусть некоторое тело T заключено между параллельными плоскостями α и β (рис. 1).
Введём систему координат таким образом, чтобы ось Ox была перпендикулярна к плоскостям α и β.
Введём следующие обозначения:
a и b – абсциссы точек пересечения плоскостей α и β с осью Ox соответственно (a<b);
Ф(x) – сечение плоскостью, перпендикулярной к оси Ox и проходящей через точку с абсциссой x, x∈a; b;
S(x) – площадь фигуры Ф(x).
Будем считать, что S(x) является непрерывной функцией на отрезке [a; b].
Рис. 2.
Отметим точки x0=a, x1, x2, …, xn=b, разбивающие отрезок [a; b] на n равных отрезков. Через точки xi проведём плоскости, перпендикулярные к оси Ox (рис. 2). Проведённые плоскости разбивают тело T на n тел: T1, T2, T3, …, Tn.
Объём тела Ti приближённо равен S(xi)·∆xi, где ∆xi=b-an.
Объём всего тела можно приближённо вычислить по формуле
V≈Vn=∑i=1nS(xi)·∆xi.
Чем больше n (чем меньше ∆xi, тем точнее приближённое значение Vn, а при n→∞ (при ∆xi→0) Vn→V, т.е. V=limn→∞Vn. При этом ∑i=1 nSxi·∆xi является интегральной суммой для непрерывной функции S(x) на числовом отрезке [a; b]. Следовательно, V=limn→∞Vn=∫abS(x)dx.
Таким образом, мы получаем
основную формулу
для вычисления
объёмов тел с помощью интеграла
:
V=∫abS(x)dx
Рассмотрим примеры нахождения объёмов тел с помощью интеграла.
Пример 1
Найдите объём конуса, радиус основания которого равен 2, а высота равна 1.
Решение
Чтобы было удобно использовать определённый интеграл, расположим конус таким образом, чтобы ось конуса SO была параллельна координатной оси x, а проекция вершины конуса S на ось x была равна нулю (рис. 3).
Рис. 3.
Рассмотрим сечение конуса плоскостью, перпендикулярной оси x и выразим площадь этого сечения как функцию от x.
Из подобия треугольников SA1O1 и SAO следует SO1SO=A1O1AO.
SO1=x; SO=1; A1O1=R1; AO=R=2⇒
⇒x1=R12⇒R1=2x⇒S(x)=π·R12=
=π·(2x)2=4πx2.
Получили S(x)=4πx2. Подставим в основную формулу объёма тела.
V=∫01Sxdx=∫014πx2dx=4πx3301=4π3.
Ответ: 4π3.
Пример 2
Найдите объём тела, полученного путём вращения вокруг оси Ox криволинейной трапеции, ограниченной линиями y=x, y=0, x=3, x=5.
Решение
Рис. 4.
Так как рассматриваемое тело является телом вращения, то любое сечение плоскостью перпендикулярной оси вращения Ox – круг. При этом радиус равен значению функции y=x в точке x, т.е. R(x)=x⇒Sx=πx2=πx.
Вычислим объём данного тела с помощью интеграла V=∫abSxdx.
V=∫35πxdx=πx2235=25π2-9π2=16π2=8π.
Ответ: 8π.
Если тело вращения получено вращением графика функции y=fx вокруг оси Ox и ограничено плоскостями x=a, x=b, то его объем может быть вычислен по формуле:
V=π∫abf2xdx
Отношение объёмов подобных тел равно кубу коэффициента подобия.
Упражнение 1
1. Вычислите объём тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями y=25x, y=0, x=0, x=5.
2. Вычислите объём тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями y=x, y=0, x=1.
3. Вычислите объём тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями y=x2, y=0, x=1.
4. Выведите формулу для вычисления объёма тела вращения с помощью определённого интеграла.
Контрольные вопросы
1. Что является сечением тел вращения плоскостью, перпендикулярной оси тела вращения?
2. Запишите основную формулу вычисления объёма тела с помощью определённого интеграла.
Ответы
Упражнение 1
1. 20π3;
2. π2;
3. π5.
План урока:
Вычисление объема тела с помощью интеграла
Вычисление объема тел вращения
Объем наклонной призмы
Объем пирамиды
Объем конуса
Объем шара
Шаровой сегмент
Площадь сферы
Вычисление объема тела с помощью интеграла
Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:
Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок [a; b]. Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х0, х1, х2…, хn, причем точке х0 будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:
Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:
Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:
Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:
В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х0 = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:
Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.
Итак, для вычисления объема тела необходимо:
1) выбрать в пространстве какую-то удобную ось координат Ох;
2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;
3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;
4) выполнить интегрирование.
Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.
Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.
Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:
Вычисление объема тел вращения
Телом вращения называют тело, которое может быть получено вращением какой-то плоской фигуры относительно некоторой оси вращения. Например, цилиндр получают вращением прямоугольника вокруг одной из его сторон, а усеченный конус – вращением прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
В задачах на вычисление объемов таких тел ось координат Ох уже задана естественным образом – это ось вращения тела. Ясно, что каждое сечение тела, перпендикулярное оси вращения, будет являться кругом.
Рассмотрим случай, когда вокруг оси Ох поворачивают график некоторой функции у = f(x), ограниченный прямыми х = а и у = b. Тогда получится тело, сечениями которого являются круги, причем их радиусы будут равны величине f(x). Напомним, что площадь круга вычисляют по формуле:
Рассмотрим, как на практике используется эта формула.
Задание. Объемное тело получено вращением ветви параболы
вокруг оси Ох. Оно ограничено плоскостями х = 0 и х = 4. Каков объем такой фигуры?
Решение. Здесь пределами интегрирования, то есть числами а и b, будут 0 и 4. Используем формулу для тела вращения:
Объем наклонной призмы
Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.
Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.
Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.
Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:
Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …
Тогда площадь S основания всей призмы будет суммой этих чисел:
Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.
Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:
Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:
Объем пирамиды
Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.
Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.
Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.
Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что
Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому
Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:
Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.
Объем треугольных пирамид рассчитывается по выведенной нами формуле:
Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.
Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:
Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?
Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:
Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?
Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.
Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.
Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.
Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:
Далее используем основное свойство пропорции:
Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:
Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.
Сначала вычислим площади оснований:
Объем конуса
Рассмотрим конус с высотой h и радиусом основания R. Совместим начало координат с вершиной конуса и направим ось Ох в сторону основания конуса. Тогда она пересечет основание в какой-то точке М c координатой h. Далее через точку М1 на оси Ох, имеющей координату х, проведем сечение, перпендикулярное оси Ох. Это сечение будет окружностью.
Также построим образующую ОА, которая будет проходить через сечение в точке А1. Теперь сравним ∆ОАМ и ∆ОА1М1. Они прямоугольные, и у них есть общий угол ∠АОМ. Это значит, что они подобны, и поэтому справедливо отношение:
Полученную формулу можно переписать в другом виде так, чтобы она содержала площадь основания, причем она будет похожа на аналогичную формулу для пирамиды:
Задание. Радиус конуса – 8 см, а его высота составляет 12 см. Определите его объем.
Решение. Здесь надо просто применить выведенную формулу:
Задание. В сосуде, имеющем форму перевернутого конуса, вода доходит до уровня, соответствующего 2/3 высоты сосуда. При этом ее объем составляет 192 мл. Каков объем всего сосуда?
Решение. В задаче фигурируют два конуса. Один из них – это сам сосуд, а второй – его часть, заполненная водой. При выведении формулы объема мы уже выяснили, что радиусы таких конусов пропорциональны их высотам:
Мы уже заметили, что формулы для объема пирамида и конуса идентичны. По сути, конус можно рассматривать как особый случай пирамиды, у которой в основании лежит не многоугольник, а окружность. Аналогично и усеченный конус можно считать особым случаем усеченной пирамиды, а поэтому для расчета его объема можно применять такую же формулу:
Задание. Вычислите объем усеченного конуса с высотой 9 и радиусами оснований 7 и 4.
Решение. Сначала находим площади оснований:
Объем шара
Пришло время разобраться и с таким телом, как шар. Здесь можно использовать тот же метод интегрирования, что и в случае с конусом и пирамидой. Но можно поступить и иначе – использовать выведенную нами для тел вращения формулу
Шар как раз является телом вращения. Он получается при вращении полуокружности вокруг диаметра, на который эта дуга опирается.
Напомним известное нам уравнение окружности, чей центр совпадает с началом координат:
Здесь надо уточнить, что если у получившейся функции впереди записан знак «+», то ее график соответствует полуокружности, находящейся над осью Ох. Если же используется знак «–», то получается уже нижняя полуокружность, расположенная под осью Ох:
В принципе мы можем поворачивать любую из этих полуокружностей вокруг Ох, но мы выберем верхнюю полуокружность. Заметим, что эта дуга начинается в точке х = – R и заканчивается в точке х = R, эти числа будут пределами интегрирования. Тогда объем шара равен:
Задание. Найдите объем шара с радиусом 6.
Решение. Подставляем радиус из условия в формулу:
Задание. В цилиндр вписан шар. Во сколько раз объем цилиндра больше объема такого шара?
Решение. Ясно, что так как шар вписан в цилиндр, то радиусы этих тел одинаковы. Обозначим этот радиус как R. Также ясно, что раз шар касается оснований цилиндра, то расстояние между ними (то есть высота цилиндра) равно двум радиусам шара:
Шаровой сегмент
Когда плоскость проходит через шар, она рассекает его на две фигуры, которые именуются шаровым сегментом. Если из центра шара О провести радиус ОА длиной R в направлении плоскости сечения, который перпендикулярен этой плоскости, то он пересечет ее какой-то точке В. Длину отрезка АВ называют высотой шарового сегмента и обозначают буквой h:
Ясно, что при этом отрезок ОВ – это расстояние от секущей плоскости (или от основания сегмента) до центра шара, причем этот отрезок имеет длину R –h.
Можно считать, что шаровой сегмент, как и шар, получается при вращении дуги окружности вокруг оси Ох. Однако если сам шар при этом ограничен плоскостями x = R и х = – R, то сегмент ограничен другими плоскостями: х = R и х = R – h. Это значит, что его объем можно вычислить с помощью интеграла также, как и объем шара, отличаться будет лишь нижний предел интегрирования:
Заметим, что шар можно рассматривать как шаровой сегмент, чья высота вдвое больше его радиуса. И действительно, если в выведенную формулу мы подставим значение h = 2R, то получим уже известную нам формулу объема шара.
Задание. Найдите объем шарового сегмента высотой 6, если он отсечен от шара радиусом 15.
Решение. Используем выведенную формулу:
Задание. Диаметр шара разделили на три равных отрезка. Через концы этих отрезков провели секущие плоскости, перпендикулярные диаметру. Чему равен объем тела, заключенного между этими двумя плоскостями (оно называется шаровым слоем), если радиус шара обозначен буквой R?
Решение. Ясно, что для вычисления объема шарового слоя достаточно вычесть из объема шара объемы двух шаровых сегментов, образующихся при проведении секущих плоскостей. Так как они разделили диаметр на три одинаковых отрезка, то высота этих сегментов будет в три раза меньше диаметра шара:
Площадь сферы
В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:
Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.
Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:
Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:
Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:
Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?
Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:
Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:
Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.
Ответ: шар.
Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.
Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.
Прежде чем мы перейдём к нашей теме, давайте
ненадолго вернёмся в алгебру и вспомним формулу Ньютона-Лейбница, которая
позволяет нам вычислить определённый интеграл, повторим основные свойства
интеграла.
Если функция непрерывна
на отрезке ,
то справедлива формула:
–
первообразная для .
−
геометрический смысл определённого интеграла.
Изучая алгебру, мы говорили, что с помощью определённого
интеграла можно вычислять площадь плоских фигур.
Сегодня на уроке мы попробуем применить определённый
интеграл к вычислению объёмов тел.
Заключим тело ,
объём которого нужно найти между двумя параллельными плоскостями и
.
Введём систему координат так, чтобы ось ,
абсциссы точек пересечения оси с
плоскостями и
обозначим
буквами и
.
Пусть .
Пересечём наше тело произвольной плоскостью,
перпендикулярной к оси .
Фигура –
полученная в сечении тела плоскостью является либо кругом либо многоугольником
для любого из
отрезка .
В граничных точках сечение может вырождаться в точку, как, например, в нашем
случае при .
Обозначим площадь фигуры за
.
Предположим, что –
это непрерывная функция на числовом отрезке .
Разобьём числовой отрезок на
равных
отрезков.
Длина каждого отрезка равна .
Через точки с абсциссами проведём
плоскости, перпендикулярные к оси .
Тогда наше тело разобьётся
на тел
,
,
…, .
Высота каждого из этих тел равна .
Если фигура –
круг, то объём тела приближённо
равен объёму цилиндра, с основанием и
высотой .
Если же в сечении – многоугольник, то объём тела приближённо
равен объёму прямой призмы с основанием и
высотой .
Каждый из этих объёмов равен произведению площади
основания на высоту .
Тогда объём всего тела равен сумме этих объёмов .
Чем больше ,
тем точнее приближённое значение объёма всего тела и меньше .
Без доказательства примем, что объём тела равен
.
С другой стороны, сумма является
интегральной суммой для непрерывной функции на
числовом отрезке ,
поэтому можно записать, что предел .
Тогда получим, что объем тела равен
.
Эта формула называется основной формулой для
вычисления объёмов тел.
Давайте теперь попробуем найти с помощью определённого
интеграла объёмы пространственных тел.
Начнём с прямоугольного параллелепипеда, высота
которого равна ,
а площадь основания – .
Площадь сечения прямоугольного параллелепипеда не
изменяется в любой точке отрезка от до
и
равна площади основания. Тогда получим, что объём прямоугольного
параллелепипеда равен .
Вынесем за
знак интеграла и получим, что объём прямоугольного параллелепипеда равен .
Теперь попробуем с помощью интеграла вычислить объём
прямой призмы.
Пусть дана прямая -угольная
призма с площадью основания и
высотой .
Как и в случае прямоугольного параллелепипеда,
площадь сечения прямой призмы не изменяется в любой точке отрезка от до
и
равна площади основания. Тогда получим, что объём прямой призмы равен .
Вынесем за
знак интеграла и получим, что объём прямой призмы равен .
Теперь рассмотрим цилиндр с высотой и
площадью основания .
Как и в случае прямоугольного параллелепипеда и
прямой призмы, площадь сечения цилиндра не изменяется в любой точке отрезка от до
и
равна площади основания. Тогда получим, что объём цилиндра равен .
Вынесем за
знак интеграла и получим, что объём цилиндра равен .
Решим несколько задач.
Задача:
сечение тела плоскостью, перпендикулярной к оси и
проходящей через точку с абсциссой ,
является квадратом, сторона которого равна .
Найти объем этого тела.
Решение:
воспользуемся только что доказанной формулой.
По рисунку видно, что пределами интегрирования будут
числа .
Поскольку сечение плоскости – квадрат, значит, площадь сечения равна .
Тогда получим, что объём этой фигуры равен .
Задача:
найти объём тела, полученного вращением данной кривой вокруг оси .
Решение:
очевидно, что границами интегрирования будут числа .
В сечении полученного тела плоскостью,
перпендикулярной оси будет
круг, радиус которого равен ординате точки с абсциссой ,
то есть радиусом этого круга будет .
Площадь такого круга равна .
Поскольку принимает
только неотрицательные значения, то можно записать, что площадь сечения равна .
Вычислим объём полученного тела как .
Применив формулу Ньютона-Лейбница, получим, что объём данного тела равен .
Задача:
найти объём тела, полученного вращением данной кривой вокруг оси .
Решение:
давайте внимательно посмотрим на получившееся тело.
Его можно получить из цилиндра, который получится
при вращении прямоугольника вокруг своей стороны. Для этого надо из данного
цилиндра «вынуть» фигуру, которую мы получили в предыдущей задаче.
Объём такой фигуры будет равен разности объёмов .
Радиусом основания цилиндра будет ордината точки с
абсциссой равной 1. То есть радиус основания цилиндра равен .
Высота цилиндра тоже равна .
Тогда получим, что объём цилиндра равен .
Тогда объём искомой фигуры равен .
Итоги:
Сегодня на уроке мы показали, что объём
геометрического тела можно найти с помощью определённого интеграла. Определили
объёмы известных нам тел через интегралы. Рассмотрели несколько задач.
Установите определенный интеграл, значение которого равно точному объему тела вращения, образованного вращением (R) вокруг линии (y = 2text{.}) 92текст{,}) и (х = 0текст{.})
-
Определите определенный интеграл, значением которого является площадь области, ограниченной двумя кривыми.
-
Найдите выражение, содержащее один или несколько определенных интегралов, значением которого является объем тела вращения, образованного вращением области (R) вокруг линии (y = -1text{.})
-
Определите выражение, включающее один или несколько определенных интегралов, значением которых является объем тела вращения, образованного вращением области (R) вокруг оси (y).
-
Найдите выражение, включающее один или несколько определенных интегралов, значением которых является периметр области (Rtext{. })
6.2 Определение объемов с помощью срезов — Расчет, том 1
Цели обучения
- 6.2.1
Определить объем твердого тела путем интегрирования поперечного сечения (метод срезов). - 6.2.2
Найдите объем тела вращения методом круга. - 6.2.3
Найти объем тела вращения с полостью методом шайбы.
В предыдущем разделе мы использовали определенные интегралы, чтобы найти площадь между двумя кривыми. В этом разделе мы используем определенные интегралы для нахождения объемов трехмерных тел. Мы рассматриваем три подхода — срезы, диски и шайбы — для нахождения этих объемов в зависимости от характеристик твердого тела.
Объем и метод нарезки
Точно так же, как площадь является числовой мерой двумерной области, объем является числовой мерой трехмерного твердого тела. Большинство из нас вычисляли объемы твердых тел, используя основные геометрические формулы. Объем прямоугольного тела, например, можно вычислить, умножив длину, ширину и высоту: V=lwh. V=lwh. Формулы для объема сферы (V=43πr3),(V=43πr3), конуса (V=13πr2h),(V=13πr2h) и пирамиды (V=13Ah)(V=13Ah) представил. Хотя некоторые из этих формул были получены только с помощью геометрии, все эти формулы можно получить с помощью интегрирования.
Мы также можем вычислить объем цилиндра. Хотя большинство из нас думает о цилиндре как о круглом основании, таком как банка для супа или металлический стержень, в математике слово цилиндр имеет более общее значение. Чтобы обсудить цилиндры в этом более общем контексте, нам сначала нужно определить некоторый словарь.
Мы определяем поперечное сечение твердого тела как пересечение плоскости с твердым телом. Цилиндр определяется как любое твердое тело, которое может быть создано путем перемещения плоской области вдоль линии, перпендикулярной области, называемой ось цилиндра. Таким образом, все сечения, перпендикулярные оси цилиндра, одинаковы. Твердое тело, показанное на рис. 6.11, является примером цилиндра с некруглым основанием. Чтобы рассчитать объем цилиндра, мы просто умножаем площадь поперечного сечения на высоту цилиндра: V=A·h.V=A·h. В случае правильного кругового цилиндра (консервная банка) это становится V=πr2h.V=πr2h.
Рисунок
6.11
Каждое сечение конкретного цилиндра идентично другим.
Если твердое тело не имеет постоянного поперечного сечения (и оно не является одним из других основных тел), у нас может не быть формулы для его объема. В этом случае мы можем использовать определенный интеграл для вычисления объема твердого тела. Мы делаем это, разрезая твердое тело на части, оценивая объем каждого среза, а затем складывая эти оценочные объемы вместе. Все срезы должны быть параллельны друг другу, и когда мы сложим все срезы вместе, мы должны получить цельное тело. Рассмотрим, например, твердую S , показанный на рис. 6.12, простирается вдоль оси х. ось х.
Рисунок
6.12
Твердое тело с переменным поперечным сечением.
Мы хотим разделить SS на срезы, перпендикулярные оси x.ось x. Как мы увидим позже в этой главе, могут быть случаи, когда мы хотим разрезать твердое тело в каком-то другом направлении, например, срезами, перпендикулярными оси y . Решение о том, каким образом разрезать твердое тело, очень важно. Если мы сделаем неправильный выбор, вычисления могут стать довольно запутанными. Далее в этой главе мы подробно рассмотрим некоторые из этих ситуаций и посмотрим, как решить, каким образом разрезать твердое тело. Однако для целей этого раздела мы используем срезы, перпендикулярные оси x.x-axis.
Поскольку площадь поперечного сечения непостоянна, пусть A(x)A(x) представляет собой площадь поперечного сечения в точке x.x. Пусть теперь P={x0,x1…,Xn}P={x0,x1…,Xn} — обычное разбиение [a,b],[a,b] и для i=1,2,…n i=1,2,…n, пусть SiSi представляет собой срез SS, простирающийся от xi−1toxi. xi−1toxi. На следующем рисунке показано твердое тело в разрезе с n=3.n=3.
Рисунок
6.13
Сплошной SS был разделен на три среза, перпендикулярных оси абсцисс.
Наконец, для i=1,2,…n,i=1,2,…n пусть xi*xi* — произвольная точка в [xi−1,xi].[xi−1,xi]. Тогда объем среза SiSi можно оценить как V(Si)≈A(xi*)∆x.V(Si)≈A(xi*)∆x. Складывая эти приближения вместе, мы видим, что объем всего твердого СС может быть приблизительно равен
V(S)≈∑i=1nA(xi*)Δx.V(S)≈∑i=1nA(xi*)Δx.
К настоящему времени мы можем распознать это как сумму Римана, и наш следующий шаг — взять предел при n→∞.n→∞. Тогда у нас есть
V(S)=limn→∞∑i=1nA(xi*)Δx=∫abA(x)dx.V(S)=limn→∞∑i=1nA(xi*)Δx=∫abA(x)dx .
Метод, который мы только что описали, называется методом нарезки. Чтобы применить его, мы используем следующую стратегию.
Стратегия решения проблем
Стратегия решения проблем: поиск объемов методом нарезки
- Осмотрите твердое тело и определите форму поперечного сечения твердого тела. Часто бывает полезно нарисовать рисунок, если его нет.
- Определите формулу площади поперечного сечения.
- Проинтегрируйте формулу площади по соответствующему интервалу, чтобы получить объем.
Напомним, что в этом разделе мы предполагаем, что срезы перпендикулярны оси x.ось x. Следовательно, формула площади выражается в виде x , а пределы интегрирования лежат на оси x.x-ось. Однако показанная здесь стратегия решения проблем действительна независимо от того, как мы решили разрезать твердое тело.
Пример
6,6
Вывод формулы объема пирамиды
Из геометрии мы знаем, что формула объема пирамиды V=13Ah.V=13Ah. Если у пирамиды квадратное основание, это становится V=13a2h, V=13a2h, где aa обозначает длину одной стороны основания. Мы собираемся использовать метод нарезки, чтобы вывести эту формулу.
Решение
Мы хотим применить метод разрезания к пирамиде с квадратным основанием. Чтобы установить интеграл, рассмотрим пирамиду, показанную на рис. 6.14, ориентированную вдоль оси х.
Рисунок
6.14
(а) Пирамида с квадратным основанием ориентирована по оси х . (b) Двухмерный вид пирамиды сбоку.
Сначала мы хотим определить форму поперечного сечения пирамиды. Мы знаем, что основание квадратное, поэтому сечения тоже квадратные (шаг 1). Теперь мы хотим определить формулу площади одного из этих квадратов поперечного сечения. Глядя на рисунок 6.14(b) и используя пропорцию, поскольку это подобные треугольники, мы имеем
sa=xhors=axh.sa=xhors=axh.
Следовательно, площадь одного из квадратов поперечного сечения равна
A(x)=s2=(axh)2(шаг2).A(x)=s2=(axh)2(шаг2).
Затем находим объем пирамиды интегрированием от 0toh0toh (шаг 3):3):
V=∫0hA(x)dx=∫0h(axh)2dx=a2h3∫0hx2dx=[a2h3(13×3)] |0h=13a2h.V=∫0hA(x)dx=∫0h(axh)2dx=a2h3∫0hx2dx=[a2h3(13×3)]|0h=13a2h.
Это формула, которую мы искали.
Контрольно-пропускной пункт
6,6
Используйте метод срезов, чтобы вывести формулу V=13πr2hV=13πr2h для объема круглого конуса.
Тела революции
Если область на плоскости вращается вокруг линии на этой плоскости, полученное тело называется телом вращения, как показано на следующем рисунке.
Рисунок
6.15
(а) Это область, которая вращается вокруг оси x . (б) Когда область начинает вращаться вокруг оси, она выметает тело вращения. (c) Это твердое тело, которое получается после завершения вращения.
Тела вращения распространены в механических приложениях, таких как детали машин, изготовленные на токарном станке. Оставшуюся часть этого раздела мы посвятим рассмотрению твердых тел этого типа. В следующем примере используется метод срезов для вычисления объема тела вращения.
Пример
6.7
Использование метода срезов для нахождения объема тела вращения
Использование метода срезов для нахождения объема тела вращения, ограниченного графиками f(x)=x2−4x+5,x=1, иx=4,f(x)=x2−4x+5,x=1,andx=4, и вращается вокруг оси x. ось x.
Решение
Используя стратегию решения задач, мы сначала нарисуем график квадратичной функции на интервале [1,4][1,4], как показано на следующем рисунке.
Рисунок
6.16
Область, используемая для создания тела вращения.
Затем поверните область вокруг оси x , как показано на следующем рисунке.
Рисунок
6.17
Два вида (а) и (б) тела вращения, полученного вращением области на рис. 6.16 вокруг оси х.
Поскольку твердое тело было сформировано путем вращения области вокруг оси x, поперечные сечения представляют собой круги (шаг 1). Таким образом, площадь поперечного сечения — это площадь круга, а радиус круга равен f(x).f(x). Используйте формулу площади круга:
A(x)=πr2=π[f(x)]2=π(x2−4x+5)2(шаг 2).A(x)=πr2=π[f(x)]2=π( x2−4x+5)2(шаг 2).
Тогда объем равен (шаг 3)
V=∫abA(x)dx=∫14π(x2−4x+5)2dx=π∫14(x4−8×3+26×2−40x+25)dx= π(x55−2×4+26×33−20×2+25x)|14=785π. V=∫abA(x)dx=∫14π(x2−4x+5)2dx=π∫14(x4−8×3+26×2−40x+25 )dx=π(x55−2×4+26×33−20×2+25x)|14=785π.
Объем 78π/5,78π/5.
Контрольно-пропускной пункт
6.7
Используйте метод срезов, чтобы найти объем тела вращения, образованного вращением области между графиком функции f(x)=1/xf(x)=1/x и осью xx-ось над интервал [1,2][1,2] вокруг оси х.ось х. См. следующий рисунок.
Дисковый метод
Когда мы используем метод срезов с телами вращения, его часто называют дисковым методом, потому что для тел вращения срезы, используемые для аппроксимации объема тела, представляют собой диски. Чтобы увидеть это, рассмотрим тело вращения, образованное вращением области между графиком функции f(x)=(x−1)2+1f(x)=(x−1)2+1 и осью xx -ось в интервале [−1,3][−1,3] вокруг оси x.x-axis. График функции и репрезентативный диск показаны на рис. 6.18 (а) и (б). Область вращения и полученное твердое тело показаны на рис. 6.18 (в) и (г).
Рисунок
6. 18
(а) Тонкий прямоугольник для аппроксимации площади под кривой. (b) Репрезентативный диск, образованный вращением прямоугольника вокруг оси x.x. (c) Область под кривой вращается вокруг оси x, оси x, в результате чего (d) тело вращения.
Мы уже использовали формальную формулу суммы Римана для формулы объема, когда разрабатывали метод срезов. Мы знаем, что
V=∫abA(x)dx.V=∫abA(x)dx.
Единственная разница с дисковым методом заключается в том, что мы заранее знаем формулу площади поперечного сечения; это площадь круга. Это дает следующее правило.
Правило: Дисковый метод
Пусть f(x)f(x) непрерывна и неотрицательна. Определим RR как область, ограниченную сверху графиком f(x),f(x), снизу осью x, осью x, слева линией x=a,x=a и справа линией x=b.x=b. Тогда объем тела вращения, образованного вращением RR вокруг оси x x, равен
V=∫abπ[f(x)]2dx.V=∫abπ[f(x)]2dx.
(6.3)
Объем изучаемого нами твердого тела (рис. 6.18) равен
V=∫abπ[f(x)]2dx=∫−13π[(x−1)2+1]2dx=π∫−13[(x−1)4+2(x−1)2+1] dx=π[15(x−1)5+23(x−1)3+x]|−13=π[(325+163+3)−(−325−163−1)]=412π15единиц3.V= ∫abπ[f(x)]2dx=∫−13π[(x−1)2+1]2dx=π∫−13[(x−1)4+2(x−1)2+1]dx=π [15(x−1)5+23(x−1)3+x]|−13=π[(325+163+3)−(−325−163−1)]=412π15единиц3.
Давайте рассмотрим несколько примеров.
Пример
6,8
Использование дискового метода для нахождения объема тела вращения 1
Использование дискового метода для нахождения объема тела вращения, образованного вращением области между графиком f(x)=xf(x)= х и ось х ось х в интервале [1,4][1,4] вокруг оси х.ось х.
Решение
Графики функции и тела вращения показаны на следующем рисунке.
Рисунок
6.19
(a) Функция f(x)=xf(x)=x на интервале [1,4].[1,4]. (b) Тело вращения, полученное вращением области под графиком f(x)f(x) вокруг оси х.
Имеем
V=∫abπ[f(x)]2dx=∫14π[x]2dx=π∫14xdx=π2×2|14=15π2. V=∫abπ[f(x)]2dx=∫14π[ х]2dx=π∫14xdx=π2×2|14=15π2.
Объем (15π)/2(15π)/2 единицы 3 .
Контрольно-пропускной пункт
6,8
Используйте метод диска, чтобы найти объем тела вращения, образованного вращением области между графиком f(x)=4−xf(x)=4−x и осью xx-ось на интервале [ 0,4][0,4] вокруг оси x.ось x.
До сих пор в наших примерах все соответствующие области вращались вокруг оси x, оси x, но мы можем создать тело вращения, вращая плоскую область вокруг любой горизонтальной или вертикальной линии. В следующем примере мы рассмотрим тело вращения, которое было создано путем вращения области вокруг оси y. Механика дискового метода почти такая же, как и в случае, когда ось x является осью вращения, но мы выражаем функцию через yy и интегрируем по и тоже. Это резюмируется в следующем правиле.
Правило: Дисковый метод для тел вращения вокруг оси
y
Пусть g(y)g(y) непрерывна и неотрицательна. Определим QQ как область, ограниченную справа графиком g(y),g(y), слева осью y, осью y, внизу линией y=c,y=c и вверху линией y=d.y=d. Тогда объем тела вращения, образованного вращением QQ вокруг оси y, равен
V=∫cdπ[g(y)]2dy.V=∫cdπ[g(y)]2dy.
(6.4)
Следующий пример показывает, как это правило работает на практике.
Пример
6,9
Использование метода диска для нахождения объема тела вращения 2
Пусть RR будет областью, ограниченной графиком g(y)=4−yg(y)=4−y и осью y в интервале оси Y [0,4].[0,4]. Используйте метод диска, чтобы найти объем тела вращения, образованного вращением RR вокруг оси y.ось y.
Решение
На рис. 6.20 показаны функция и репрезентативный диск, который можно использовать для оценки объема. Обратите внимание, что, поскольку мы вращаем функцию вокруг оси Y, диски расположены горизонтально, а не вертикально.
Рисунок
6. 20
(a) Показан тонкий прямоугольник между кривой функции g(y)=4−yg(y)=4−y и осью y.ось y. (b) Прямоугольник образует репрезентативный диск после вращения вокруг оси y.
Область вращения и полное тело вращения показаны на следующем рисунке.
Рисунок
6.21
(a) Область слева от функции g(y)=4−yg(y)=4−y на интервале оси y [0,4].[0,4]. (b) Тело вращения, образованное вращением области вокруг оси у.
Чтобы найти объем, проинтегрируем по y.y. Получаем
V=∫cdπ[g(y)]2dy=∫04π[4−y]2dy=π∫04(4−y)dy=π[4y−y22]|04=8π.V=∫cdπ [g(y)]2dy=∫04π[4−y]2dy=π∫04(4−y)dy=π[4y−y22]|04=8π.
Объем 8π8π единиц 3 .
Контрольно-пропускной пункт
6,9
Используйте метод диска, чтобы найти объем тела вращения, образованного вращением области между графиком g(y)=yg(y)=y и осью y на интервале [1,4] [1,4] вокруг оси y.ось y.
Метод мойки
Некоторые тела вращения имеют в середине полости; они не сплошные на всем пути до оси вращения. Иногда это просто результат формы области вращения относительно оси вращения. В других случаях полости возникают, когда область вращения определяется как область между графиками двух функций. Третий способ, которым это может произойти, — когда выбрана ось вращения, отличная от оси xx или оси y.
Когда тело вращения имеет полость посередине, срезы, используемые для аппроксимации объема, представляют собой не диски, а шайбы (диски с отверстиями в центре). Например, рассмотрим область, ограниченную сверху графиком функции f(x)=xf(x)=x и снизу графиком функции g(x)=1g(x)=1 на интервале [1, 4].[1,4]. Когда эта область вращается вокруг оси х, получается твердое тело с полостью посередине, а срезы — шайбы. График функции и репрезентативная шайба показаны на рис. 6.22 (а) и (б). Область вращения и полученное твердое тело показаны на рис. 6.22 (в) и (г).
Рисунок
6.22
(а) Тонкий прямоугольник в области между двумя кривыми. (b) Репрезентативный диск, образованный вращением прямоугольника вокруг оси x. x. (в) Область между кривыми на данном интервале. (d) Полученное тело вращения.
Площадь поперечного сечения равна площади внешнего круга за вычетом площади внутреннего круга. В данном случае
A(x)=π(x)2−π(1)2=π(x−1).A(x)=π(x)2−π(1)2=π(x−1).
Тогда объем твердого тела равен
V=∫abA(x)dx=∫14π(x−1)dx=π[x22−x]|14=92πunits3.V=∫abA(x)dx=∫14π(x−1)dx=π[ x22−x]|14=92πединиц3.
Обобщение этого процесса дает метод шайбы.
Правило: метод шайбы
Предположим, что f(x)f(x) и g(x)g(x) — непрерывные неотрицательные функции такие, что f(x)≥g(x)f(x)≥g(x) над [a,b ].[а,б]. Обозначим через RR область, ограниченную сверху графиком f(x),f(x), снизу графиком g(x),g(x), слева линией x=a,x=a, а справа линией x=b.x=b. Тогда объем тела вращения, образованного вращением RR вокруг оси xx, равен
V=∫abπ[(f(x))2−(g(x))2]dx.V=∫abπ[(f(x))2−(g(x))2]dx.
(6,5)
Пример
6.10
Методом шайбы
Найти объем тела вращения, образованного вращением области, ограниченной сверху графиком f(x)=xf(x)=x и снизу графиком g(x)=1 /xg(x)=1/x в интервале [1,4][1,4] вокруг оси x. ось x.
Решение
Графики функций и тела вращения показаны на следующем рисунке.
Рисунок
6.23
(a) Область между графиками функций f(x)=xf(x)=x и g(x)=1/xg(x)=1/x на интервале [1,4].[1, 4]. (b) Вращение области вокруг оси xx порождает тело вращения с полостью посередине.
Имеем
V=∫abπ[(f(x))2−(g(x))2]dx=π∫14[x2−(1x)2]dx=π[x33+1x]|14 =81π4единиц3.V=∫abπ[(f(x))2−(g(x))2]dx=π∫14[x2−(1x)2]dx=π[x33+1x]|14=81π4единиц3.
Контрольно-пропускной пункт
6.10
Найти объем тела вращения, образованного вращением области, ограниченной графиками f(x)=xf(x)=x и g(x)=1/xg(x)=1/x на интервале [1,3][1,3] вокруг оси х.ось х.
Как и в случае с дисковым методом, мы также можем применить метод шайбы к телам вращения, которые образуются в результате вращения области вокруг оси y . В этом случае действует следующее правило.
Правило: метод шайбы для тел вращения вокруг оси
y
Предположим, что u(y)u(y) и v(y)v(y) — непрерывные неотрицательные функции такие, что v(y)≤u(y)v(y)≤u(y) при y∈[c ,d]. y∈[c,d]. Обозначим через QQ область, ограниченную справа графиком функций u(y),u(y), слева графиком функций v(y),v(y), снизу линией y=c,y= c, а выше строкой y=d.y=d. Тогда объем тела вращения, образованного вращением QQ вокруг оси y, равен
V=∫cdπ[(u(y))2−(v(y))2]dy.V=∫cdπ[(u(y))2−(v(y))2]dy.
Вместо того, чтобы рассматривать пример метода шайбы с осью Y в качестве оси вращения, мы теперь рассмотрим пример, в котором ось вращения является линией, отличной от одной из двух осей координат. Применяется тот же общий метод, но вам, возможно, придется визуализировать, как описать площадь поперечного сечения объема.
Пример
6.11
Метод шайбы с другой осью вращения
Найти объем тела вращения, образованного вращением области, ограниченной сверху f(x)=4−xf(x)=4−x и снизу осью xx-ось на интервале [0,4] [0,4] вокруг линии y=−2.y=−2.
Решение
График области и тела вращения показаны на следующем рисунке.
Рисунок
6.24
(a) Область между графиком функции f(x)=4−xf(x)=4−x и осью x на интервале [0,4].[0,4]. (b) Вращение области вокруг линии y=−2y=−2 порождает тело вращения с цилиндрическим отверстием в середине.
Мы не можем напрямую применить формулу объема к этой задаче, потому что ось вращения не является одной из осей координат. Однако мы все еще знаем, что площадь поперечного сечения равна площади внешнего круга за вычетом площади внутреннего круга. Глядя на график функции, мы видим, что радиус внешнего круга определяется как f(x)+2,f(x)+2, что упрощается до
f(x)+2=(4−x) +2=6−x.f(x)+2=(4−x)+2=6−x.
Радиус внутренней окружности равен g(x)=2.g(x)=2. Следовательно, у нас есть
V=∫04π[(6−x)2−(2)2]dx=π∫04(x2−12x+32)dx=π[x33−6×2+32x]|04=160π3единиц3.V=∫04π [(6−x)2−(2)2]dx=π∫04(x2−12x+32)dx=π[x33−6×2+32x]|04=160π3единиц3.
Контрольно-пропускной пункт
6.11
Найти объем тела вращения, образованного вращением области, ограниченной сверху графиком f(x)=x+2f(x)=x+2 и снизу осью xx-ось на интервале [0 ,3][0,3] вокруг линии y=−1. y=−1.
Раздел 6.2 Упражнения
58.
Выведите формулу объема сферы, используя метод срезов.
59.
Используйте метод срезов, чтобы вывести формулу объема конуса.
60.
Используйте метод срезов, чтобы вывести формулу объема тетраэдра с длиной стороны a.a.a.
61.
Используйте метод дисков, чтобы вывести формулу объема трапециевидного цилиндра.
62.
Объясните, когда вы будете использовать дисковый метод, а когда шайбовый. Когда они взаимозаменяемы?
Для следующих упражнений нарисуйте типичный срез и найдите объем, используя метод среза для заданного объема.
63.
Пирамида высотой 6 единиц и квадратным основанием со стороной 2 единицы, как показано здесь.
64.
Пирамида высотой 4 единицы и прямоугольным основанием длиной 2 единицы и шириной 3 единицы, как показано здесь.
65.
Тетраэдр с основанием в 4 единицы, как показано здесь.
66.
Пирамида высотой 5 единиц и равнобедренным треугольным основанием длиной 6 единиц и 8 единиц, как показано здесь.
67.
Конус радиуса rr и высоты hh имеет меньший конус радиуса r/2r/2 и высоты h/2h/2, удаленный от вершины, как показано здесь. Полученное твердое тело называется усеченным .
Для следующих упражнений нарисуйте контур твердого тела и найдите объем, используя метод срезов.
68.
Основание представляет собой окружность радиусом а.а. Срезы, перпендикулярные основанию, представляют собой квадраты.
69.
Основание представляет собой треугольник с вершинами (0,0),(1,0),(0,0),(1,0) и (0,1).(0,1). Срезы, перпендикулярные оси x , представляют собой полукруги.
70.
Основание — это область под параболой y=1−x2y=1−x2 в первом квадранте. Срезы, перпендикулярные плоскости xy и параллельные оси y, являются квадратами.
71.
Основание — это область под параболой y=1−x2y=1−x2 и над осью x.ось x. Срезы, перпендикулярные оси Y, являются квадратами.
72.
Основание — это область, ограниченная y=x2y=x2 и y=9.y=9. Срезы, перпендикулярные оси x , представляют собой прямоугольные равнобедренные треугольники. Пересечение одного из этих отрезков и основания является катетом треугольника.
73.
Основание — это площадь между y=xy=x и y=x2. y=x2. Срезы, перпендикулярные оси x , представляют собой полукруги.
Для следующих упражнений нарисуйте область, ограниченную кривыми. Затем используйте метод диска, чтобы найти объем, когда область вращается вокруг x — ось.
74.
х+у=8,х=0,и=0х+у=8,х=0,иу=0
75.
y=2×2,x=0,x=4,andy=0y=2×2,x=0,x=4,andy=0
76.
y=ex+1,x=0,x=1,andy=0y=ex+1,x=0,x=1,andy=0
77.
y=x4,x=0,andy=1дляx≥0y=x4,x=0,andy=1дляx≥0
78.
y=x,x=0,x=4,andy=0y=x,x=0,x=4,andy=0
79.
y=sinx,y=cosx,andx=0y=sinx,y=cosx,andx=0
80.
y=1x,x=2,andy=3y=1x,x=2,andy=3
81.
x2−y2=9иx+y=9,y=0иx=0x2−y2=9иx+y=9,y=0иx=0
Для следующих упражнений нарисуйте область, ограниченную кривыми. Затем найдите объем при вращении области вокруг оси y .
82.
y=4−12x,x=0,andy=0y=4−12x,x=0,andy=0
83.
y=2×3,x=0,x=1,andy=0y=2×3,x=0,x=1,andy=0
84.
y=3×2,x=0,andy=3y=3×2,x=0,andy=3
85.
y=4−x2,y=0 иx=0y=4−x2,y=0,andx=0
86.
y=1x+1,x=0 иx=3y=1x+1,x=0 иx=3
87.
x=sec(y)andy=π4,y=0andx=0x=sec(y)andy=π4,y=0andx=0
88.
y=1x+1,x=0 иx=2y=1x+1,x=0 иx=2
89.
y=4-x,y=x,andx=0y=4-x,y=x,andx=0
Для следующих упражнений нарисуйте область, ограниченную кривыми. Затем найдите объем, когда область вращается вокруг x — ось.
90.
y=x+2,y=x+6,x=0,andx=5y=x+2,y=x+6,x=0,andx=5
91.
y=x2andy=x+2y=x2andy=x+2
92.
x2=y3andx3=y2x2=y3andx3=y2
93.
y=4−x2andy=2−xy=4−x2andy=2−x
94.
[T] y=cosx,y=e−x,x=0,andx=1,2927y=cosx,y=e−x,x=0,andx=1,2927
95.
y=xandy=x2y=xandy=x2
96.
y=sinx,y=5sinx,x=0andx=πy=sinx,y=5sinx,x=0andx=π
97.
y=1+x2andy=4−x2y=1+x2andy=4−x2
Для следующих упражнений нарисуйте область, ограниченную кривыми. Затем используйте метод шайбы, чтобы найти объем, когда область вращается вокруг оси y .
98.
y=x,x=4,andy=0y=x,x=4,andy=0
99.
y=x+2,y=2x−1,andx=0y=x+2,y=2x−1,andx=0
100.
y=x3andy=x3y=x3andy=x3
101.
x=e2y,x=y2,y=0,andy=ln(2)x=e2y,x=y2,y=0,andy=ln(2)
102.
x=9−y2,x=e−y,y=0,andy=3x=9−y2,x=e−y,y=0,andy=3
103.
Контейнеры для йогурта могут иметь форму усеченного конуса. Поверните линию y=1mxy=1mx вокруг оси y , чтобы найти объем между y=aandy=b.y=aandy=b.
104.
Поверните эллипс (x2/a2)+(y2/b2)=1(x2/a2)+(y2/b2)=1 вокруг оси x , чтобы приблизительно получить объем футбольного мяча, как показано здесь.
105.
Повернуть эллипс (x2/a2)+(y2/b2)=1(x2/a2)+(y2/b2)=1 вокруг y — ось для приблизительного определения объема футбольного мяча.
106.
Лучшее приближение к объему футбольного мяча дает твердое тело, возникающее при вращении y=sinxy=sinx вокруг оси x от x=0x=0 до x=π.x=π. Каков объем этого футбольного приближения, как показано здесь?
107.
Каков объем пирога Бундта, который получается при вращении y=sinxy=sinx вокруг оси y от x=0x=0 до x=π?x=π?
Для следующих упражнений найдите объем описываемого твердого тела.
108.
Основание — это область между y=xy=x и y=x2.y=x2. Срезы, перпендикулярные оси x , представляют собой полукруги.
109.
Основание — это область, заключенная в общий эллипс (x2/a2)+(y2/b2)=1.(x2/a2)+(y2/b2)=1. Срезы, перпендикулярные оси x , представляют собой полукруги.
110.
Просверлите отверстие радиусом aa по оси прямого конуса и через основание радиусом b,b, как показано здесь.
111.
Найдите общий объем двух сфер радиусом rr с центрами, отстоящими друг от друга на 2h3h, как показано здесь.
112.
Найдите объем сферической шапки высотой hh и радиусом rr, где h
113.
Найдите объем сферы радиусом RR со снятой сверху крышкой высотой hh, как показано здесь.
Объемы тел вращения
Вы также можете использовать определенный интеграл, чтобы найти объем твердого тела, полученного путем вращения плоской области вокруг горизонтальной или вертикальной линии, не проходящей через плоскость. Этот тип твердого тела будет состоять из одного из трех типов элементов — дисков, шайб или цилиндрических оболочек, — каждый из которых требует своего подхода к составлению определенного интеграла для определения его объема.
Дисковый метод
Если ось вращения является границей плоской области, а поперечные сечения взяты перпендикулярно оси вращения, то для нахождения объема твердого тела используется дисковый метод . Поскольку поперечное сечение диска представляет собой круг с площадью π r 2 , объем каждого диска равен его площади, умноженной на его толщину. Если диск перпендикулярен оси x , то его радиус должен быть выражен как функция х . Если диск перпендикулярен оси y , то его радиус должен быть выражен как функция y .
Объем ( V ) твердого тела, образованного вращением области, ограниченной y = f(x ) и осью x на интервале [ a, b ] вокруг x -ось
Если область ограничена x = f(y ) и осью y на [ a, b ] вращается вокруг оси y , то его объем ( V ) равен
Обратите внимание, что f(x ) и f(y ) представляют радиусы дисков или расстояние от точки на кривой до оси вращения.
Пример 1: Найдите объем твердого тела, образованного вращением области, ограниченной y = x 2 и x -оси на [−2,3] вокруг x — ось.
Поскольку ось x является границей области, вы можете использовать дисковый метод (см. рис. 1).
Рисунок 1 Схема для примера 1.
Объем ( V ) твердого тела равен
Метод мойки
Если ось вращения не является границей плоской области и поперечные сечения взяты перпендикулярно оси вращения, используется метод шайбы , чтобы найти объем твердого тела. Думайте о шайбе как о «диске с отверстием в нем» или как о «диске с удаленным от центра диском». Если R – радиус внешнего диска, а r – радиус внутреннего диска, то площадь шайбы равна π R 2 – π r 2 , а ее объем будет быть его площадь, умноженная на его толщину. Как отмечалось при обсуждении дискового метода, если шайба перпендикулярна оси x , то внутренний и внешний радиусы должны быть выражены как функции х . Если шайба перпендикулярна оси y , то радиусы должны быть выражены как функции y .
где f(x ) ≥ г(x ), по оси x —
Если область ограничена x = f(y ) и x = г(y ) на [ a, b ], где f(y ) ≥ г(y ) вращается вокруг
7 6 y оси, то его объем ( V ) равен
Еще раз обратите внимание, что f(x ) и g(x ) и f(y ) и g(y ) представляют собой внешний и внутренний радиусы шайб или расстояние между точками на каждой кривой до ось вращения.
Пример 2: Найдите объем твердого тела, образованного вращением области, ограниченной y = x 2 + 2 и y = x + 4 вокруг оси x .
Поскольку y = x 2 + 2 и y = x + 4, вы находите, что
Графики будут пересекаться в точках (–1,3) и (2,6) с x + 4 ≥ x 2 + 2 на [–1,2] (рис. 2).
Рисунок 2 Схема для примера 2.
Поскольку ось x не является границей области, вы можете использовать метод шайбы, а объем ( V ) твердого тела равен
Метод цилиндрической оболочки
Если поперечные сечения твердого тела взяты параллельно оси вращения, то метод цилиндрической оболочки будет использоваться для нахождения объема твердого тела. Если цилиндрическая оболочка имеет радиус r и высота h, , то его объем будет в 2π rh умножить на толщину. Думайте о первой части этого произведения (2π rh ) как о площади прямоугольника, образованного путем разрезания оболочки перпендикулярно ее радиусу и плоской укладки. Если ось вращения вертикальна, то радиус и высота должны быть выражены в терминах x . Если же ось вращения горизонтальна, то радиус и высота должны быть выражены через и .
Объем ( V ) твердого тела, образованного вращением области, ограниченной y = f(x ) и осью x на интервале [ a,b ], где f( x ) ≥ 0, относительно оси y ‐
Если область, ограниченная x = f(y ) и осью y на интервале [ a,b ], где f(y ) ≥ 0, вращается вокруг x ‐ось, то его объем ( V ) равен
Обратите внимание, что x и y в подынтегральных выражениях представляют радиусы цилиндрических оболочек или расстояние между цилиндрической оболочкой и осью вращения. Коэффициенты f(x ) и f(y ) представляют высоты цилиндрических оболочек.
Пример 3: Найдите объем твердого тела, образованного вращением области, ограниченной y = x 2 и ось x [1,3] относительно оси y .
Содержание:
- Определённый интеграл
- Геометрическое содержание определённого интеграла
- Основные свойства определённого интеграла
- Непосредственное вычисление определённого интеграла
- Вычисление определённого интеграла методом подстановки
- Вычисления определённого интеграла частями
- Приближённые методы вычисления определённых интегралов
- Практическое применение определённого интеграла
- Вычисление площадей плоских фигур
- Объём тела вращения
- Путь, пройденный точкой
- Сила давления жидкости
- Несобственные интегралы
- История определенного интеграла
- Определенный интеграл в математике
- Геометрический смысл интеграла
- Понятие определенного интеграла
- Задачи, приводящие к понятию определенного интеграла
- Задача о нахождении площади криволинейной трапеции
- Задача об определении пройденного пути материальной точки
- Задача о нахождении объема продукции
- Основные свойства определенного интеграла
- Связь между определенным и неопределенным интегралами
- Формула Ньютона-Лейбница
- Методы вычисления определенного интеграла
- Непосредственное определенное интегрирование
- Вычисление интеграла методом подстановки
- Интегрирования по частям в определенном интеграле
- Длина дуги плоской кривой
- Вычисление площади геометрической фигуры
- Вычисление объемов тел по известным площадям поперечных сечений
- Вычисление объема тела вращения
- Приближенное вычисление определенных интегралов
- Формула прямоугольников
- Формула трапеций
- Формула Симпсона
Определённый интеграл
Определенный интеграл – это число, а именно величина площади криволинейной трапеции. Неопределенный интеграл – это функция (точнее, семейство функций), которая является первообразной для интегрируемой функции.
Понятие определённого интеграла:
Пусть функция f(х) определена на промежутке Считаем для удобства, что функция f(х) на указанном промежутке неотъемлемая и Разобьём этот отрезок на n частей точками На каждом из отрезков возьмём произвольную точку и вычислим сумму:
где Эта сумма называется интегральной суммой функции f(х) на отрезке
Геометрически (рис. 1) каждое слагаемое интегральной суммы равно площади прямоугольника с основанием и высотой , а вся сумма равна площади фигуры, которую получили соединением всех указанных выше прямоугольников.
Очевидно, при всех возможных разбиениях отрезка на части получим разные интегральные суммы, а значит и разные ступенчатые фигуры.
Будем увеличивать число точек разбиения так, чтобы длина наибольшего отрезка стремилась к нулю. Во многих случаях при таком разбиении интегральная сумма будет стремиться к некоторому конечному пределу, независимым ни от способа, которым выбираются точки деления ни от того, как выбираются промежуточные точки
Это предел и называют определённым интегралом для функции f(х) на отрезке
Определённым интегралом для функции f(х) на отрезке называется предел, к которому стремится интегральная сумма при стремлении к нулю длины большего частичного промежутка. Он обозначается и читается «интеграл от до b от функции f(х) по dx», или сокращённо «интеграл от до b от f(х)dx».
По определению
Число называется нижней границей интегрирования; число b — верхней границей; отрезок — отрезком интегрирования.
Отметим, что любая непрерывная на промежутке функция f(х) имеет определённый интеграл на этом отрезке.
Геометрическое содержание определённого интеграла
Если интегрированная на отрезке функция f(х) неотъемлемая, то определённый интеграл численно равен площади S криволинейной трапеции ABb (рис. 1).
Уточним, что криволинейную трапецией называют фигуру, ограниченную графиком непрерывной функции у=f(х), где , прямыми х=, х=b и осью ОХ.
Следовательно, геометрическое содержание определённого интеграла — это площадь криволинейной трапеции.
Рассмотрим криволинейную трапецию CHKD (см. рис. 2), в которой абсцисса точки С равна х, а точки . График функции у=f(х) пересекает ось OY в точке А. Тогда площадь криволинейной трапеции CHKD равна разности площади криволинейных трапеций OAKD и OAHC.
Поскольку площадь криволинейной трапеции ОАНС зависит от х, то её можно изобразить символом S(х). Аналогично, площадь криволинейной трапеции CHKD является функцией от и её можно обозначить . Поэтому площадь криволинейной трапеции CHKD равна разности и S(х) и обозначается символом
Построим два прямоугольника CHED и CMKD. Площадь первого равна Поскольку площадь криволинейной трапеции CHKD не меньшая площадь прямоугольника CHED и не большая площади прямоугольника CMKD, то можно записать неравенство:
Разделим обе части этого неравенства на и найдём пределы выражений при
Вспомним, что и учитывая непрерывность функции f(х),
получим:
отсюда
,
то есть производная площади криволинейной трапеции равна функции, которая задаёт верхнюю границу трапеции.
Таким образом, площадь криволинейной трапеции является одной из первичных функций, которая задаёт верхнюю границу трапеции, и может быть вычислена с помощью интегрирования.
Последнее равенство верно для всех х с промежутка . Подставим вместо х число . Получим . Но S()=0, ведь криволинейная трапеция преобразуется в отрезок, поэтому Таким образом,
При х=b получим выражение для вычисления площади криволинейной трапеции
Полученное выражение для вычисления S является приростом первичной F(х) на . Поскольку первичные отличаются только на постоянную, то очевидно, что все они будут иметь одинаковый прирост на промежутке . Отсюда выходит ещё одно определение определённого интеграла:
определённым интегралом называют прирост произвольной первичной при изменении аргумента от до b.
Данное определение записывают в виде формулы Ньютона-Лейбница:
где F(х) — первичная для функции f(х).
Основные свойства определённого интеграла
Все ниже приведённые свойства сформулированы в предположении, что данные функции интегрированы на определённых промежутках.
1. Определённый интеграл с одинаковыми границами интегрирования равен нулю:
2. При перестановке границ интегрирования определённый интеграл меняет знак на противоположный:
3. Отрезок интегрирования можно разбивать на части:
где
4. Постоянный множитель можно вынести за знак определённого интеграла:
5. Определённый интеграл от алгебраической суммы конечного числа функции равен алгебраической сумме определённых интегралов от функции, сто доказываются:
Доказательство свойств базируется на формуле ньютона-Лейбница. Как пример, докажем свойство 3:
что и требовалось доказать.
Данное свойство легко иллюстрировать графически (рис. 3).
или
На рис. 3 легко увидеть справедливость утверждения теоремы о среднем.
Теорема. Если функция f(х) непрерывна на промежутке , то существует точка с которая принадлежит данному промежутку, такая, что
То есть, площадь криволинейной трапеции равна площади прямоугольника со сторонами f(с) и (b — ).
Непосредственное вычисление определённого интеграла
Для вычисления определённого интеграла при условии существования первичной пользоваться формулой Ньютона-Лейбница:
По этой формуле виден порядок вычисления определённого интеграла:
1) найти неопределённый интеграл от данной функции;
2) в полученную первичную подставить на место аргумента сначала в верхнюю, а потом нижнюю границу интеграла;
3) найти прирост первично, то есть вычислить интеграл.
Пример 1: Вычислить интеграл:
Решение: Использовав указанные правила, вычислим данный определённый интеграл:
Ответ:
Пример: Вычислить интеграл:
Решение: Используем определение степени с дробным отрицательным показателем и вычислить определённый интеграл:
Ответ:
Пример 3: Вычислить интеграл:
Решение: Интеграл от разности функций заменим разностью интегралов от каждой функции.
Ответ:
Пример 4: Вычислить интеграл:
Решение: Используем определения степени с дробным показателем, правило деления суммы на число и вычислить определённый интеграл от суммы:
Ответ:
Вычисление определённого интеграла методом подстановки
Вычисление определённого интеграла методом подстановки выполняется в такой последовательности:
1) ввести новую переменную;
2) найти дифференциал новой переменной;
3) найти новые границы определённого интеграла;
4) всё подынтегральное выражение выразить через новую переменную;
5) вычислить полученный интеграл.
Пример 5. Вычислить интеграл:
Решение: Сделаем замену тогда
Вычислим границы интегрирования для переменной t.
При х=0 получаем tн=8-0=8, при х=7 получим tb=8-7=1.
Выразим подынтегральное выражение через t и dt и перейдём к новым границам, получим:
Пример 6. Вычислить интеграл:
Решение: Будем считать, что х3+2=t, тогда . Определим границу интегрирования для переменной t. При х=1, получим при х=2 получим
Выразим подынтегральное выражение через t и dt, затем перейдём к новым пределам, получим:
Ответ:
Пример 7. Вычислить интеграл:
Решение: Пусть тогда
Вычислим границы интегрирования для переменной t:
Выразим подынтегральное выражение через t и dt, и перейдём к новым пределам, получим:
Ответ:
Пример 8. Вычислить интеграл:
Решение: Сначала преобразуем подынтегральное выражение:
Вычислим интеграл от разности функций, заменив его разностью определённых интегралов от каждой функции:
Ответ:
Вычисления определённого интеграла частями
Если функции и их производные непрерывны на промежутке , то формула интегрирования для определённого интеграла имеет вид:
.
Пример 9. Вычислить интеграл:
Решение:
Ответ:
Пример 10. Вычислить интеграл:
Решение:
Ответ:
Приближённые методы вычисления определённых интегралов
В тех случаях, когда вычислить определённый интеграл по формуле Ньютона-Лейбница невозможно или сложно, используют методы приближённого интегрирования. Все они основываются на простых геометрических построениях. Очевидно, что при достаточно малом отрезке площадь S криволинейной трапеции приближённо равна площади прямоугольника («левого» прямоугольника рис. 4а, и «правого» прямоугольника рис. 4б), трапеции (рис. 5) или параболы (рис. 6).
Запишем следующие приближённые равенства:
Чтобы добиться большей точности при нахождении площади S, промежуток от разбивают на n равных частей (рис. 7) (при приближении параболами промежуток разбивают на 2n частей).
Если для каждой из маленьких дуг использовать предыдущие приближения, то для всей площади S получим приближённое значение представленное в виде суммы площадей криволинейных трапеций:
Первые две формулы носят названия формул «левых» и «правых» прямоугольников соответственно, третья — формулы трапеции, а последняя — формулы Симпсона.
Пример 11. Вычислить по формулам прямоугольников и трапеций при n=10.
Решение: Разделим отрезок [0; 1] на (n=10) заданное количество частей. Тогда составим таблицу значений подынтегральной функции в точках разбиения.
По формуле «левых» прямоугольников имеем:
По формуле «правых» прямоугольников имеем:
По формуле трапеции получим:
Для достижения большей точности число разбиений отрезка необходимо увеличить, например взять n=20.
Практическое применение определённого интеграла
С помощью определённого интеграла можно решать задачи физики, механики и т. д., которые тяжело или невозможно решить методами элементарной математики. Так, понятия определённого интервала используют при решении задач на вычисление площади фигур, работы переменной силы, давления на вертикальную поверхность, пути, пройденного телом и ряда других. Рассмотрим некоторые из них.
Вычисление площадей плоских фигур
Если фигура Ф является криволинейной трапецией, то её площадь Sф согласно геометрическому содержанию определённого интеграла равна:
Если фигура Ф не является криволинейной трапецией, то вычисления её площади сводится к одному из следующих случаев:
а) кривая у=f(х)<0 на ,
в этом случаи площадь можно вычислить по формуле:
б) если f(х)=
в этом случаи для нахождения площади фигуры находят точку с, как абсциссу точки перегиба графиков функций а площадь вычисляют по формуле:
в) если фигура ограничена двумя кривыми у=f1(х) и у=f2(х), (),
в этом случаи площадь Sф находят по формуле:
Пример 12. Вычислить площадь фигуры, ограниченную гиперболой ху=1, осью ОХ и прямыми х=1; х=е (рис. 11).
Решение: Использовав формулу вычисления площади криволинейной трапеции, получаем:
Ответ: S=1 кв. ед.
Пример 13. Вычислить площадь фигуры ограниченной линиями у=х2 и у2=х (рис. 12).
Решение: найдём пределы интегрирования, то есть абсциссы точек перегиба графиков функций у=х2 и у2=х. Для этого решим систему:
Вычисление площади фигуры сводится к случаю в) поэтому
Ответ: Sф = 1/3 кв. ед.
Пример 14. Вычислить площадь фигуры ограниченной параболами у=4-х2; у=х2-2х (рис. 13).
Решение: Найдём границы интегрирования, то есть абсциссы точек перегиба графиков функций у=4-х2 и у=х2-2х. Для этого решим систему:
Искомую площадь вычисляем по формуле
Ответ: S=9 кв. ед.
Объём тела вращения
Объём тела, образованного вращением вокруг оси ОХ криволинейной трапеции , ограниченной непрерывной кривой у=f(х), (где ), отрезком оси ОХ и отрезками прямых и (рис. 14), вычисляется по формуле:
Пример 15. Вычислить объём шара радиусом R (рис. 15).
Решение: Шар образован вращением вокруг оси ОХ круга, ограниченного кругом х2+у2=R2 с центром в начале координат и радиусом R.
Учитывая симметрию круга относительно оси ординат, сначала найдём половину искомого объёма:
Ответ: (куб. ед.).
Путь, пройденный точкой
Если точка движется прямолинейно и её скорость является известной функцией времени, то путь, который прошла точка за промежуток времени , вычисляется по формуле:
Пример 16. Тело движется прямолинейно со скоростью Найти путь, пройденный телом за 10 с.
Решение: Используя формулу находим:
.
Ответ: S = 250 (м).
Пример 17. Скорость тела, которое движется прямолинейно равна Вычислить путь, который прошло тело от начала движения до остановки.
Решение: В момент остановки скорость тела равна нулю, то есть
Следовательно, тело остановится через 4 с.
Путь, который прошло тело за это время, вычисляем по формуле:
Ответ:
Работа силы.
Если переменная силы F=F(x) действует в направлении оси ОХ, то работа силы на отрезке вычисляется по формуле:
Пример 18. Вычислить работу силы, которая необходима при сжимании пружины на 0,08 м., если для сжимания её на 1 см., необходима сила 10Н.
Решение: Согласно закона Гука, сила F, которая растягивает или сжимает пружину на х метров, равна F=kх, где k — коэффициент пропорциональности.
Следовательно, 10=k*0.01, то есть k=1000, отсюда F=kx=1000x.
Искомую работу находим по формуле:
Ответ: А= 3,2 (Дж).
Пример 19. Сила 196,2Н растягивает пружины на 18 см. Какую работу она выполняет?
Решение: Согласно закона Гука F=kx, отсюда F = 1090х. Находим искомую работу:
Ответ: А=17,7 (Дж).
Пример 20. Для сжатия пружины на 3 см. необходимо выполнить работу в 16 Дж. На какую длину можно сжать пружину, выполнив работу в 144 Дж.?
Решение: Согласно закона Гука, F=kx; тогда
Ответ: Пружину можно сжать на 9 см.
Сила давления жидкости
Сила давления Р жидкости плотностью р на вертикальную пластину, погружённую в жидкость, вычисляется по формуле:
Где ускорение свободного падения, S — площадь пластинки, а глубина погружения пластинки меняется от a до b.
Пример 21. Вычислить силу давления воды на одну из стенок аквариума, длиною 30 см. и высотою 20 см.
Решение: Стенка аквариума имеет форму прямоугольника, поэтому S=0,3х, где . Плотность воды равна 1000 кг/м3. Тогда сила давления воды на стенку аквариума, вычисляется по формуле:
Ответ: Р=58,86 (Н).
Пример 22. Вычислить силу давления бензина на стенки цилиндрического бака высотой 3 м. и радиусом 1 м.
Решение: Площадь поверхности стенки цилиндрического бака , где . Плотность бензина — 800 кг/м3. Тогда сила давления бензина на стенки бака будет:
Ответ: Р= 2,2*105 (Н).
Пример 23. Вычислить давление воды на погружённую в неё вертикальную треугольную пластину, с основанием 6 м. и высотой 2 м., считая, что вершина треугольника лежит на поверхности воды, а основание параллельно ей (рис. 16).
Решение: Пусть NM — ширина пластины на уровне BE=х. Из схожих треугольников ABC и MBN, находим
Использовав формулу получаем:
Ответ: Р = 78480 (Н).
Несобственные интегралы
Интегралы с бесконечными границами интегрирования или от функций, которые имеют бесконечный разрыв называют несобственными.
Несобственные интегралы с бесконечными границами интегрирования определяют следующим образом:
где с — произвольное действительное число.
Несобственные интегралы от функций с бесконечными разрывами также вычисляют через предельный переход.
Если функция разрывная на одном конце отрезка интегрирования, например, в точке х=b, то
если же функция f(х) имеет безграничный разрыв в точке х=с, где и непрерывна во всех других точках этого промежутка, то
Если приведённые выше пределы существуют для конкретного интеграла, то его называют сходящимся, если же предела не существует — расходящимся.
Поскольку вычисление пределов — трудоёмкая работа, то иногда для вычисления схожести несобственного интеграла можно воспользоваться признаком схожести:
Признак схожести: Пусть Тогда, если сходящийся, то и будет сходящимся.
Геометрически, в прямоугольной системе координат, несобственный интеграл — это площадь криволинейной трапеции с бесконечной основой либо «незакрытой» сверху.
Пример 1: Вычислить интеграл
Решение: Это несобственный интеграл с верхней границей равной . Согласно определения
Следовательно, интеграл сходящийся.
Пример 2: Вычислить интеграл
Решение: Это несобственный интеграл, так как функция неопределённая в точке х=0 и . Согласно определениям
Вычислим частями:
Ответ:
История определенного интеграла
Интегральный расчет получен в результате определения площади и объема. Эмпирически обнаруженные правила измерения площади и объема некоторых простейших фигур были известны древним восточным ученым. Уже в 2000 году до нашей эры. Египтяне и вавилоняне, в частности, знали правила расчета площади круга и расчета объема усеченной пирамиды на основе квадрата. Древнегреческая наука значительно продвинула расчет площади и объема различных фигур. Особенно значительный вклад внес Архимед. Архимед обнаружил множество человеческих территорий и значительное количество объемов тела, основываясь на идее, что плоская фигура состоит из бесчисленных прямых линий, а геометрическое тело состоит из бесчисленных параллельных плоских частей.
Архимед (287-212 до н.э.) — древнегреческий математик, физик, астроном и изобретатель. Родился в Сиракуз (Сицилия) и жил во времена Первой и Второй Поенских войн. Архимед является автором многих технических изобретений. Ирригационные машины с нулевой точкой, подъемные механизмы (винты Архимеда), рычажные системы, блоки для подъема тяжелых предметов, военные метательные машины. Его метательная машина заставила римлян отказаться от попыток совершить набег на город и заставить их пойти на осаду.
Математические исследования Архимеда намного опередили свое время и были правильно оценены только в эпоху исчисления. Архимед вычислил площадь эллипса, параболы и осколков из сегментов и нашел площадь поверхности и шара, сегмент шара и сферы, а также объем различных вращающихся тел и их сегментов. Он также относится к понятию центра тяжести тела, находит положение центра тяжести различных людей и тел и дает математический вывод закона биений. Архимед, как сообщается, находит решение проблемы определения количества золота и серебра в короне жертвоприношения короля Сиракузы Иерона во время омовения и крика «Эврика!» Его величайшим достижением в астрономии было создание планетария — полой вращающейся сферы, которая могла наблюдать Солнце и пять планет, фазы Луны, а также движение Солнца и лунное затмение.
Архимед был убит римским солдатом во время захвата Сиракузы. Согласно легенде, он сталкивался со словами «Не трогай мою фотографию». На могиле Архимеда был установлен памятник с изображением шара и цилиндра вокруг него. Надпись показала, что эти объемы тела i, i называются двумя.
Систематическое развитие подобные представления получили значительно позже — лишь в веке.
Теорема Архимеда о том, что площадь круга равна площади треугольника с основанием, равным окружности, и высотой, равной радиусу, I. Площадь круга состоит из бесконечного числа треугольников, которые в совокупности равны одинаковой высоте, радиусу и треугольнику, основание которого равно сумме всех оснований, окружности.
Кеплер (Kepler) Йохан (1571-1630) — немецкий астроном и математик. Родился в Вайль-дер-Штадт (Вюртемберг, Германия). Обрабатывая наблюдения датского астронома Г. Врага, он установил три закона движения планет. Он изложил теорию солнечных и лунных затмений, их причины и методы прогнозирования. Изобрел самый легкий телескоп. Это до сих пор называют его именем. Он нашел 92 вращающихся тела как оригинальный метод интеграции.
Используя такие рассуждения, Кеплер нашел объем многих новых революционных тел. Закон Кеплера, известный в астрономии, также был фактически получен с использованием приближенного интегрирования.
Удивительно остроумный трюк Архимеда. Но Кеплер и другие ученые не были строгими, и, самое главное, в принципе, они обладали свойством геометрического преобразования.
Кавальер и, Торричелли, Ферма, Паскаль и другие ученые века еще больше приблизились к современным представлениям об интеграле. Барроу установил связь между задачей о разыскании площади и задачей о разыскании касательной. А И. Ньютон и Г. Лейбниц независимо друг от друга в 70-х годах века отделили эту связь от упомянутых частных геометрических задач и создали алгоритмы дифференциального и интегрального исчислений.
И. Ньютон открыл взаимность операций дифференциации и интеграции. Он отметил, что все задачи нового анализа сводятся к двум взаимно противоположным задачам, которые можно сформулировать с точки зрения механики: 1) Использование известного пути к скорости в определенный момент 2) определите путь, пройденный в конкретное время по известной скорости движения. В данном случае «время» понималось просто как общее обсуждение всех переменных. Он также вводит понятие дифференциации. И. Ньютон намечает программу построения анализа на основе учения о пределе, не давая впрочем формального определения этого понятия, получившего глубокое развитие в математике века.
Г. Лейбниц использует нотацию для выражения определенных различных способов вычисления площадей и получения касательных в единую систему взаимосвязанных аналитических концепций и для бесконечного отслеживания действий определенных алгоритмов. Это может быть выполнено. Кроме того, различие в основном понималось как небольшая разница между двумя смежными значениями величины (поэтому символ -первая буква латинского слова (дифференция) — разница и отношение производной к производной) кривой считалась многоугольником с бесконечно большой бесконечно малой стороной, касательной в виде прямой линии, следующей за одной из таких сторон. Г. Лейбниц ввел понятие интегрирования как сумму бесконечного числа производных. Следовательно, Г. Основной концепцией анализа Лейбница была дифференциация как дифференциал и интеграция как сумма.
Дальнейшее развитие методы интегрирования получили в и веках. В веке в работах Л. Эйлера были найдены практически все известные в настоящее время приемы интегрирования в элементарных функциях. В веке О. Коши он аналитически доказал существование интегралов от непрерывных функций, реконструированных производных и интегральных вычислений и построил концепцию пределов функций в качестве основы для них.
Дальнейшее обобщение концепции интеграции связано с немецким ученым Б. Риманом и французским ученым А. Лебегом.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Определенный интеграл в математике
Пусть на отрезке задана функция Проделаем следующие 5 операций над отрезком и функцией
1. Раздробим отрезок на частей при помощи точек где
Для единообразия обозначений положим еще Наибольшую из разностей где мы обозначим через . Эта величина, характеризующая, насколько мелко раздроблен отрезок
называется рангом произведенного дробления.
2. На каждом отрезке выберем по точке и вычислим значение нашей функции в этой точке.
3. Умножим на длину отрезка
4. Сложим все полученные произведения, т. е. составим сумму
Эта сумма носит название интегральной суммы или суммы Римана (по имени немецкого математика 19-го века, изучавшего такие суммы).
5. Будем измельчать произведенное дробление, заставляя стремиться к нулю. Во многих случаях при этом измельчении сумма Римана будет стремиться к некоторому конечному пределу не зависящему ни от способа, каким выбираются точки деления ни от того, как выбираются промежуточные точки
Этот предел
и называется определенным интегралом от функции по промежутку Он обозначается символом
Числа называются соответственно нижним и верхним пределами интегрирования, а отрезок — промежутком интегрирования. Таким образом Определенный интеграл есть конечный предел суммы Римана при стремлении к нулю ранга дробления, порождающего эту сумму
Так как определенный интеграл есть предел некоторой переменной величины, а вовсе не всякая переменная имеет предел, то не у всякой функции существует определенный интеграл. Однако справедлива важная
Теорема. Если функция непрерывна на отрезке то интеграл
существует.
Эту теорему мы примем без доказательства. В дальнейшем будут рассматриваться, главным образом, функции непрерывные, хотя справедлива и более общая
Теорема. Интеграл существует, если кусочно непрерывна.
Понятие .кусочно непрерывной* функции легко разъяснить на простом примере. Пусть функция задана и непрерывна на а функция на Тогда функция совпадающая с при и при (чему равно безразлично), как бы состоит из двух непрерывных кусков (рис. 199). Такая функция и называется .кусочно непрерывной*. Она может состоять и из нескольких непрерывных кусков. Все же, если не будет оговорено противное, подынтегральные функции будут предполагаться непрерывными.
Возможно вам будут полезны данные страницы:
Геометрический смысл интеграла
Пусть — положительная непрерывная функция, заданная на отрезке
Заметим, что дробление, т. е. набор точек деления не полностью определяет сумму Для задания нужно указать еще промежуточные
точки
Рассмотрим (рис. 200) фигуру, ограниченную снизу осью сверху линией (т. е. графиком нашей функции), а с боков прямыми Если бы линия
была прямой, то наша фигура представила бы собой обыкновенную трапецию. В общем же случае эта фигура называется криволинейной трапецией.
Найдем площадь этой криволинейной трапеции. Для этого разложим отрезок на малых отрезков точками
Если через точки деления провести прямые то они разрежут нашу криволинейную трапецию (рис. 201) на узких полосок. Каждую из этих полосок можно приближенно принять за прямоугольник. В самом деле, если бы функция в пределах отрезка была постоянной, то полоска, имеющая своим основанием этот отрезок, и в самом деле была бы прямоугольником. В действительности не будет постоянной на но благодаря своей
непрерывности эта функция не успевает заметно измениться на если только этот отрезок весьма мал. Иными словами, почти постоянна на отрезках когда эти отрезки малы, а это и значит, что упомянутые полоски почти являются прямоугольниками (один такой прямоугольник заштрихован на рис. 201). Принимая за значение на всем ее значение в какой-нибудь точке этого отрезка (выбор этой точки безразличен, поскольку речь все равно идет о приближенном подсчете, а все точки отрезка равноправны), получаем, что высотой прямоугольника, за который мы принимаем нашу полоску, будет
Поскольку длина основания этого прямоугольника, очевидно, равна то площадь одной полоски приближенно равна произведению Отсюда для интересующей нас площади всей криволинейной трапеции получается приближенное равенство
Из самого вывода ясно, что точность этого равенства тем выше, чем меньше отрезки т. е. чем меньше ранг дробления Но тогда точное значение площади будет пределом написанной суммы при
Поскольку, однако, сумма (8) является суммой Римана, то по самому
определению ее пределом при
служит интеграл
Таким образом мы приходим к формуле
Читая ее справа налево, выясняем
Геометрический смысл интеграла.
Если
непрерывна и положительна на то интеграл равен площади криволинейной трапеции, ограниченной линиями
Интеграция может быть использована для поиска областей, объемов, центральных точек и многих полезных вещей. Но это часто используется, чтобы найти область под графиком функции
Примеры с решением
Пример 1:
Найти
Решение:
Фигура, ограниченная линиями (рис. 202), есть обыкновенная трапеция. Ее площадь равна полусумме оснований, умноженной на высоту:
откуда
Пример 2:
Найти
Решение:
Линия есть расположенная выше половина окружности Та часть линии, которая получается при изменении лежит в 1-м координатном угле. Отсюда ясно, что фигура, ограниченная линиями является (рис. 203) четвертью круга с центром в начале координат и радиусом Площадь этой фигуры равна откуда
Сейчас мы еще не научились вычислять определенные интегралы, я в этих примерах нам пришлось прибегнуть к помощи геометрии. В дальнейшем, наоборот, с помощью интегрального исчисления мы сможем вычислять площади различных криволинейных фигур *).
Два простейших свойства интеграла. Когда мы занимались неопределенными интегралами, то отмечали, что
Таким образом, в записи подынтегральной функции и в записи результата интегрирования независимая переменная обозначалась одной и той же буквой. Стало быть, обозначение этой независимой переменной, которую называют переменной интегрирования, оказывалось существенным .
Это становится ясным, если мы вспомним хотя бы, как вычисляетсяинтеграл Ведь его надо записать сначала в виде а затем в виде Значит, Таким образом, нам совсем не безразлично, написать ли (что верно) или (что уже неверно!).
I. Обозначение переменной интегрирования в определенном интеграле никакой роли не играет
Читатель сразу поймет это, если задаст себе вопрос: который из двух интегралов
Больше? Ясно, что они одинаковы! Более отчетливо мы разберемся в этом, если заметим, что для вычисления любого из интегралов мы должны разбить отрезок [3, 5] на мелкие части, в каждой части выбрать по точке и вычислить в ней значение подынтегральной функции (а она в обоих интегралах одна и та же: удвоенный куб аргумента, сложенный с самим аргументом) и т. д. Иными словами все вычисления в обоих случаях будут тождественными. Также обстоит дело и в более общем случае интегралов чем и доказано формулированное свойство чем и доказано формулированное свойство I определенного интеграла.
Переходя к другому важному его свойству, заметим, что в выражении
мы предполагали Что же следует понимать под символом
На этот вопрос легко ответить, если вспомнить геометрический смысл интеграла. В нашем случае боковые стороны криволинейной трапеции сливаются в одну прямую и трапеция вырождается в прямолинейный отрезок (рис. 204). Площадь этого отрезка равна нулю, а потому и
т.е.
Определенный интеграл с совпадающими пределами интегрирования равен нулю.
Например,
Понятие определенного интеграла
Рассмотрим непрерывную функцию не принимающую отрицательных значений, так что график ее целиком лежит выше оси в некоторых точках. Пусть такие числа, что функция определена при Кривая и прямые ограничивают некоторую область плоскости, называемую областью под кривой от
или криволинейной трапецией.
Если требуется вычислить площадь криволинейной трапеции, то можно, например, покрыть плоскость сетью мелких квадратов и сосчитать число квадратов, лежащих внутри нашей области (рис. 12.1). Это не дает еще всей площади, поскольку некоторые из квадратов лежат частично внутри, а частично вне рассматриваемой области. Но если сделать сеть достаточно густой. то можно вычислить с любой степенью точности.
Можно вычислить площадь криволинейной трапеции и с помощью тонких прямоугольников. Лейбниц считал, что криволинейная трапеция составлена из бесконечно тонких прямоугольников (рис. 12.2). Каждый такой прямоугольник поднимается над точкой интервала он имеет высоту и бесконечно
Малую ширину площадь ого равна, следовательно, Общая же площадь есть сумма всех таких площадей.
Напомним, Лейбниц писал Символ означал у него сумму. Этот символ происходит от удлинения буквы
(первой буква слова Summa). Погаже ученик Лейбница Иоган Вернул-ли предложил отличат!» «целостную сумму бесконечно малых» от обычной суммы и предложил знак именовать интегралом от латинского слова integrals (целостный). Фурье усовершенствовал обозначение Лейбница, предложив явно указывать начальное и конечное значения
Рассуждения математиков XIX века носили нестрогий характер. Термин бесконечно малая величина не был достаточно строго определен, что приводило к противоречиям. Строгое определение основано на понятии предела и интегральной суммы. Оно вобрало в себя качественный смысл определения Лейбница и устранило нечеткость формулировок.
Пусть функция неотрицательна на Разобьем отрезок на промежутков точками
На каждом отрезке разбиения выберем точку и положим
Тогда произведение равно площади прямоугольника ,-со сторонами
Сумма площадей всех таких прямоугольников равна сумме вида
Эта сумма представляет площадь ступенчатой фигуры. Чем уже ступеньки, тем ближе площадь ступенчатой фигуры к площади криволинейной трапеции (рис. 12.2). Естественно ожидать, что при неограниченном возрастании числа промежутков, так что наибольшая из их длин стремится к нулю, сумма стремится к площади криволинейной трапеции
Введем теперь точное определение. Пусть на отрезке задана функция (теперь уже не обязательно неотрицательная). Разобьем отрезок на промежутков точками
На каждом отрезке разбиения выберем точку и положим
Сумму вида
назовем интегральной суммой для функции Очевидно, что интегральная сумма зависит от способа разбиения отрезка точками так и от выбора точек на каждом из промежутков разбиения Обозначим через максимальную из длин отрезков где
Определение. Пусть предел интегральной суммы
при стремлении к нулю существует, конечен и не зависит от способа выбора точек Тогда этот предел называется определенным интегралом от функции на и обозначается
а сама функция называется интегрируемой на отрезке т.е.
Эта запись читается: «интеграл от а до бэ эф от икс дэ икс». При этом число называется нижним пределом, число его верхним пределом («пределы интегрирования» не имеют ничего общего с термином «предел функции»); функция подынтегральной функцией, выражение подынтегральным выражением, а задача о нахождение интегрированием функции на отрезке
Несмотря на сходство в обозначениях и терминологии, определенный и неопределенный интегралы существенно различные понятия. Неопределенный интеграл представляет функцию (а точнее семейство функций), а определенный интеграл — это число.
Из определения следует, что величина определенного интеграла не зависит от обозначения переменной интегрирования, т. е.
Верхний предел может быть больше или меньше нижнего
В первом случае
Во втором случае
Поэтому по определению полагают
Понятие определенного интеграла распространяют и на случай интеграл с равными пределами считается равным нулю:
Это соглашение оправдано тем, что интегральная сумма стремится к нулю при сближении
Очевидно, если функция интегрируема на отрезке то она и ограничена на этом отрезке. В самом деле, если не ограничена на отрезке то она не ограничена на некотором отрезке За счет выбора точки
интегральную сумму можно сделать сколь угодно большой, а такая интегральная сумма не имеет конечного предела, что противоречит определению, согласно которому предел интегральной суммы существует и конечен.
Покажем на примере функции Дирихле, что обратное утверждение неверно: существует ограниченная функция, не являющаяся интегрируемой. Напомним, что функция Дирихле равна единице в рациональных точках и нулю — в иррациональных. На любом отрезке эта функция ограничена, но не является интегрируемой на нем. Действительно, если в каждом отрезке выбрать рациональную точку то интегральная сумма
Если выбрать иррациональную точку то и
Таким образом, с одной стороны а, с другой стороны
Поэтому предел интегральных сумм не существует и функция Дирихле не является интегрируемой.
Отметим без доказательств, что справедливы следующие утверждения:
1. Если функция интегрируема на отрезке то она интегрируема на любом отрезке содержащимся в
2. Если функция непрерывна на отрезке то она интегрируема на этом отрезке.
3. Если функция имеет на отрезке конечное число точек разрыва первого рода, то она интегрируема на
Пример 3:
Вычислить
Решение. Запишем выражение для интегральной суммы, предполагая, что все отрезки разбиения имеют одинаковую длину равную где число отрезков разбиения, причем для каждого из отрезков , разбиения точка совпадает с правым концом этого отрезка, т.е где (В силу интегрируемости функции выбор такого «специального» способа разбиения отрезка интегрирования на части и точек , на отрезках разбиения не повлияет на искомый предел интегральной суммы.) Тогда
Известно, что сумма квадратов чисел натурального ряда равна
Следовательно,
Анализ приведенного примера показывает, что успешное решение поставленной задачи оказалось возможным благодаря тому, что интегральную сумму удалось привести к виду, удобному для нахождения предела. Однако такая возможность существует далеко не всегда, поэтому долгое время задача интегрирования конкретных функций оставалась задачей чрезвычайно сложной.
Пример 4:
Вычислить:
Решение:
а) Произвольная первообразная для функции имеет вид Для нахождения интеграла 3 по формуле Ньютона—Лейбница возьмем такую первообразную, у которой (см. замечание выше). Тогда
что совпадает, конечно, с результатом, полученным в примере 11.1.
б) Первообразную подынтегральной функции найдем, используя формулу (10.9). Применяя формулу Ньютона—Лейбница, получаем При нахождении интеграла из примера 11.26 было использовано свойство приращения первообразной
где- некоторое число.
Заметим,что введеное ранее определение (11.2) и его следствие (11.3) согласованы с формулой Ньютона-Лейбница. Действительно,
и
Таким образом, и при применении формулы Ньютона-Лейбница несущественно, какой из пределов интегрирования больше: верхний или нижний.
Пример 5:
Вычислить
Решение:
Положим Тогда
Если то
Следовательно
Рассмотрим теперь, как выполняется интегрирование по частям в определенном интеграле.
Задачи, приводящие к понятию определенного интеграла
Пусть неотъемлемая функция определена и непрерывна на отрезке где и — конечные числа.
Задача о нахождении площади криволинейной трапеции
Пусть плоская фигура ограничена графиком функции осью вертикальными прямыми (рис. 23.1). Эта геометрическая фигура называется криволинейной трапецией для функции на отрезке
Рис. 23.1
Необходимо определить ее площадь.
Для решения задачи выполним следующее:
1) разобьем отрезок произвольно образом на частей точками:
2) выберем на каждом из частичных отрезков произвольную точку
Длину частичного отрезка обозначим через
3) вычислим значение функции в точках и составим сумму произведений этих значений с длинами частичных отрезков:
Сумма называется интегральной суммой для функции на отрезке Геометрический смысл этой суммы очевиден — это сумма площадей прямоугольников с основами и высотами
4) найдем границу при условии, что и наибольшая (максимальная) длина частных отрезков стремится к нулю.
Если существует конечный предел интегральной суммы при условии, что при то ее принимают за числовое значение площади криволинейной трапеции для на
Задача об определении пройденного пути материальной точки
Задача об определении пройденного пути материальной точки за промежуток времени от до Пусть скорость прямолинейного движения материальной точки задана как функция времени Необходимо найти путь, который пройдет точка за промежуток времени от до
Если скорость не изменяется в течение времени, то есть — постоянная величина, то путь пройденный точкой за промежуток времени вычисляется по формуле
При переменной скорости совершаем те же действия, что и в предыдущей задаче:
1) разобьем отрезок в частичных промежутков времени точками:
2) выберем на каждом из частичных отрезков времени произвольную точку
3) вычислим значения скорости в точке то есть на каждом отрезке времени и определим путь пройденный точкой за промежуток времени как произведение тогда весь путь, пройденный за время приближенно определяется интегральной суммой для функции на отрезке
4) найдем границу интегральной суммы при и при
Если существует конечный предел интегральной суммы (при условии — при ), то ее и принимают за числовое значение пути пройденного материальной точкой за промежуток времени
Задача о нахождении объема продукции
Пусть функция описывает зависимость производительности труда некоторого производства от времени Необходимо найти объем продукции произведенной за промежуток времени
Если производительность не меняется в течение времени, то есть — постоянная величина, то объем продукции произведенной за промежуток времени вычисляется по формуле При переменной производительности труда, используя приближенную равенство где которая будет тем более точной, чем меньше будет выполним следующие действия:
1) разобьем отрезок на промежутки времени точками:
2) выберем на каждом из отрезков произвольную точку
3) вычислим производительность труда в каждой точке то есть для каждого промежутка времени; определим объем продукции произведенной за время как произведение если на каждом промежутке времени считать производительность труда постоянной величиной; тогда полный объем продукции приближенно определяется как интегральная сумма для функции на отрезке
4) найдем границу если стремится к нулю и и получим объем продукции, произведенной за промежуток времени
Следует отметить, что при решении этих трех различных задач, были выполнены одни и те же действия, и мы пришли к одному и тому же итоге — возникает необходимость определить границу интегральной суммы.
Если существует конечный предел интегральной суммы для функции на отрезке найденная при условии, что при неограниченном возрастании числа точек разбиения которая не зависит ни от способа разбиения отрезка на части, ни от выбора точек то эта граница называется определенным интегралом функции на отрезке и обозначается Следовательно,
где — пределы интегрирования ( — нижняя, — верхняя)
— подынтегральная функция;
— дифференциал переменной интегрирования;
— подынтегральное выражение.
Теорема 23.1 (о существовании определенного интеграла). Если функция непрерывна на отрезке или ограничена на нем и имеет конечное число точек разрыва первого рода, то существует конечное предел интегральной суммы, и она не зависит ни от способа разбиения отрезка на части, ни от выбора точек внутри них для составления интегральной суммы, то есть существует определенный интеграл от функции
Теорема существования определенного интеграла примем без доказательства.
Соответственно, функция для которой на отрезке существует определенный интеграл, называется интегрируемой на этом отрезке.
Вернемся к первой из рассмотренных задач и приведем геометрический смысл определенного интеграла: если функция неотъемлемая на конечном отрезке где то определенный интеграл
численно равна площади криволинейной трапеции, ограниченной кривой отрезком и прямыми и
Основные свойства определенного интеграла
Поскольку по определению определенный интеграл является границей интегральной суммы, то доказательства его свойств базируется на свойствах границ с привлечением, для наглядности и лучшего понимания, геометрического содержания определенного интеграла.
1 (о интеграл с равными пределами интегрирования). Для любой интегрируемой функции определенный интеграл с равными пределами интегрирования равен нулю:
ведь криволинейная трапеция вырождается в вертикальный отрезок.
2 (об изменении знака). Если функция интегрируема на то имеет место формула
то есть, если поменять местами пределы интегрирования, то определенный интеграл изменит свой знак на противоположный.
Действительно, в интегральной сумме приросты меняют знак на противоположный.
3 (о стабильном множителе). Если функция интегрируема на то постоянный множитель можно выносить за знак определенного интеграла:
поскольку как общий множитель слагаемых интегральной суммы можно вынести за знак суммы и, соответственно, за знак границы.
4 (о определенном интеграле от суммы функций). Если функции и интегрируемые на то интеграл от их суммы или разности равна соответственно сумме или разности интегралов от этих функций:
Справедливость (23.11) следует из того, что интегральную сумму левой части равенства можно представить в виде алгебраической суммы двух интегральных сумм:
а по свойству границы суммы функций и получаем (23.11).
Свойство распространяется на любое конечное число слагаемых.
5 (о аддитивности). Если отрезок интегрирования разбит на две части, то определенный интеграл на равна сумме интегралов на этих частях:
так как по геометрическим содержанием таком разбивке соответствуют две криволинейные трапеции, сумма площадей которых равна площади выходной трапеции.
Свойство распространяется на любое конечное число частей разбиения.
6 (о переходе к определенному интегралу в неровностях). Если на отрезке интегрирования значения функций и связанные неравенством то такой же, по знаку, неравенством связаны определенные интегралы от этих функций :
Действительно, при одном и том же разбиении отрезка на части слагаемые интегральной суммы для и будут связаны тем же знаком неравенства, и те же функции, а предельный переход не изменит знака неравенства.
7 (о границах значений определенного интеграла). Если и — наибольшее и наименьшее значения функции то есть и то
Если функция определена и непрерывна на отрезке то среди ее значений на этом отрезке существуют меньше и больше то есть (рис. 23.2). Тогда (23.14) можно рассматривать как следствие свойства (23.13), а именно:
при этом
тогда
и свойство доказано.
Если доводить это свойство по геометрическим содержанием определенного интеграла (рис. 23.2), то площадь криволинейной трапеции, которая соответствует определенному интегралу, не может быть меньше (больше) за площадь прямоугольника с основанием высота которого, соответственно, наименьшим (крупнейшим ) значением функции на
Рис. 23.2
8 (теорема о среднем). Если функция непрерывна на отрезке то на нем найдется такая точка что:
Таких точек на промежутке может быть несколько.
Отношение определенного интеграла от функции на отрезке к длине отрезка интегрирования называется средним значением функции:
С геометрической точки зрения теорема о среднем (рис. 23.3) означает, что площадь под кривой на отрезке интегрирования равна площади прямоугольника с высотой и основой
Рис. 23.3
Связь между определенным и неопределенным интегралами
Если функция интегрируема на отрезке то она интегрируема и на отрезке где Интеграл от такой функции также является функцией от и называется интегралом с переменным верхним пределом интегрирования. Обозначим его через
В этом выражении переменная интегрирования обозначена буквой чтобы отличить ее от верхней границы интегрирования. Численно функция равна площади криволинейной трапеции, основой которой является промежуток
Теорема 23.2. Если функция непрерывна на отрезке то в каждой точке производная от функции по переменным верхним пределом равна подынтегральной функции от верхней границы интегрирования, то есть:
Доказательство. Для доказательства этой теоремы применим определение производной.
По условию функция непрерывна на отрезке поэтому она непрерывна и на любом отрезке Предоставим аргумента прирост тогда и функция также получит некоторый прирост
Последний интеграл было получено с помощью свойства 5 определенного интеграла. Поскольку
то применяя на отрезке теорему о среднем (23.15), получим:
где
Переходя к пределу при а также ввиду того, что при этом и получим:
Равенство значит, что функция является первоначальной для функции на отрезке Следовательно, с теоремы 23.2 следует важное следствие: для всякой непрерывной на отрезке функции существуют первобытные на этом отрезке, одной из которых является определенный интеграл с переменным верхним пределом. Поэтому согласно определению неопределенного интеграла в семье первичных имеем:
Формула (23.19) описывает связь между определенным и неопределенным интегралами: неопределенный интеграл является суммой определенного интеграла с переменным верхним пределом и произвольной действительной постоянной.
Формула Ньютона-Лейбница
Теорема 23.3 (основная формула интегрального исчисления). Если функция интегрируема на отрезке то определенный интеграл от является разницей значений любой из ее первоначальных функций в точках и
Формула (23.20) для вычисления определенного интеграла называется формулой Ньютона-Лейбница
Доказательство основывается на соотношении (23.19), которое позволяет любую первоначальную функции на отрезке записать так: . Последнее равенство будет справедливой при соответствующем выборе постоянной для всех значений
Подставляя вместо поочередно и получаем (23.20):
Отметим, что поскольку все первоначальные отличаются друг от друга только константой, то разница не зависит от выбора
Для обозначения прироста первоначальной на отрезке вводят символ двойной подстановки который удобно использовать при решении примеров:
Заметим, что именно формула Ньютона-Лейбница отображает тесная связь между неопределенным и определенным интегралами. По этой формуле вычисления определенного интеграла сводится к двум шагов:
1) нахождение одной из первоначальных для на (по сути это нахождение неопределенного интеграла)
2) вычисление значений первоначальной в точках, соответствующих границам интегрирования и определение разницы между ее значениями на верхней и нижней границах.
Вычислим определенный интеграл:
Обычно шаги 1), 2) осуществляют одной цепочкой:
Методы вычисления определенного интеграла
При вычислении определённых интегралов используются методы непосредственного интегрирования, замены переменной (подста-. новки) и интегрирования по частям. Непосредственное интегрирование предполагает сведение данного интеграла с помощью алгебраических и арифметических преобразований к формулам таблицы основных интегралов и использование формулы Ньютона-Лейбница.
Непосредственное определенное интегрирование
Поскольку вычисления определенного интеграла по формуле Ньютона-Лейбница предполагает сначала взятия неопределенного интеграла, а затем выполнение арифметических действий, то это означает, что принципиальных различий в методах нахождения неопределенного и вычисления определенного интегралов нет, следовательно, непосредственное вычисление определенного интеграла предусматривает непосредственное неопределенное интегрирование (нахождение одной из первоначальных).
Вычислим интеграл
Вычисление интеграла методом подстановки
Напомним, что существует два типа подстановок, которые используются при интегрировании с применением новой переменной: и
Пусть для определенности при вычислении интеграла проведения подстановку
Теорема 23.4 (о замене переменной в определенном интеграле). если:
1) функция и ее производная непрерывные на отрезке [, α β];
2) значение в точках и такие, что и
3) составлена функция непрерывна на то
то сравнивая результаты интегрирования по переменным и получаем справедливость (23.22).
Подстановка в случае существования обратной к функции сводится к рассматриваемой:
Отметим, что при вычислении определенного интеграла методом подстановки нет необходимости возвращаться к исходной переменной, вместо этого нужно находить пределы интегрирования по новой переменной.
Вычислим определенные интегралы:
Интегрирования по частям в определенном интеграле
Рассмотрим случай, когда при вычислении определенного интеграла нахождения первоначальной требует применения интегрирования по частям.
Теорема 23.5 (формула интегрирования по частям для определенного интеграла). Если в определенном интеграле подынтегральное выражение представлен в виде произведения где и — дифференцируемы на отрезке функции, то выполняется соотношение:
Доказательство. Поскольку
то
Применяя к левой части последнего равенства формулу Ньютона-Лейбница, а также учитывая, что а v d ¢ x d = v, получим
отсюда окончательно имеем:
Теорема доказана.
Соотношение (23.23) называется формулой интегрирования по частям в определенном интеграле.
Если пределы интегрирования симметричны относительно нуля, то для упрощения вычислений целесообразно учитывать четности и нечетности подынтегральной функции.
Так, если — четная функция, то
а если — нечетная функция, то
Это легко обосновать, опираясь на формулу Ньютона-Лейбница.
Вычислим определенные интегралы:
Подынтегральная функция является четной, то есть поэтому
Применение определенного интеграла в некоторых геометрических и экономических задачах
Длина дуги плоской кривой
Пусть функция является непрерывной и дифференцируемой на отрезке Найдем на этом отрезке длину линии, соответствующей графику данной функции.
Разобьем отрезок произвольным образом на частей точками разделения и впишем в дугу кривой ломаную линию (рис. 24.1) . Длиной дуги называется предел длины вписанной ломаной линии при неограниченном уменьшении длин ее звеньев.
Рис. 24.1
Пусть абсциссами вершин ломаной линии имеет значение Тогда длина одного звена ломаной согласно теореме Пифагора определяется формулой:
где
Отсюда
На каждом частичном отрезке функция удовлетворяет условиям теоремы Лагранжа, поэтому существует точка такая, что
Тогда
Длина всей ломаной линии определяется как сумма длин ее звеньев: и представляет собой интегральную сумму для сложной функции
Следовательно, длина дуги кривой, соответствующей графику функции на отрезке составляет:
Если кривая задана уравнениями в параметрической форме
то длина дуги такой кривой определяется формулой:
где и — значение параметра соответствующие концам дуги.
Наряду с хорошо известной декартовой системой координат в которой каждой точке плоскости соответствует пара чисел — проекций точки на координатные оси, пользуются также полярной системой координат.
Зафиксируем на плоскости некоторую точку — полюс — и луч — полярную ось. Выберем произвольным образом отличную от полюса точку (рис. 24.2).
Расстояние от полюса до точки называется полярным радиусом точки
Угол наклона полярного радиуса к полярной оси называется полярным углом точки В точке полярный угол определен.
Числа и называются полярными координатами точки , и пишут: или
Полюс полярная ось и масштабный (единичный) отрезок определяют полярную систему координат
Полярный угол определяется неоднозначно: при заданном точки с координатами где совпадают. Обычно значение берут из промежутка или и называют их главными значениями полярного угла.
Уравнения является уравнением линии в полярных координатах, если координаты любой точки на линии удовлетворяют его, и наоборот, если пара чисел удовлетворяет уравнению, то и являются координатами точки, принадлежащей линии:
где — закон, который отображает свойство точек линии, и — текущие координаты точек линии.
Связь между координатами точки в полярной и декартовой (рис. 24.3) системах координат легко устанавливается, если полюс совпадает с началом декартовой системы координат, а полярная ось лежит на оси абсцисс, и масштаб систем одинаков.
Рис. 24.3
С получаем формулы перехода от декартовых к полярным координатам:
где или
Если дуга задается уравнением в полярных координатах:
то по формулам (24.2) и (24.4) определяем:
Следовательно, длину дуги в полярных координатах находим по формуле:
где и — значение полярного угла, соответствующие концам дуги.
Вычислить длину дуги кривой
Сначала надо установить пределы интегрирования. для этого найдем область определения данной функции, решив систему неравенств:
Далее находим производную функции
следовательно,
По формуле (24.1) имеем:
Рассмотрим пример нахождения длины дуги, если кривая заданная параметрически. Система уравнений
определяет линию, которая называется астроидом (рис. 24.4). Найдем ее длину.
Рис. 24.4
Кривая симметрична относительно осей и Следовательно, определим длину всей дуги, а именно той части, расположенной в первой четверти. Тогда параметр изменяется от до
Находим производные от и сумму их квадратов:
По формуле (24.2) получаем:
Соответственно, длина всей астроиды равна:
Найдем длину дуги, заданной в полярных координатах уравнением Эта кривая называется кардиоидой (рис. 24.5).
Рис. 24.5
Кардиоида симметрична относительно полярной оси, поэтому найдем половину ее длины. Итак, полярный угол будет изменяться от до
Имеем:
По формуле (24.5) получаем:
Тогда длина всей линии равна:
Вычисление площади геометрической фигуры
Вычисление площади плоской фигуры в декартовых координатах опирается на геометрический смысл определенного интеграла.
Рассмотрим несколько случаев вычисления площадей геометрических фигур.
1. По геометрическому содержанию определенный интеграл от непрерывной функции x на отрезке численно равна площади криволинейной трапеции, ограниченной графиком функции осью и прямыми и при условии , что функция на отрезке является неотъемлемой.
То есть для имеем:
2. Если функция на отрезке неположительные (рис. 24.6), т.е. то определенный интеграл от нее также будет числом неположительные, потому что он является границей интегральной суммы, а значит сохраняет знак подынтегральной функции. Тогда для площадь криволинейной трапеции равна:
Рис. 24.6
3. Если функция на отрезке меняет знак (рис. 24.7), проходя через точки то для нахождения площади фигуры, ограниченной графиком такой функции и осью отрезок надо разбить на три промежутки на которых знак функции остается постоянным, и применить формулы (24.7) и (24.8).
Следовательно, если функция несколько раз меняет знак на промежутке то формулы (24.7) и (24.8) можно объединить в одну:
Рис. 24.7
4. Если надо определить площадь фигуры, ограниченной кривыми по данным на отрезке причем то эта площадь (рис. 24.8) вычисляется по формуле:
Рис. 24.8
5. Если плоская фигура ограничена графиком непрерывной на промежутке функции прямыми и осью ординат (рис. 24.9), то площадь такой фигуры вычисляется по формуле:
Рис. 24.9
Найдем площадь фигуры, ограниченной графиком функции прямой и осью (рис. 24.10).
Рис. 24.10
Устанавливаем пределы интегрирования:
Поскольку функция на отрезке неотъемлемая, то по формуле (24.7) имеем:
Вычислим площадь фигуры, ограниченной линиями: и (рис. 24.11).
Рис. 24.11
Промежутком интегрирования является отрезок
Поскольку подынтегральная функция на отрезке неположительная, то по формуле (24.8) имеем:
Найдем площадь фигуры, ограниченной линиями: (рис. 24.12).
Рис. 24.12
Функция на промежутке интегрирования меняет знак в точке Поэтому по формуле (24.9) имеем:
Найдем площадь фигуры, ограниченной линиями: (рис. 24.13).
Рис. 24.13
Для определения границ интегрирования находим точки пересечения линий:
Откуда получаем:
Согласно формуле (24.10) имеем:
Подчеркнем, что в формуле (24.10) в роли всегда выступает функция, график которой ограничивает фигуру сверху.
6. Пусть фигура ограничена кривой, уравнение которой задано в параметрической форме, то есть зависимость задается параметрически системой уравнений
где которая определяет некоторую кривую на отрезке
Площадь фигуры, как и раньше, вычисляем по формуле (24.7), но в ней сделаем замену переменной: тогда
Следовательно,
Найдем площадь фигуры, ограниченной эллипсом (рис. 24.14), заданным параметрическими уравнениями
Рис. 24.14
Поскольку эллипс симметричен относительно осей координат, то найдем площадь -ой части площади, расположенной в первой четверти.
Определим границы интегрирования. Если изменяется от то по системе уравнений
получаем, что параметр изменяется от
Осуществляем по формуле (24.12) определено интегрирование:
Отсюда площадь всей фигуры равна:
7. Площадь криволинейного сектора
Рассмотрим в полярных координатах геометрическую фигуру, которая ограничена линией и двумя лучами где функция непрерывна при (рис. 24.15). Такую фигуру называют криволинейным сектором для на Вычислим площадь этого сектора.
Рис. 24.15
Выполняем те же шаги, которые осуществлялись при решении задачи нахождения площади криволинейной трапеции:
1) разобьем криволинейный сектор для на произвольным образом на частей с центральными углами
2) выберем на каждом из частичных секторов произвольный луч под углом к полярной оси;
3) вычислим площадь кругового сектора радиуса с центральным углом по известной формуле: площадь криволинейного сектора на приближенно равен сумме всех
которая является интегральной суммой для сложной функции от
4) найдем границу интегральной суммы при условии, что при которая, в случае ее существования, определяет площадь криволинейного сектора:
Вычислим площадь фигуры, ограниченной полярной осью и первым витком спирали Архимеда где — положительное число (рис. 24.16).
Рис. 24.16
При чередовании от полярный радиус описывает кривую, ограничивает криволинейный сектор По формуле (24.14) имеем:
Вычисление объемов тел по известным площадям поперечных сечений
Пусть имеем некоторое геометрическое тело, для которого известна площадь любого сечения этого тела плоскостью перпендикулярной к оси (рис. 24.17). Выведем формулу для вычисления объема тела для чего составим соответствующую интегральную сумму как это делалось при определении понятия определенного интеграла:
Рис. 24.17
1) разобьем тело произвольным образом на частей (слоев) плоскостями: (на рисунке показано слой на );
2) выберем на каждом частичном промежутке произвольную точку и для каждой такой точки построим цилиндрическое тело, образующая которого параллельна оси а направляющая является контуром сечения тела плоскостью (на рисунке он не изображен)
3) вычислим объем цилиндра с площадью основания и высотой тогда объем тела на промежутке приближенно равен сумме всех частных объемов
которая является интегральной суммой для функции на промежутке
4) найдем границу интегральной суммы при условии, что при которую, в случае ее существования, принимают за объем тела по площадям поперечных сечений:
Найдем объем тела, ограниченного плоскостями и и однополостным гиперболоидом, который задан уравнением:
Проведем плоскость (рис. 24.18). В сечении получим эллипс:
Перейдем к каноническому уравнению эллипса:
где
Площадь сечения находим по известной формуле площади фигуры, ограниченной эллипсом (24.13):
Следовательно, вычислим объем тела по формуле (24.15) с переменной интегрирования
Вычисление объема тела вращения
Пусть на промежутке задана непрерывная функция Надо определить объем тела, которое образовалось при вращении криволинейной трапеции для на вокруг оси (рис. 24.19). Такое тело называется тело вращения.
Рис. 24.19
При вращении каждая точка дуги кривой описывает круг, а поперечным сечением тела вращения является круг радиуса с центром на оси площадь которого определяется по известной формуле: где
На этом основании расчетную формулу для вычисления объема тела образованного вращением криволинейной трапеции для функции на промежутке вокруг оси получим как частный случай формулы (24.15) при условии, что
Найдем объем шара радиуса Его можно рассматривать как результат вращения вокруг оси криволинейной трапеции, ограниченной полукругом на отрезке
Объем этого шара можно найти по формуле (24.16):
Если в соотношении для формально заменить на то получим формулу объема тела, образованного вращением вокруг оси криволинейной трапеции, ограниченной линиями — функция, обратная к
Приближенное вычисление определенных интегралов
Формула Ньютона-Лейбница как основная формула интегрального исчисления является главным средством вычисления определенного интеграла, если при нахождении первоначальной не возникает трудностей. В случае, если неопределенный интеграл «не берется», то есть первоначальную нельзя представить в виде конечного числа элементарных функции, или подынтегральная функция задана графиком или таблицей, то используют приближенные формулы. Эти формулы основаны на геометрическом смысле определенного интеграла как площади криволинейной трапеции.
Формула прямоугольников
Пусть надо вычислить определенный интеграл от непрерывной на отрезке функции Согласно определению определенного интеграла построим интегральную сумму для функции
Поделим отрезок равных частей длины — точками
Вычислим значение функции в точках а именно
Тогда площадь криволинейной трапеции, изображенной на рис. 24.23, а вместе с тем и определенный интеграл для функции на отрезке приближенно равна сумме площадей прямоугольников с высотами и основами
Рис. 24.23
Полученное выражение (24.24) называется формулой прямоугольников с высотами вычисленным на левой грани частичных интервалов.
Если высоты прямоугольников взять равными значениям функции на правой грани частичных интервалов, то формула прямоугольников иметь вид:
Поскольку для функции непрерывной на существует конечное предел интегральной суммы при и то можно утверждать, что ошибка при вычислении интеграла будет тем меньше, чем больше Абсолютная погрешность при этом вычисляется по формуле:
где
Относительная погрешность определяется как отношение абсолютной погрешности к точному значению интеграла и подается в процентах.
Формула трапеций
Рассмотрим еще один способ приближенного вычисления определенного интеграла.
Как и в предыдущем случае, отрезок делится на равных частей точками и в этих точках вычисляются значения функции (рис. 24.24). Построим прямоугольные трапеции с высотами и основами длиной и
Рис. 24.24
Каждая часть площади под кривой будет приближенно равняться площади прямоугольной трапеции со средней линией и высотой а площадь всей криволинейной трапеции для функции на отрезке приближенно равна площади под ломаной, то есть сумме площадей всех
трапеций, ограниченных сверху отрезками этой ломаной.
Соответственно, получаем:
Это и есть формула трапеций. Формула (24.26), как и в предыдущем случае, будет тем точнее, чем больше число
Можно доказать, что если функция f имеет непрерывную ограниченную производную которая удовлетворяет неравенство (где — постоянная), то для формул прямоугольников и трапеций абсолютная погрешность определяется неравенством:
Для функций, которые имеют ограниченную вторую производную (где — постоянная), для абсолютной погрешности имеет место такая оценка:
Формула Симпсона
Поделим отрезок на четное число одинаковых частей (рис. 24.25). Функцию на отрезке заменим параболой которая проходит через точки и с осью симметрии, параллельной оси
Рис. 24.25
Аналогичные параболы строим и для всех остальных пар частичных отрезков.
Сумма площадей криволинейных трапеций, ограниченных параболами, и даст приближенное значение интеграла.
Покажем, что площадь криволинейной трапеции, ограниченной сверху параболой, проходящей через три точки равна:
где — длина отрезка — промежуток интегрирования (рис. 24.26).
Рис. 24.26
Коэффициенты параболы и значение функции в точках с абсциссами связанные такими соотношениями:
Найдем площадь криволинейной трапеции для на отрезке
С учетом значений функции в точках с абсциссами и следует, что
Итак, то есть получили равенство (24.28). Применяя на каждом отрезке формулу (24.28), при получим:
Если сложить левые и правые части записанных равенств, то получим:
или
— формула Симпсона, или формула парабол.
Если функция имеет непрерывную четвертую производную и где — наибольшее значение y в интервале то абсолютная погрешность формулы парабол определяется неравенством:
Таким образом, формула Симпсона (при одинаковом количестве частичных отрезков разбиения промежутка интегрирования) дает наилучшее приближение к искомому интеграла по сравнению с формулами прямоугольников или трапеций.
Вычислим интеграл применив непосредственное интегрирование.
Сравним этот результат с результатами приближенного вычисления по формулам прямоугольников, трапеций, парабол при и найдем абсолютные и относительные погрешности этих вычислений.
Для применения выведенных формул приближенного вычисления определенных интегралов разобьем отрезок на 10 равных частей. Тогда длина каждого отрезка равна а значение функции в точках разбиения:
Составим таблицу значений функции для каждой границы интервала разбиения.
Таблица 24.1
По формуле прямоугольников (24.24), если принимать высоты прямоугольника значение вычисленное на левой грани частичного интервала, находим:
По формуле прямоугольников (24.25), если принимать высоты прямоугольника значение на правой грани частичного интервала, получаем несколько иное значение:
По формуле трапеций (24.26) имеем промежуточное значение по сравнению с обеими формулами прямоугольников:
По формуле парабол (24.30):
При вычислении интеграла по формуле прямоугольников (24.24) абсолютная погрешность составляет:
а относительная погрешность равна:
При вычислении интеграла по формуле прямоугольников (24.25) абсолютная и относительная погрешности составляют:
или
При вычислении интеграла по формуле трапеций имеем:
и
При вычислении интеграла по формуле парабол получаем:
и
Итоговая таблица (табл. 24.2) убедительно подтверждает, что формула парабол действительно дает наибольшую точность при приближенном вычислении определенных интегралов. Конечно, если подынтегральная функция отлична от многочлена второго или третьей степени, то погрешность не будут нулевыми.
Таблица 24.2
По объему вычислительной работы формула Симпсона не имеет преимуществ перед другими формулами.
Лекции:
- Замена переменной в определенном интеграле
- Формулы тригонометрии и их использование для преобразования тригонометрических выражений
- Интегральный признак Коши
- Правила дифференцирования
- Построение графика функции
- Связь между непрерывностью и дифференцируемостью функции
- Функции комплексного переменного
- Преобразование подобия
- Формулы производных
- Изометрия